

NI-XNET Python Documentation

	Info

	Communicate over CAN or LIN via NI-XNET hardware with Python.

	Author

	National Instruments

[image: PyPI]
 [https://pypi.python.org/pypi/nixnet][image: Documentation]
 [http://nixnet.readthedocs.io/en/latest/?badge=latest][image: License]
 [https://github.com/ni/nixnet-python/blob/main/LICENSE][image: Language versions]
 [https://pypi.python.org/pypi/nixnet][image: Build]
 [https://travis-ci.org/ni/nixnet-python][image: Unit-test Coverage]
 [https://coveralls.io/github/ni/nixnet-python?branch=main]>>> import nixnet
>>> with nixnet.FrameInStreamSession('CAN1') as input_session:
>>> input_session.intf.can_term = constants.CanTerm.ON
>>> input_session.intf.baud_rate = 125000

>>> frames = input_session.frames.read(count)
>>> for frame in frames:
>>> print('Received frame:')
>>> print(frame)

Quick Start

Running nixnet requires NI-XNET or NI-XNET Runtime. Visit the
ni.com/downloads [http://www.ni.com/downloads/] to download the latest version
of NI-XNET.

nixnet can be installed with pip [http://pypi.python.org/pypi/pip]:

$ python -m pip install nixnet~=0.3.1

Now you should be able to move onto the Examples [https://github.com/ni/nixnet-python/tree/main/nixnet_examples].

Resources

	Documentation [http://nixnet.readthedocs.io].

	Source [https://github.com/ni/nixnet-python].

Product Support

The nixnet package and NI-XNET are supported by NI. For support, open
a request through the NI support portal at ni.com [http://www.ni.com].

Bugs / Feature Requests

We welcome all kinds of contributions. If you have a bug to report or a feature
request for nixnet, feel free to open an issue on Github [https://github.com/ni/nixnet-python/issues] or contribute the change yourself [https://github.com/ni/nixnet-python/blob/main/CONTRIBUTING.rst].

Status

nixnet package is created and maintained by National Instruments.

	
	The following support is included:

	
	CAN and LIN protocol

	Frames, Signals, and frame/signal conversion

	Database APIs

	For a complete list of supported features and functions, see the documentation [http://nixnet.readthedocs.io].

	See the enhancement issues [https://github.com/ni/nixnet-python/issues?q=is%3Aissue+is%3Aopen+label%3Aenhancement] for potential future work.

	Breaking API changes will be kept to a minimum. If a breaking change is made, it will be planned through
breaking-change isssues [https://github.com/ni/nixnet-python/issues?q=is%3Aissue+is%3Aopen+label%3Abreaking-change]
and communicated via semver [http://semver.org/] and the release notes [https://github.com/ni/nixnet-python/releases].

	Known issues [https://github.com/ni/nixnet-python/issues?q=is%3Aissue+is%3Aopen+label%3Abug].

nixnet currently supports

	Windows operating system.

	CPython 2.7.0+, 3.4+, PyPy2, and PyPy3.

	NI-XNET 15.5+

License

nixnet is licensed under an MIT-style license (see
LICENSE [https://github.com/ni/nixnet-python/blob/main/LICENSE]).
Other incorporated projects may be licensed under different licenses. All
licenses allow for non-commercial and commercial use.

Table of Contents:

	Installation

	API Reference
	nixnet.session
	nixnet.session.frames

	nixnet.session.signals

	nixnet.session.intf

	nixnet.session.j1939

	nixnet.session.base

	nixnet.convert
	nixnet.session.signals

	nixnet.session.j1939

	nixnet.system
	nixnet.system.system

	nixnet.system.databases

	nixnet.system.device

	nixnet.system.interface

	nixnet.database
	nixnet.database.cluster

	nixnet.database.database

	nixnet.database.ecu

	nixnet.database.frame

	nixnet.database.lin_sched

	nixnet.database.lin_sched_entry

	nixnet.database.pdu

	nixnet.database.signal

	nixnet.database.subframe

	nixnet.database.collection

	nixnet.database.dbc_attributes

	nixnet.database.dbc_signal_value_table

	nixnet.constants

	nixnet.types

	nixnet.errors

	Examples
	Queued I/O Example
	CAN Queued I/O

	Stream I/O Example
	CAN Stream I/O

	LIN Stream I/O

	Single-Point I/O Example
	CAN Single-Point I/O

	Signal/Frame Conversion Example

	Adapting CAN examples to LIN

	Programmatic Database Usage

	Dynamic Database Creation
	CAN Dynamic Database Creation

	LIN Dynamic Database Creation

	Contributing to nixnet
	Getting Started

	Testing

	Developer Certificate of Origin (DCO)

Indices and Tables

	Index

	Module Index

Installation

Running nixnet requires NI-XNET or NI-XNET Runtime. Visit the
ni.com/downloads [http://www.ni.com/downloads/] to download the latest version
of NI-XNET.

nixnet can be installed with pip [http://pypi.python.org/pypi/pip]:

$ python -m pip install nixnet

Or easy_install from
setuptools [http://pypi.python.org/pypi/setuptools]:

$ python -m easy_install nixnet

You also can download the project source and run:

$ python setup.py install

API Reference

Table of Contents:

	nixnet.session
	nixnet.session.frames

	nixnet.session.signals

	nixnet.session.intf

	nixnet.session.j1939

	nixnet.session.base

	nixnet.convert
	nixnet.session.signals

	nixnet.session.j1939

	nixnet.system
	nixnet.system.system

	nixnet.system.databases

	nixnet.system.device

	nixnet.system.interface

	nixnet.database
	nixnet.database.cluster

	nixnet.database.database

	nixnet.database.ecu

	nixnet.database.frame

	nixnet.database.lin_sched

	nixnet.database.lin_sched_entry

	nixnet.database.pdu

	nixnet.database.signal

	nixnet.database.subframe

	nixnet.database.collection

	nixnet.database.dbc_attributes

	nixnet.database.dbc_signal_value_table

	nixnet.constants

	nixnet.types

	nixnet.errors

nixnet.session

	
class nixnet.session.FrameInStreamSession(interface_name, database_name=':memory:', cluster_name='')[source]

	Bases: nixnet._session.base.SessionBase

Frame Input Stream session.

This session reads all frames received from the network using a single
stream.

The input data is returned as a list of frames. Because all frames are
returned, your application must evaluate identification in each frame (such
as a CAN identifier or FlexRay slot/cycle/channel) to interpret the frame
payload data.

Previously, you could use only one Frame Input Stream session for a given
interface. Now, multiple Frame Input Stream sessions can be open at the same
time on CAN and LIN interfaces.

While using one or more Frame Input Stream sessions, you can use other
sessions with different input modes. Received frames are copied to Frame
Input Stream sessions in addition to any other applicable input session. For
example, if you create a Frame Input Single-Point session for frame_a, then
create a Frame Input Stream session, when frame_a is received, its data is
returned from the call to read function of both sessions. This duplication
of incoming frames enables you to analyze overall traffic while running a
higher level application that uses specific frame or signal data.

When used with a FlexRay interface, frames from both channels are returned.
For example, if a frame is received in a static slot on both channel A and
channel B, two frames are returned from the read function.

Note

Typical use case: Analyzing and/or logging all frame traffic in
the network.

	
application_protocol

	This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

	Type

	nixnet._enums.AppProtocol

	
auto_start

	Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to
the appropriate read function (if not already started using
nixnet._session.base.SessionBase.start). This is done
because there is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write
function contains valid data, you can leave this property at its default
value of true. If you need to call the appropriate write function
multiple times prior to starting the session, or if you are starting
multiple sessions simultaneously, you can set this property to false.
After calling the appropriate write function as desired, you can call
nixnet._session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to
nixnet._session.base.SessionBase.start with scope set to Normal.
This starts the session itself, and if the interface is not already
started, it starts the interface also.

	Type

	bool

	
can_comm

	CAN Communication state

	Type

	nixnet.types.CanComm

	
change_lin_diagnostic_schedule(schedule)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the diagnostic schedule.

	Parameters

	schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic schedule
that the LIN master executes.

	
change_lin_schedule(sched_index)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the running schedule.

According to the LIN protocol, only the master executes schedules,
not slaves. If the
nixnet._session.intf.Interface.lin_master property is false (slave),
this write function implicitly sets that property to true (master). If the
interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

	Parameters

	sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the
database with the nixnet.database._cluster.Cluster.lin_schedules
property.

	
check_fault()

	Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET
application calls. The fault cause may be related to network
communication, but it also can be related to XNET hardware, such as a
fault in the onboard processor. Although faults are extremely rare,
nxReadState provides a detection method distinct from the status of
NI-XNET function calls, yet easy to use alongside the common practice
of checking the communication state.

	
close()

	Close (clear) the XNET session.

This function stops communication for the session and releases all
resources the session uses. It internally calls
nixnet._session.base.SessionBase.stop with normal scope, so if
this is the last session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to
create a new session that uses the same objects. For example, if you
create a session for a frame named frame_a using Frame Output
Single-Point mode, then you create a second session for frame_a using
Frame Output Queued mode, the second call to the session constructor
returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can
close the previous use of frame_a to create the new session.

	
cluster_name

	This property returns the cluster (network) name used with the session.

	Type

	str

	
connect_terminals(source, destination)

	Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on
the interface hardware. The XNET terminal represents an external or
internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI
card, RTSI terminals for a PCI card, or the single external terminal for
a C Series module. Internal terminals include timebases (clocks) and
logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the
pair is an internal and the other an external.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
database_name

	This property returns the database name used with the session.

	Type

	str

	
disconnect_terminals(source, destination)

	Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals
previously connected with nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET
automatically disconnects all terminal connections for that interface.
Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections
dynamically while an application is running. To disconnect a terminal,
you first must stop the interface using
nixnet._session.base.SessionBase.stop with the Interface Only
scope. Then you can call ‘disconnect_terminals’ and
nixnet._session.base.SessionBase.connect_terminals to adjust
terminal connections. Finally, you can call
nixnet._session.base.SessionBase.start with the Interface Only
scope to restart the interface.

You can disconnect only a terminal that has been previously connected.
Attempting to disconnect a nonconnected terminal results in an error.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
flush()

	Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to
store frames. For input modes, the queues store frame values (or
corresponding signal values) that have been received, but not obtained
by calling the read function. For output sessions, the queues store
frame values provided to write function, but not transmitted successfully.

nixnet._session.base.SessionBase.start and
nixnet._session.base.SessionBase.stop have no effect on these
queues. Use ‘flush’ to discard all values in the session’s queues.

For example, if you call a write function to write three frames, then
immediately call nixnet._session.base.SessionBase.stop, then
call nixnet._session.base.SessionBase.start a few seconds
later, the three frames transmit. If you call ‘flush’ between
nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, no frames transmit.

As another example, if you receive three frames, then call
nixnet._session.base.SessionBase.stop, the three frames remains
in the queue. If you call nixnet._session.base.SessionBase.start
a few seconds later, then call a read function, you obtain the three
frames received earlier, potentially followed by other frames received
after calling nixnet._session.base.SessionBase.start. If you
call ‘flush’ between nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, read function returns
only frames received after the calling
nixnet._session.base.SessionBase.start.

	
frames

	Operate on session’s frames

	Type

	nixnet._session.frames.InFrames

	
intf

	Returns the Interface configuration object for the session.

	Type

	nixnet._session.intf.Interface

	
j1939

	Returns the J1939 configuration object for the session.

	Type

	nixnet._session.j1939.J1939

	
lin_comm

	LIN Communication state

	Type

	nixnet.types.LinComm

	
mode

	This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

	Type

	nixnet._enums.CreateSessionMode

	
num_pend

	This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available
to the appropriate read function. If you call the appropriate read
function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided
to the appropriate write function but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
num_unused

	This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the
size of the underlying queue(s). Contrary to the Queue Size property,
this value is in number of frames for Frame I/O, not number of bytes;
for Signal I/O, it is the number of signal values in both cases. After
start, this property returns the queue size minus the
Number of Values Pending
property.

For input sessions, this is the number of frame/signal values unused in
the underlying queue(s).

For output sessions, this is the number of frame/signal values you can
provide to a subsequent call to the appropriate write function. If you
call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
protocol

	This property returns the protocol that the interface in the session uses.

	Type

	nixnet._enums.Protocol

	
queue_size

	Get or set queue size.

For output sessions, queues store data passed to the appropriate
write function and not yet transmitted onto the network. For input
sessions, queues store data received from the network and not yet
obtained using the appropriate read function.

For most applications, the default queue sizes are sufficient. You can
write to this property to override the default. When you write (set)
this property, you must do so prior to the first session start. You
cannot set this property again after calling
nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values
stored. This is analogous to the number of values you use with the
appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame
data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24
bytes. You can use this number to convert the Queue Size (in bytes)
to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can
vary depending on the payload length. For more information, refer to
Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame.
Within the implementation, each frame uses a dedicated queue. According
to the formulas below, the default queue sizes can be different for each
frame. If you read the default Queue Size property for a Signal Input XY
session, the largest queue size is returned, so that a call to the
appropriate read function of that size can empty all queues. If you
read the default Queue Size property for a Signal Output XY session, the
smallest queue size is returned, so that a call to the appropriate write
function of that size can succeed when all queues are empty. If you
write the Queue Size property for a Signal I/O XY session, that size is
used for all frames, so you must ensure that it is sufficient for the
frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one
frame. Within the implementation, each frame uses a dedicated queue. The
Queue Size property does not represent the memory in these queues, but
rather the amount of time stored. The default queue allocations store
Application Time worth of resampled signal values. If you read the
default Queue Size property for a Signal I/O Waveform session, it
returns Application Time multiplied by the time Resample Rate. If you
write the Queue Size property for a Signal I/O Waveform session, that
value is translated from a number of samples to a time, and that time is
used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored.
Single-Point sessions always use a value of 1 as the effective queue size.

	Type

	int

	
start(scope=<StartStopScope.NORMAL: 0>)

	Start communication for the XNET session.

Because the session is started automatically by default, this function
is optional. This function is for more advanced applications to start
multiple sessions in a specific order. For more information about the
automatic start feature, refer to the
nixnet._session.base.SessionBase.auto_start property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can start each logical unit separately. When a session is started,
all contained frames or signals are placed in a state where they are
ready to communicate. When the interface is started, it takes data from
all started sessions to communicate with other nodes on the bus. For a
specification of the state models for the session and interface, refer
to State Models.

If an output session starts before you write data, or you read an input
session before it receives a frame, default data is used. For more
information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
state

	Session running state.

	Type

	nixnet._enums.SessionInfoState

	
stop(scope=<StartStopScope.NORMAL: 0>)

	Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared),
this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can stop each logical unit separately. When a session is stopped,
all contained frames or signals are placed in a state where they are no
longer ready to communicate. When the interface is stopped, it no longer
takes data from sessions to communicate with other nodes on the bus. For
a specification of the state models for the session and interface, refer
to State Models.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
time_communicating

	Time the interface started communicating.

The time is usually later than time_start because the interface
must undergo a communication startup procedure.

	Type

	int

	
time_current

	Current interface time.

	Type

	int

	
time_start

	Time the interface was started.

	Type

	int

	
wait_for_intf_communicating(timeout=10)

	Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for
the trigger. Once the interface is started, this waits for the
protocol’s communication state to transition to a value that indicates
communication with remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for
communication (invalid time of 0 prior)

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_intf_remote_wakeup(timeout=10)

	Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the
network. This wait is used for CAN, when you set the ‘can_tcvr_state’
property to ‘constants.CanTcvrState.SLEEP’. Although the interface
itself is ready to communicate, this places the transceiver into a sleep
state. When a remote CAN node transmits a frame, the transceiver wakes
up, and communication is restored. This wait detects that remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to
‘constants.LinSleep.REMOTE_SLEEP’ or ‘constants.LinSleep.LOCAL_SLEEP’.
When asleep, if a remote LIN ECU transmits the wakeup pattern (break),
the XNET LIN interface detects this transmission and wakes up. This wait
detects that remote wakeup.

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_transmit_complete(timeout=10)

	Wait for transmition to complete.

All frames written for the session have been transmitted on the bus.
This condition applies to CAN, LIN, and FlexRay. This condition is state
based, and the state is Boolean (true/false).

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
class nixnet.session.FrameOutStreamSession(interface_name, database_name=':memory:', cluster_name='')[source]

	Bases: nixnet._session.base.SessionBase

Frame Output Stream session.

This session transmits an arbitrary sequence of frame values using a single
stream. The values are not limited to a single frame in the database, but
can transmit any frame.

The data passed to the write frame function is a list of frame values,
each of which transmits as soon as possible. Frames transmit sequentially
(one after another).

Like Frame Input Stream sessions, you can create more than one Frame Output
Stream session for a given interface.

For CAN, frame values transmit on the network based entirely on the time
when you call the write frame function. The timing of each frame as
specified in the database is ignored. For example, if you provide four frame
values to the the write frame function, the first frame value transmits
immediately, followed by the next three values transmitted back to back. For
this session, the CAN frame payload length in the database is ignored, and
the write frame function is always used.

Similarly for LIN, frame values transmit on the network based entirely on
the time when you call the write frame function. The timing of each frame as
specified in the database is ignored. The LIN frame payload length in the
database is ignored, and the write frame function is always used. For LIN,
this session/mode is allowed only on the interface as master. If the payload
for a frame is empty, only the header part of the frame is transmitted. For
a nonempty payload, the header + response for the frame is transmitted. If a
frame for transmit is defined in the database (in-memory or otherwise), it
is transmitted using its database checksum type. If the frame for transmit
is not defined in the database, it is transmitted using enhanced checksum.

This session is not supported for FlexRay.

The frame values for this session are stored in a queue, such that every value
provided is transmitted.

	
application_protocol

	This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

	Type

	nixnet._enums.AppProtocol

	
auto_start

	Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to
the appropriate read function (if not already started using
nixnet._session.base.SessionBase.start). This is done
because there is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write
function contains valid data, you can leave this property at its default
value of true. If you need to call the appropriate write function
multiple times prior to starting the session, or if you are starting
multiple sessions simultaneously, you can set this property to false.
After calling the appropriate write function as desired, you can call
nixnet._session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to
nixnet._session.base.SessionBase.start with scope set to Normal.
This starts the session itself, and if the interface is not already
started, it starts the interface also.

	Type

	bool

	
can_comm

	CAN Communication state

	Type

	nixnet.types.CanComm

	
change_lin_diagnostic_schedule(schedule)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the diagnostic schedule.

	Parameters

	schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic schedule
that the LIN master executes.

	
change_lin_schedule(sched_index)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the running schedule.

According to the LIN protocol, only the master executes schedules,
not slaves. If the
nixnet._session.intf.Interface.lin_master property is false (slave),
this write function implicitly sets that property to true (master). If the
interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

	Parameters

	sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the
database with the nixnet.database._cluster.Cluster.lin_schedules
property.

	
check_fault()

	Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET
application calls. The fault cause may be related to network
communication, but it also can be related to XNET hardware, such as a
fault in the onboard processor. Although faults are extremely rare,
nxReadState provides a detection method distinct from the status of
NI-XNET function calls, yet easy to use alongside the common practice
of checking the communication state.

	
close()

	Close (clear) the XNET session.

This function stops communication for the session and releases all
resources the session uses. It internally calls
nixnet._session.base.SessionBase.stop with normal scope, so if
this is the last session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to
create a new session that uses the same objects. For example, if you
create a session for a frame named frame_a using Frame Output
Single-Point mode, then you create a second session for frame_a using
Frame Output Queued mode, the second call to the session constructor
returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can
close the previous use of frame_a to create the new session.

	
cluster_name

	This property returns the cluster (network) name used with the session.

	Type

	str

	
connect_terminals(source, destination)

	Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on
the interface hardware. The XNET terminal represents an external or
internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI
card, RTSI terminals for a PCI card, or the single external terminal for
a C Series module. Internal terminals include timebases (clocks) and
logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the
pair is an internal and the other an external.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
database_name

	This property returns the database name used with the session.

	Type

	str

	
disconnect_terminals(source, destination)

	Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals
previously connected with nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET
automatically disconnects all terminal connections for that interface.
Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections
dynamically while an application is running. To disconnect a terminal,
you first must stop the interface using
nixnet._session.base.SessionBase.stop with the Interface Only
scope. Then you can call ‘disconnect_terminals’ and
nixnet._session.base.SessionBase.connect_terminals to adjust
terminal connections. Finally, you can call
nixnet._session.base.SessionBase.start with the Interface Only
scope to restart the interface.

You can disconnect only a terminal that has been previously connected.
Attempting to disconnect a nonconnected terminal results in an error.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
flush()

	Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to
store frames. For input modes, the queues store frame values (or
corresponding signal values) that have been received, but not obtained
by calling the read function. For output sessions, the queues store
frame values provided to write function, but not transmitted successfully.

nixnet._session.base.SessionBase.start and
nixnet._session.base.SessionBase.stop have no effect on these
queues. Use ‘flush’ to discard all values in the session’s queues.

For example, if you call a write function to write three frames, then
immediately call nixnet._session.base.SessionBase.stop, then
call nixnet._session.base.SessionBase.start a few seconds
later, the three frames transmit. If you call ‘flush’ between
nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, no frames transmit.

As another example, if you receive three frames, then call
nixnet._session.base.SessionBase.stop, the three frames remains
in the queue. If you call nixnet._session.base.SessionBase.start
a few seconds later, then call a read function, you obtain the three
frames received earlier, potentially followed by other frames received
after calling nixnet._session.base.SessionBase.start. If you
call ‘flush’ between nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, read function returns
only frames received after the calling
nixnet._session.base.SessionBase.start.

	
frames

	Operate on session’s frames

	Type

	nixnet._session.frames.InFrames

	
intf

	Returns the Interface configuration object for the session.

	Type

	nixnet._session.intf.Interface

	
j1939

	Returns the J1939 configuration object for the session.

	Type

	nixnet._session.j1939.J1939

	
lin_comm

	LIN Communication state

	Type

	nixnet.types.LinComm

	
mode

	This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

	Type

	nixnet._enums.CreateSessionMode

	
num_pend

	This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available
to the appropriate read function. If you call the appropriate read
function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided
to the appropriate write function but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
num_unused

	This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the
size of the underlying queue(s). Contrary to the Queue Size property,
this value is in number of frames for Frame I/O, not number of bytes;
for Signal I/O, it is the number of signal values in both cases. After
start, this property returns the queue size minus the
Number of Values Pending
property.

For input sessions, this is the number of frame/signal values unused in
the underlying queue(s).

For output sessions, this is the number of frame/signal values you can
provide to a subsequent call to the appropriate write function. If you
call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
protocol

	This property returns the protocol that the interface in the session uses.

	Type

	nixnet._enums.Protocol

	
queue_size

	Get or set queue size.

For output sessions, queues store data passed to the appropriate
write function and not yet transmitted onto the network. For input
sessions, queues store data received from the network and not yet
obtained using the appropriate read function.

For most applications, the default queue sizes are sufficient. You can
write to this property to override the default. When you write (set)
this property, you must do so prior to the first session start. You
cannot set this property again after calling
nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values
stored. This is analogous to the number of values you use with the
appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame
data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24
bytes. You can use this number to convert the Queue Size (in bytes)
to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can
vary depending on the payload length. For more information, refer to
Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame.
Within the implementation, each frame uses a dedicated queue. According
to the formulas below, the default queue sizes can be different for each
frame. If you read the default Queue Size property for a Signal Input XY
session, the largest queue size is returned, so that a call to the
appropriate read function of that size can empty all queues. If you
read the default Queue Size property for a Signal Output XY session, the
smallest queue size is returned, so that a call to the appropriate write
function of that size can succeed when all queues are empty. If you
write the Queue Size property for a Signal I/O XY session, that size is
used for all frames, so you must ensure that it is sufficient for the
frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one
frame. Within the implementation, each frame uses a dedicated queue. The
Queue Size property does not represent the memory in these queues, but
rather the amount of time stored. The default queue allocations store
Application Time worth of resampled signal values. If you read the
default Queue Size property for a Signal I/O Waveform session, it
returns Application Time multiplied by the time Resample Rate. If you
write the Queue Size property for a Signal I/O Waveform session, that
value is translated from a number of samples to a time, and that time is
used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored.
Single-Point sessions always use a value of 1 as the effective queue size.

	Type

	int

	
start(scope=<StartStopScope.NORMAL: 0>)

	Start communication for the XNET session.

Because the session is started automatically by default, this function
is optional. This function is for more advanced applications to start
multiple sessions in a specific order. For more information about the
automatic start feature, refer to the
nixnet._session.base.SessionBase.auto_start property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can start each logical unit separately. When a session is started,
all contained frames or signals are placed in a state where they are
ready to communicate. When the interface is started, it takes data from
all started sessions to communicate with other nodes on the bus. For a
specification of the state models for the session and interface, refer
to State Models.

If an output session starts before you write data, or you read an input
session before it receives a frame, default data is used. For more
information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
state

	Session running state.

	Type

	nixnet._enums.SessionInfoState

	
stop(scope=<StartStopScope.NORMAL: 0>)

	Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared),
this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can stop each logical unit separately. When a session is stopped,
all contained frames or signals are placed in a state where they are no
longer ready to communicate. When the interface is stopped, it no longer
takes data from sessions to communicate with other nodes on the bus. For
a specification of the state models for the session and interface, refer
to State Models.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
time_communicating

	Time the interface started communicating.

The time is usually later than time_start because the interface
must undergo a communication startup procedure.

	Type

	int

	
time_current

	Current interface time.

	Type

	int

	
time_start

	Time the interface was started.

	Type

	int

	
wait_for_intf_communicating(timeout=10)

	Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for
the trigger. Once the interface is started, this waits for the
protocol’s communication state to transition to a value that indicates
communication with remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for
communication (invalid time of 0 prior)

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_intf_remote_wakeup(timeout=10)

	Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the
network. This wait is used for CAN, when you set the ‘can_tcvr_state’
property to ‘constants.CanTcvrState.SLEEP’. Although the interface
itself is ready to communicate, this places the transceiver into a sleep
state. When a remote CAN node transmits a frame, the transceiver wakes
up, and communication is restored. This wait detects that remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to
‘constants.LinSleep.REMOTE_SLEEP’ or ‘constants.LinSleep.LOCAL_SLEEP’.
When asleep, if a remote LIN ECU transmits the wakeup pattern (break),
the XNET LIN interface detects this transmission and wakes up. This wait
detects that remote wakeup.

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_transmit_complete(timeout=10)

	Wait for transmition to complete.

All frames written for the session have been transmitted on the bus.
This condition applies to CAN, LIN, and FlexRay. This condition is state
based, and the state is Boolean (true/false).

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
class nixnet.session.FrameInQueuedSession(interface_name, database_name, cluster_name, frame)[source]

	Bases: nixnet._session.base.SessionBase

Frame Input Queued session.

This session reads data from a dedicated queue per frame. It enables your
application to read a sequence of data specific to a frame (for example, a
CAN identifier).

You specify only one frame for the session, and the read frame function
returns values for that frame only. If you need sequential data for multiple
frames, create multiple sessions, one per frame.

The input data is returned as a list of frame values. These values
represent all values received for the frame since the previous call to the
read frame function.

	
application_protocol

	This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

	Type

	nixnet._enums.AppProtocol

	
auto_start

	Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to
the appropriate read function (if not already started using
nixnet._session.base.SessionBase.start). This is done
because there is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write
function contains valid data, you can leave this property at its default
value of true. If you need to call the appropriate write function
multiple times prior to starting the session, or if you are starting
multiple sessions simultaneously, you can set this property to false.
After calling the appropriate write function as desired, you can call
nixnet._session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to
nixnet._session.base.SessionBase.start with scope set to Normal.
This starts the session itself, and if the interface is not already
started, it starts the interface also.

	Type

	bool

	
can_comm

	CAN Communication state

	Type

	nixnet.types.CanComm

	
change_lin_diagnostic_schedule(schedule)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the diagnostic schedule.

	Parameters

	schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic schedule
that the LIN master executes.

	
change_lin_schedule(sched_index)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the running schedule.

According to the LIN protocol, only the master executes schedules,
not slaves. If the
nixnet._session.intf.Interface.lin_master property is false (slave),
this write function implicitly sets that property to true (master). If the
interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

	Parameters

	sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the
database with the nixnet.database._cluster.Cluster.lin_schedules
property.

	
check_fault()

	Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET
application calls. The fault cause may be related to network
communication, but it also can be related to XNET hardware, such as a
fault in the onboard processor. Although faults are extremely rare,
nxReadState provides a detection method distinct from the status of
NI-XNET function calls, yet easy to use alongside the common practice
of checking the communication state.

	
close()

	Close (clear) the XNET session.

This function stops communication for the session and releases all
resources the session uses. It internally calls
nixnet._session.base.SessionBase.stop with normal scope, so if
this is the last session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to
create a new session that uses the same objects. For example, if you
create a session for a frame named frame_a using Frame Output
Single-Point mode, then you create a second session for frame_a using
Frame Output Queued mode, the second call to the session constructor
returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can
close the previous use of frame_a to create the new session.

	
cluster_name

	This property returns the cluster (network) name used with the session.

	Type

	str

	
connect_terminals(source, destination)

	Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on
the interface hardware. The XNET terminal represents an external or
internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI
card, RTSI terminals for a PCI card, or the single external terminal for
a C Series module. Internal terminals include timebases (clocks) and
logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the
pair is an internal and the other an external.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
database_name

	This property returns the database name used with the session.

	Type

	str

	
disconnect_terminals(source, destination)

	Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals
previously connected with nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET
automatically disconnects all terminal connections for that interface.
Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections
dynamically while an application is running. To disconnect a terminal,
you first must stop the interface using
nixnet._session.base.SessionBase.stop with the Interface Only
scope. Then you can call ‘disconnect_terminals’ and
nixnet._session.base.SessionBase.connect_terminals to adjust
terminal connections. Finally, you can call
nixnet._session.base.SessionBase.start with the Interface Only
scope to restart the interface.

You can disconnect only a terminal that has been previously connected.
Attempting to disconnect a nonconnected terminal results in an error.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
flush()

	Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to
store frames. For input modes, the queues store frame values (or
corresponding signal values) that have been received, but not obtained
by calling the read function. For output sessions, the queues store
frame values provided to write function, but not transmitted successfully.

nixnet._session.base.SessionBase.start and
nixnet._session.base.SessionBase.stop have no effect on these
queues. Use ‘flush’ to discard all values in the session’s queues.

For example, if you call a write function to write three frames, then
immediately call nixnet._session.base.SessionBase.stop, then
call nixnet._session.base.SessionBase.start a few seconds
later, the three frames transmit. If you call ‘flush’ between
nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, no frames transmit.

As another example, if you receive three frames, then call
nixnet._session.base.SessionBase.stop, the three frames remains
in the queue. If you call nixnet._session.base.SessionBase.start
a few seconds later, then call a read function, you obtain the three
frames received earlier, potentially followed by other frames received
after calling nixnet._session.base.SessionBase.start. If you
call ‘flush’ between nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, read function returns
only frames received after the calling
nixnet._session.base.SessionBase.start.

	
frames

	Operate on session’s frames

	Type

	nixnet._session.frames.InFrames

	
intf

	Returns the Interface configuration object for the session.

	Type

	nixnet._session.intf.Interface

	
j1939

	Returns the J1939 configuration object for the session.

	Type

	nixnet._session.j1939.J1939

	
lin_comm

	LIN Communication state

	Type

	nixnet.types.LinComm

	
mode

	This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

	Type

	nixnet._enums.CreateSessionMode

	
num_pend

	This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available
to the appropriate read function. If you call the appropriate read
function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided
to the appropriate write function but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
num_unused

	This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the
size of the underlying queue(s). Contrary to the Queue Size property,
this value is in number of frames for Frame I/O, not number of bytes;
for Signal I/O, it is the number of signal values in both cases. After
start, this property returns the queue size minus the
Number of Values Pending
property.

For input sessions, this is the number of frame/signal values unused in
the underlying queue(s).

For output sessions, this is the number of frame/signal values you can
provide to a subsequent call to the appropriate write function. If you
call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
protocol

	This property returns the protocol that the interface in the session uses.

	Type

	nixnet._enums.Protocol

	
queue_size

	Get or set queue size.

For output sessions, queues store data passed to the appropriate
write function and not yet transmitted onto the network. For input
sessions, queues store data received from the network and not yet
obtained using the appropriate read function.

For most applications, the default queue sizes are sufficient. You can
write to this property to override the default. When you write (set)
this property, you must do so prior to the first session start. You
cannot set this property again after calling
nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values
stored. This is analogous to the number of values you use with the
appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame
data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24
bytes. You can use this number to convert the Queue Size (in bytes)
to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can
vary depending on the payload length. For more information, refer to
Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame.
Within the implementation, each frame uses a dedicated queue. According
to the formulas below, the default queue sizes can be different for each
frame. If you read the default Queue Size property for a Signal Input XY
session, the largest queue size is returned, so that a call to the
appropriate read function of that size can empty all queues. If you
read the default Queue Size property for a Signal Output XY session, the
smallest queue size is returned, so that a call to the appropriate write
function of that size can succeed when all queues are empty. If you
write the Queue Size property for a Signal I/O XY session, that size is
used for all frames, so you must ensure that it is sufficient for the
frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one
frame. Within the implementation, each frame uses a dedicated queue. The
Queue Size property does not represent the memory in these queues, but
rather the amount of time stored. The default queue allocations store
Application Time worth of resampled signal values. If you read the
default Queue Size property for a Signal I/O Waveform session, it
returns Application Time multiplied by the time Resample Rate. If you
write the Queue Size property for a Signal I/O Waveform session, that
value is translated from a number of samples to a time, and that time is
used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored.
Single-Point sessions always use a value of 1 as the effective queue size.

	Type

	int

	
start(scope=<StartStopScope.NORMAL: 0>)

	Start communication for the XNET session.

Because the session is started automatically by default, this function
is optional. This function is for more advanced applications to start
multiple sessions in a specific order. For more information about the
automatic start feature, refer to the
nixnet._session.base.SessionBase.auto_start property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can start each logical unit separately. When a session is started,
all contained frames or signals are placed in a state where they are
ready to communicate. When the interface is started, it takes data from
all started sessions to communicate with other nodes on the bus. For a
specification of the state models for the session and interface, refer
to State Models.

If an output session starts before you write data, or you read an input
session before it receives a frame, default data is used. For more
information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
state

	Session running state.

	Type

	nixnet._enums.SessionInfoState

	
stop(scope=<StartStopScope.NORMAL: 0>)

	Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared),
this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can stop each logical unit separately. When a session is stopped,
all contained frames or signals are placed in a state where they are no
longer ready to communicate. When the interface is stopped, it no longer
takes data from sessions to communicate with other nodes on the bus. For
a specification of the state models for the session and interface, refer
to State Models.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
time_communicating

	Time the interface started communicating.

The time is usually later than time_start because the interface
must undergo a communication startup procedure.

	Type

	int

	
time_current

	Current interface time.

	Type

	int

	
time_start

	Time the interface was started.

	Type

	int

	
wait_for_intf_communicating(timeout=10)

	Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for
the trigger. Once the interface is started, this waits for the
protocol’s communication state to transition to a value that indicates
communication with remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for
communication (invalid time of 0 prior)

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_intf_remote_wakeup(timeout=10)

	Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the
network. This wait is used for CAN, when you set the ‘can_tcvr_state’
property to ‘constants.CanTcvrState.SLEEP’. Although the interface
itself is ready to communicate, this places the transceiver into a sleep
state. When a remote CAN node transmits a frame, the transceiver wakes
up, and communication is restored. This wait detects that remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to
‘constants.LinSleep.REMOTE_SLEEP’ or ‘constants.LinSleep.LOCAL_SLEEP’.
When asleep, if a remote LIN ECU transmits the wakeup pattern (break),
the XNET LIN interface detects this transmission and wakes up. This wait
detects that remote wakeup.

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_transmit_complete(timeout=10)

	Wait for transmition to complete.

All frames written for the session have been transmitted on the bus.
This condition applies to CAN, LIN, and FlexRay. This condition is state
based, and the state is Boolean (true/false).

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
class nixnet.session.FrameOutQueuedSession(interface_name, database_name, cluster_name, frame)[source]

	Bases: nixnet._session.base.SessionBase

Frame Output Queued session.

This session provides a sequence of values for a single frame, for transmit
using that frame’s timing as specified in the database.

The output data is provided as a list of frame values, to be transmitted
sequentially for the frame specified in the session.

You can only specify one frame for this session. To transmit sequential
values for multiple frames, use a different Frame Output Queued session for
each frame or use the Frame Output Stream session.

The frame values for this session are stored in a queue, such that every
value provided is transmitted.

For this session, NI-XNET transmits each frame according to its properties
in the database. Therefore, when you call the write frame function, the
number of payload bytes in each frame value must match that frame’s Payload
Length property. The other frame value elements are ignored, so you can
leave them uninitialized. For CAN interfaces, if the number of payload bytes
you write is smaller than the Payload Length configured in the database, the
requested number of bytes transmits. If the number of payload bytes is
larger than the Payload Length configured in the database, the queue is
flushed and no frames transmit. For other interfaces, transmitting a number
of payload bytes different than the frame’s payload may cause unexpected
results on the bus.

	
application_protocol

	This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

	Type

	nixnet._enums.AppProtocol

	
auto_start

	Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to
the appropriate read function (if not already started using
nixnet._session.base.SessionBase.start). This is done
because there is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write
function contains valid data, you can leave this property at its default
value of true. If you need to call the appropriate write function
multiple times prior to starting the session, or if you are starting
multiple sessions simultaneously, you can set this property to false.
After calling the appropriate write function as desired, you can call
nixnet._session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to
nixnet._session.base.SessionBase.start with scope set to Normal.
This starts the session itself, and if the interface is not already
started, it starts the interface also.

	Type

	bool

	
can_comm

	CAN Communication state

	Type

	nixnet.types.CanComm

	
change_lin_diagnostic_schedule(schedule)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the diagnostic schedule.

	Parameters

	schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic schedule
that the LIN master executes.

	
change_lin_schedule(sched_index)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the running schedule.

According to the LIN protocol, only the master executes schedules,
not slaves. If the
nixnet._session.intf.Interface.lin_master property is false (slave),
this write function implicitly sets that property to true (master). If the
interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

	Parameters

	sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the
database with the nixnet.database._cluster.Cluster.lin_schedules
property.

	
check_fault()

	Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET
application calls. The fault cause may be related to network
communication, but it also can be related to XNET hardware, such as a
fault in the onboard processor. Although faults are extremely rare,
nxReadState provides a detection method distinct from the status of
NI-XNET function calls, yet easy to use alongside the common practice
of checking the communication state.

	
close()

	Close (clear) the XNET session.

This function stops communication for the session and releases all
resources the session uses. It internally calls
nixnet._session.base.SessionBase.stop with normal scope, so if
this is the last session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to
create a new session that uses the same objects. For example, if you
create a session for a frame named frame_a using Frame Output
Single-Point mode, then you create a second session for frame_a using
Frame Output Queued mode, the second call to the session constructor
returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can
close the previous use of frame_a to create the new session.

	
cluster_name

	This property returns the cluster (network) name used with the session.

	Type

	str

	
connect_terminals(source, destination)

	Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on
the interface hardware. The XNET terminal represents an external or
internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI
card, RTSI terminals for a PCI card, or the single external terminal for
a C Series module. Internal terminals include timebases (clocks) and
logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the
pair is an internal and the other an external.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
database_name

	This property returns the database name used with the session.

	Type

	str

	
disconnect_terminals(source, destination)

	Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals
previously connected with nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET
automatically disconnects all terminal connections for that interface.
Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections
dynamically while an application is running. To disconnect a terminal,
you first must stop the interface using
nixnet._session.base.SessionBase.stop with the Interface Only
scope. Then you can call ‘disconnect_terminals’ and
nixnet._session.base.SessionBase.connect_terminals to adjust
terminal connections. Finally, you can call
nixnet._session.base.SessionBase.start with the Interface Only
scope to restart the interface.

You can disconnect only a terminal that has been previously connected.
Attempting to disconnect a nonconnected terminal results in an error.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
flush()

	Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to
store frames. For input modes, the queues store frame values (or
corresponding signal values) that have been received, but not obtained
by calling the read function. For output sessions, the queues store
frame values provided to write function, but not transmitted successfully.

nixnet._session.base.SessionBase.start and
nixnet._session.base.SessionBase.stop have no effect on these
queues. Use ‘flush’ to discard all values in the session’s queues.

For example, if you call a write function to write three frames, then
immediately call nixnet._session.base.SessionBase.stop, then
call nixnet._session.base.SessionBase.start a few seconds
later, the three frames transmit. If you call ‘flush’ between
nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, no frames transmit.

As another example, if you receive three frames, then call
nixnet._session.base.SessionBase.stop, the three frames remains
in the queue. If you call nixnet._session.base.SessionBase.start
a few seconds later, then call a read function, you obtain the three
frames received earlier, potentially followed by other frames received
after calling nixnet._session.base.SessionBase.start. If you
call ‘flush’ between nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, read function returns
only frames received after the calling
nixnet._session.base.SessionBase.start.

	
frames

	Operate on session’s frames

	Type

	nixnet._session.frames.OutFrames

	
intf

	Returns the Interface configuration object for the session.

	Type

	nixnet._session.intf.Interface

	
j1939

	Returns the J1939 configuration object for the session.

	Type

	nixnet._session.j1939.J1939

	
lin_comm

	LIN Communication state

	Type

	nixnet.types.LinComm

	
mode

	This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

	Type

	nixnet._enums.CreateSessionMode

	
num_pend

	This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available
to the appropriate read function. If you call the appropriate read
function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided
to the appropriate write function but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
num_unused

	This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the
size of the underlying queue(s). Contrary to the Queue Size property,
this value is in number of frames for Frame I/O, not number of bytes;
for Signal I/O, it is the number of signal values in both cases. After
start, this property returns the queue size minus the
Number of Values Pending
property.

For input sessions, this is the number of frame/signal values unused in
the underlying queue(s).

For output sessions, this is the number of frame/signal values you can
provide to a subsequent call to the appropriate write function. If you
call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
protocol

	This property returns the protocol that the interface in the session uses.

	Type

	nixnet._enums.Protocol

	
queue_size

	Get or set queue size.

For output sessions, queues store data passed to the appropriate
write function and not yet transmitted onto the network. For input
sessions, queues store data received from the network and not yet
obtained using the appropriate read function.

For most applications, the default queue sizes are sufficient. You can
write to this property to override the default. When you write (set)
this property, you must do so prior to the first session start. You
cannot set this property again after calling
nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values
stored. This is analogous to the number of values you use with the
appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame
data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24
bytes. You can use this number to convert the Queue Size (in bytes)
to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can
vary depending on the payload length. For more information, refer to
Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame.
Within the implementation, each frame uses a dedicated queue. According
to the formulas below, the default queue sizes can be different for each
frame. If you read the default Queue Size property for a Signal Input XY
session, the largest queue size is returned, so that a call to the
appropriate read function of that size can empty all queues. If you
read the default Queue Size property for a Signal Output XY session, the
smallest queue size is returned, so that a call to the appropriate write
function of that size can succeed when all queues are empty. If you
write the Queue Size property for a Signal I/O XY session, that size is
used for all frames, so you must ensure that it is sufficient for the
frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one
frame. Within the implementation, each frame uses a dedicated queue. The
Queue Size property does not represent the memory in these queues, but
rather the amount of time stored. The default queue allocations store
Application Time worth of resampled signal values. If you read the
default Queue Size property for a Signal I/O Waveform session, it
returns Application Time multiplied by the time Resample Rate. If you
write the Queue Size property for a Signal I/O Waveform session, that
value is translated from a number of samples to a time, and that time is
used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored.
Single-Point sessions always use a value of 1 as the effective queue size.

	Type

	int

	
start(scope=<StartStopScope.NORMAL: 0>)

	Start communication for the XNET session.

Because the session is started automatically by default, this function
is optional. This function is for more advanced applications to start
multiple sessions in a specific order. For more information about the
automatic start feature, refer to the
nixnet._session.base.SessionBase.auto_start property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can start each logical unit separately. When a session is started,
all contained frames or signals are placed in a state where they are
ready to communicate. When the interface is started, it takes data from
all started sessions to communicate with other nodes on the bus. For a
specification of the state models for the session and interface, refer
to State Models.

If an output session starts before you write data, or you read an input
session before it receives a frame, default data is used. For more
information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
state

	Session running state.

	Type

	nixnet._enums.SessionInfoState

	
stop(scope=<StartStopScope.NORMAL: 0>)

	Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared),
this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can stop each logical unit separately. When a session is stopped,
all contained frames or signals are placed in a state where they are no
longer ready to communicate. When the interface is stopped, it no longer
takes data from sessions to communicate with other nodes on the bus. For
a specification of the state models for the session and interface, refer
to State Models.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
time_communicating

	Time the interface started communicating.

The time is usually later than time_start because the interface
must undergo a communication startup procedure.

	Type

	int

	
time_current

	Current interface time.

	Type

	int

	
time_start

	Time the interface was started.

	Type

	int

	
wait_for_intf_communicating(timeout=10)

	Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for
the trigger. Once the interface is started, this waits for the
protocol’s communication state to transition to a value that indicates
communication with remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for
communication (invalid time of 0 prior)

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_intf_remote_wakeup(timeout=10)

	Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the
network. This wait is used for CAN, when you set the ‘can_tcvr_state’
property to ‘constants.CanTcvrState.SLEEP’. Although the interface
itself is ready to communicate, this places the transceiver into a sleep
state. When a remote CAN node transmits a frame, the transceiver wakes
up, and communication is restored. This wait detects that remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to
‘constants.LinSleep.REMOTE_SLEEP’ or ‘constants.LinSleep.LOCAL_SLEEP’.
When asleep, if a remote LIN ECU transmits the wakeup pattern (break),
the XNET LIN interface detects this transmission and wakes up. This wait
detects that remote wakeup.

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_transmit_complete(timeout=10)

	Wait for transmition to complete.

All frames written for the session have been transmitted on the bus.
This condition applies to CAN, LIN, and FlexRay. This condition is state
based, and the state is Boolean (true/false).

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
class nixnet.session.FrameInSinglePointSession(interface_name, database_name, cluster_name, frames)[source]

	Bases: nixnet._session.base.SessionBase

Frame Input Single-Point session.

This session reads the most recent value received for each frame.

This session does not use queues to store each received frame. If the
interface receives two frames prior to calling the read frame function, that
read returns signals for the second frame.

The input data is returned as a list of frames, one for each frame
specified for the session.

Note

Typical use case: Control or simulation applications that require
lower level access to frames (not signals).

	
application_protocol

	This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

	Type

	nixnet._enums.AppProtocol

	
auto_start

	Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to
the appropriate read function (if not already started using
nixnet._session.base.SessionBase.start). This is done
because there is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write
function contains valid data, you can leave this property at its default
value of true. If you need to call the appropriate write function
multiple times prior to starting the session, or if you are starting
multiple sessions simultaneously, you can set this property to false.
After calling the appropriate write function as desired, you can call
nixnet._session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to
nixnet._session.base.SessionBase.start with scope set to Normal.
This starts the session itself, and if the interface is not already
started, it starts the interface also.

	Type

	bool

	
can_comm

	CAN Communication state

	Type

	nixnet.types.CanComm

	
change_lin_diagnostic_schedule(schedule)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the diagnostic schedule.

	Parameters

	schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic schedule
that the LIN master executes.

	
change_lin_schedule(sched_index)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the running schedule.

According to the LIN protocol, only the master executes schedules,
not slaves. If the
nixnet._session.intf.Interface.lin_master property is false (slave),
this write function implicitly sets that property to true (master). If the
interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

	Parameters

	sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the
database with the nixnet.database._cluster.Cluster.lin_schedules
property.

	
check_fault()

	Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET
application calls. The fault cause may be related to network
communication, but it also can be related to XNET hardware, such as a
fault in the onboard processor. Although faults are extremely rare,
nxReadState provides a detection method distinct from the status of
NI-XNET function calls, yet easy to use alongside the common practice
of checking the communication state.

	
close()

	Close (clear) the XNET session.

This function stops communication for the session and releases all
resources the session uses. It internally calls
nixnet._session.base.SessionBase.stop with normal scope, so if
this is the last session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to
create a new session that uses the same objects. For example, if you
create a session for a frame named frame_a using Frame Output
Single-Point mode, then you create a second session for frame_a using
Frame Output Queued mode, the second call to the session constructor
returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can
close the previous use of frame_a to create the new session.

	
cluster_name

	This property returns the cluster (network) name used with the session.

	Type

	str

	
connect_terminals(source, destination)

	Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on
the interface hardware. The XNET terminal represents an external or
internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI
card, RTSI terminals for a PCI card, or the single external terminal for
a C Series module. Internal terminals include timebases (clocks) and
logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the
pair is an internal and the other an external.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
database_name

	This property returns the database name used with the session.

	Type

	str

	
disconnect_terminals(source, destination)

	Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals
previously connected with nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET
automatically disconnects all terminal connections for that interface.
Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections
dynamically while an application is running. To disconnect a terminal,
you first must stop the interface using
nixnet._session.base.SessionBase.stop with the Interface Only
scope. Then you can call ‘disconnect_terminals’ and
nixnet._session.base.SessionBase.connect_terminals to adjust
terminal connections. Finally, you can call
nixnet._session.base.SessionBase.start with the Interface Only
scope to restart the interface.

You can disconnect only a terminal that has been previously connected.
Attempting to disconnect a nonconnected terminal results in an error.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
flush()

	Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to
store frames. For input modes, the queues store frame values (or
corresponding signal values) that have been received, but not obtained
by calling the read function. For output sessions, the queues store
frame values provided to write function, but not transmitted successfully.

nixnet._session.base.SessionBase.start and
nixnet._session.base.SessionBase.stop have no effect on these
queues. Use ‘flush’ to discard all values in the session’s queues.

For example, if you call a write function to write three frames, then
immediately call nixnet._session.base.SessionBase.stop, then
call nixnet._session.base.SessionBase.start a few seconds
later, the three frames transmit. If you call ‘flush’ between
nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, no frames transmit.

As another example, if you receive three frames, then call
nixnet._session.base.SessionBase.stop, the three frames remains
in the queue. If you call nixnet._session.base.SessionBase.start
a few seconds later, then call a read function, you obtain the three
frames received earlier, potentially followed by other frames received
after calling nixnet._session.base.SessionBase.start. If you
call ‘flush’ between nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, read function returns
only frames received after the calling
nixnet._session.base.SessionBase.start.

	
frames

	Operate on session’s frames

	Type

	nixnet._session.frames.InFrames

	
intf

	Returns the Interface configuration object for the session.

	Type

	nixnet._session.intf.Interface

	
j1939

	Returns the J1939 configuration object for the session.

	Type

	nixnet._session.j1939.J1939

	
lin_comm

	LIN Communication state

	Type

	nixnet.types.LinComm

	
mode

	This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

	Type

	nixnet._enums.CreateSessionMode

	
num_pend

	This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available
to the appropriate read function. If you call the appropriate read
function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided
to the appropriate write function but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
num_unused

	This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the
size of the underlying queue(s). Contrary to the Queue Size property,
this value is in number of frames for Frame I/O, not number of bytes;
for Signal I/O, it is the number of signal values in both cases. After
start, this property returns the queue size minus the
Number of Values Pending
property.

For input sessions, this is the number of frame/signal values unused in
the underlying queue(s).

For output sessions, this is the number of frame/signal values you can
provide to a subsequent call to the appropriate write function. If you
call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
protocol

	This property returns the protocol that the interface in the session uses.

	Type

	nixnet._enums.Protocol

	
queue_size

	Get or set queue size.

For output sessions, queues store data passed to the appropriate
write function and not yet transmitted onto the network. For input
sessions, queues store data received from the network and not yet
obtained using the appropriate read function.

For most applications, the default queue sizes are sufficient. You can
write to this property to override the default. When you write (set)
this property, you must do so prior to the first session start. You
cannot set this property again after calling
nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values
stored. This is analogous to the number of values you use with the
appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame
data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24
bytes. You can use this number to convert the Queue Size (in bytes)
to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can
vary depending on the payload length. For more information, refer to
Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame.
Within the implementation, each frame uses a dedicated queue. According
to the formulas below, the default queue sizes can be different for each
frame. If you read the default Queue Size property for a Signal Input XY
session, the largest queue size is returned, so that a call to the
appropriate read function of that size can empty all queues. If you
read the default Queue Size property for a Signal Output XY session, the
smallest queue size is returned, so that a call to the appropriate write
function of that size can succeed when all queues are empty. If you
write the Queue Size property for a Signal I/O XY session, that size is
used for all frames, so you must ensure that it is sufficient for the
frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one
frame. Within the implementation, each frame uses a dedicated queue. The
Queue Size property does not represent the memory in these queues, but
rather the amount of time stored. The default queue allocations store
Application Time worth of resampled signal values. If you read the
default Queue Size property for a Signal I/O Waveform session, it
returns Application Time multiplied by the time Resample Rate. If you
write the Queue Size property for a Signal I/O Waveform session, that
value is translated from a number of samples to a time, and that time is
used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored.
Single-Point sessions always use a value of 1 as the effective queue size.

	Type

	int

	
start(scope=<StartStopScope.NORMAL: 0>)

	Start communication for the XNET session.

Because the session is started automatically by default, this function
is optional. This function is for more advanced applications to start
multiple sessions in a specific order. For more information about the
automatic start feature, refer to the
nixnet._session.base.SessionBase.auto_start property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can start each logical unit separately. When a session is started,
all contained frames or signals are placed in a state where they are
ready to communicate. When the interface is started, it takes data from
all started sessions to communicate with other nodes on the bus. For a
specification of the state models for the session and interface, refer
to State Models.

If an output session starts before you write data, or you read an input
session before it receives a frame, default data is used. For more
information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
state

	Session running state.

	Type

	nixnet._enums.SessionInfoState

	
stop(scope=<StartStopScope.NORMAL: 0>)

	Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared),
this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can stop each logical unit separately. When a session is stopped,
all contained frames or signals are placed in a state where they are no
longer ready to communicate. When the interface is stopped, it no longer
takes data from sessions to communicate with other nodes on the bus. For
a specification of the state models for the session and interface, refer
to State Models.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
time_communicating

	Time the interface started communicating.

The time is usually later than time_start because the interface
must undergo a communication startup procedure.

	Type

	int

	
time_current

	Current interface time.

	Type

	int

	
time_start

	Time the interface was started.

	Type

	int

	
wait_for_intf_communicating(timeout=10)

	Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for
the trigger. Once the interface is started, this waits for the
protocol’s communication state to transition to a value that indicates
communication with remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for
communication (invalid time of 0 prior)

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_intf_remote_wakeup(timeout=10)

	Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the
network. This wait is used for CAN, when you set the ‘can_tcvr_state’
property to ‘constants.CanTcvrState.SLEEP’. Although the interface
itself is ready to communicate, this places the transceiver into a sleep
state. When a remote CAN node transmits a frame, the transceiver wakes
up, and communication is restored. This wait detects that remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to
‘constants.LinSleep.REMOTE_SLEEP’ or ‘constants.LinSleep.LOCAL_SLEEP’.
When asleep, if a remote LIN ECU transmits the wakeup pattern (break),
the XNET LIN interface detects this transmission and wakes up. This wait
detects that remote wakeup.

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_transmit_complete(timeout=10)

	Wait for transmition to complete.

All frames written for the session have been transmitted on the bus.
This condition applies to CAN, LIN, and FlexRay. This condition is state
based, and the state is Boolean (true/false).

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
class nixnet.session.FrameOutSinglePointSession(interface_name, database_name, cluster_name, frames)[source]

	Bases: nixnet._session.base.SessionBase

Frame Output Single-Point session.

This session writes frame values for the next transmit.

This session does not use queues to store frame values. If the write frame
function is called twice before the next transmit, the transmitted frame
uses the value from the second call to the write frame function.

The output data is provided as a list of frames, one for each frame
specified for the session.

For this session, NI-XNET transmits each frame according to its properties
in the database. Therefore, when you call the write frame function, the
number of payload bytes in each frame value must match that frame’s Payload
Length property. The other frame value elements are ignored, so you can
leave them uninitialized. For CAN interfaces, if the number of payload bytes
you write is smaller than the Payload Length configured in the database, the
requested number of bytes transmit. If the number of payload bytes is larger
than the Payload Length configured in the database, the queue is flushed and
no frames transmit. For other interfaces, transmitting a number of payload
bytes different than the frame payload may cause unexpected results on the bus.

Note

Typical use case: Control or simulation applications that require lower level access
to frames (not signals).

	
application_protocol

	This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

	Type

	nixnet._enums.AppProtocol

	
auto_start

	Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to
the appropriate read function (if not already started using
nixnet._session.base.SessionBase.start). This is done
because there is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write
function contains valid data, you can leave this property at its default
value of true. If you need to call the appropriate write function
multiple times prior to starting the session, or if you are starting
multiple sessions simultaneously, you can set this property to false.
After calling the appropriate write function as desired, you can call
nixnet._session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to
nixnet._session.base.SessionBase.start with scope set to Normal.
This starts the session itself, and if the interface is not already
started, it starts the interface also.

	Type

	bool

	
can_comm

	CAN Communication state

	Type

	nixnet.types.CanComm

	
change_lin_diagnostic_schedule(schedule)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the diagnostic schedule.

	Parameters

	schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic schedule
that the LIN master executes.

	
change_lin_schedule(sched_index)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the running schedule.

According to the LIN protocol, only the master executes schedules,
not slaves. If the
nixnet._session.intf.Interface.lin_master property is false (slave),
this write function implicitly sets that property to true (master). If the
interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

	Parameters

	sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the
database with the nixnet.database._cluster.Cluster.lin_schedules
property.

	
check_fault()

	Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET
application calls. The fault cause may be related to network
communication, but it also can be related to XNET hardware, such as a
fault in the onboard processor. Although faults are extremely rare,
nxReadState provides a detection method distinct from the status of
NI-XNET function calls, yet easy to use alongside the common practice
of checking the communication state.

	
close()

	Close (clear) the XNET session.

This function stops communication for the session and releases all
resources the session uses. It internally calls
nixnet._session.base.SessionBase.stop with normal scope, so if
this is the last session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to
create a new session that uses the same objects. For example, if you
create a session for a frame named frame_a using Frame Output
Single-Point mode, then you create a second session for frame_a using
Frame Output Queued mode, the second call to the session constructor
returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can
close the previous use of frame_a to create the new session.

	
cluster_name

	This property returns the cluster (network) name used with the session.

	Type

	str

	
connect_terminals(source, destination)

	Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on
the interface hardware. The XNET terminal represents an external or
internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI
card, RTSI terminals for a PCI card, or the single external terminal for
a C Series module. Internal terminals include timebases (clocks) and
logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the
pair is an internal and the other an external.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
database_name

	This property returns the database name used with the session.

	Type

	str

	
disconnect_terminals(source, destination)

	Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals
previously connected with nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET
automatically disconnects all terminal connections for that interface.
Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections
dynamically while an application is running. To disconnect a terminal,
you first must stop the interface using
nixnet._session.base.SessionBase.stop with the Interface Only
scope. Then you can call ‘disconnect_terminals’ and
nixnet._session.base.SessionBase.connect_terminals to adjust
terminal connections. Finally, you can call
nixnet._session.base.SessionBase.start with the Interface Only
scope to restart the interface.

You can disconnect only a terminal that has been previously connected.
Attempting to disconnect a nonconnected terminal results in an error.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
flush()

	Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to
store frames. For input modes, the queues store frame values (or
corresponding signal values) that have been received, but not obtained
by calling the read function. For output sessions, the queues store
frame values provided to write function, but not transmitted successfully.

nixnet._session.base.SessionBase.start and
nixnet._session.base.SessionBase.stop have no effect on these
queues. Use ‘flush’ to discard all values in the session’s queues.

For example, if you call a write function to write three frames, then
immediately call nixnet._session.base.SessionBase.stop, then
call nixnet._session.base.SessionBase.start a few seconds
later, the three frames transmit. If you call ‘flush’ between
nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, no frames transmit.

As another example, if you receive three frames, then call
nixnet._session.base.SessionBase.stop, the three frames remains
in the queue. If you call nixnet._session.base.SessionBase.start
a few seconds later, then call a read function, you obtain the three
frames received earlier, potentially followed by other frames received
after calling nixnet._session.base.SessionBase.start. If you
call ‘flush’ between nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, read function returns
only frames received after the calling
nixnet._session.base.SessionBase.start.

	
frames

	Operate on session’s frames

	Type

	nixnet._session.frames.InFrames

	
intf

	Returns the Interface configuration object for the session.

	Type

	nixnet._session.intf.Interface

	
j1939

	Returns the J1939 configuration object for the session.

	Type

	nixnet._session.j1939.J1939

	
lin_comm

	LIN Communication state

	Type

	nixnet.types.LinComm

	
mode

	This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

	Type

	nixnet._enums.CreateSessionMode

	
num_pend

	This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available
to the appropriate read function. If you call the appropriate read
function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided
to the appropriate write function but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
num_unused

	This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the
size of the underlying queue(s). Contrary to the Queue Size property,
this value is in number of frames for Frame I/O, not number of bytes;
for Signal I/O, it is the number of signal values in both cases. After
start, this property returns the queue size minus the
Number of Values Pending
property.

For input sessions, this is the number of frame/signal values unused in
the underlying queue(s).

For output sessions, this is the number of frame/signal values you can
provide to a subsequent call to the appropriate write function. If you
call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
protocol

	This property returns the protocol that the interface in the session uses.

	Type

	nixnet._enums.Protocol

	
queue_size

	Get or set queue size.

For output sessions, queues store data passed to the appropriate
write function and not yet transmitted onto the network. For input
sessions, queues store data received from the network and not yet
obtained using the appropriate read function.

For most applications, the default queue sizes are sufficient. You can
write to this property to override the default. When you write (set)
this property, you must do so prior to the first session start. You
cannot set this property again after calling
nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values
stored. This is analogous to the number of values you use with the
appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame
data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24
bytes. You can use this number to convert the Queue Size (in bytes)
to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can
vary depending on the payload length. For more information, refer to
Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame.
Within the implementation, each frame uses a dedicated queue. According
to the formulas below, the default queue sizes can be different for each
frame. If you read the default Queue Size property for a Signal Input XY
session, the largest queue size is returned, so that a call to the
appropriate read function of that size can empty all queues. If you
read the default Queue Size property for a Signal Output XY session, the
smallest queue size is returned, so that a call to the appropriate write
function of that size can succeed when all queues are empty. If you
write the Queue Size property for a Signal I/O XY session, that size is
used for all frames, so you must ensure that it is sufficient for the
frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one
frame. Within the implementation, each frame uses a dedicated queue. The
Queue Size property does not represent the memory in these queues, but
rather the amount of time stored. The default queue allocations store
Application Time worth of resampled signal values. If you read the
default Queue Size property for a Signal I/O Waveform session, it
returns Application Time multiplied by the time Resample Rate. If you
write the Queue Size property for a Signal I/O Waveform session, that
value is translated from a number of samples to a time, and that time is
used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored.
Single-Point sessions always use a value of 1 as the effective queue size.

	Type

	int

	
start(scope=<StartStopScope.NORMAL: 0>)

	Start communication for the XNET session.

Because the session is started automatically by default, this function
is optional. This function is for more advanced applications to start
multiple sessions in a specific order. For more information about the
automatic start feature, refer to the
nixnet._session.base.SessionBase.auto_start property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can start each logical unit separately. When a session is started,
all contained frames or signals are placed in a state where they are
ready to communicate. When the interface is started, it takes data from
all started sessions to communicate with other nodes on the bus. For a
specification of the state models for the session and interface, refer
to State Models.

If an output session starts before you write data, or you read an input
session before it receives a frame, default data is used. For more
information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
state

	Session running state.

	Type

	nixnet._enums.SessionInfoState

	
stop(scope=<StartStopScope.NORMAL: 0>)

	Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared),
this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can stop each logical unit separately. When a session is stopped,
all contained frames or signals are placed in a state where they are no
longer ready to communicate. When the interface is stopped, it no longer
takes data from sessions to communicate with other nodes on the bus. For
a specification of the state models for the session and interface, refer
to State Models.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
time_communicating

	Time the interface started communicating.

The time is usually later than time_start because the interface
must undergo a communication startup procedure.

	Type

	int

	
time_current

	Current interface time.

	Type

	int

	
time_start

	Time the interface was started.

	Type

	int

	
wait_for_intf_communicating(timeout=10)

	Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for
the trigger. Once the interface is started, this waits for the
protocol’s communication state to transition to a value that indicates
communication with remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for
communication (invalid time of 0 prior)

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_intf_remote_wakeup(timeout=10)

	Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the
network. This wait is used for CAN, when you set the ‘can_tcvr_state’
property to ‘constants.CanTcvrState.SLEEP’. Although the interface
itself is ready to communicate, this places the transceiver into a sleep
state. When a remote CAN node transmits a frame, the transceiver wakes
up, and communication is restored. This wait detects that remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to
‘constants.LinSleep.REMOTE_SLEEP’ or ‘constants.LinSleep.LOCAL_SLEEP’.
When asleep, if a remote LIN ECU transmits the wakeup pattern (break),
the XNET LIN interface detects this transmission and wakes up. This wait
detects that remote wakeup.

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_transmit_complete(timeout=10)

	Wait for transmition to complete.

All frames written for the session have been transmitted on the bus.
This condition applies to CAN, LIN, and FlexRay. This condition is state
based, and the state is Boolean (true/false).

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
class nixnet.session.SignalInSinglePointSession(interface_name, database_name, cluster_name, signals)[source]

	Bases: nixnet._session.base.SessionBase

Signal Input Single-Point session.

This session reads the most recent value received for each signal.

This session does not use queues to store each received frame. If the
interface receives two frames prior to calling
nixnet._session.signals.SinglePointInSignals.read, that call to
nixnet._session.signals.SinglePointInSignals.read returns signals
for the second frame.

Use nixnet._session.signals.SinglePointInSignals.read for this session.

You also can specify a trigger signal for a frame. This signal name is
:trigger:.<frame name>, and once it is specified in the __init__ signals
list, it returns a value of 0.0 if the frame did not arrive since the last
Read (or Start), and 1.0 if at least one frame of this ID arrived. You can
specify multiple trigger signals for different frames in the same session.
For multiplexed signals, a signal may or may not be contained in a received
frame. To define a trigger signal for a multiplexed signal, use the signal
name :trigger:.<frame name>.<signal name>. This signal returns 1.0 only if a
frame with appropriate set multiplexer bit has been received since the last
Read or Start.

Note

Typical use case: Control or simulation applications, such as
Hardware In the Loop (HIL).

	
application_protocol

	This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

	Type

	nixnet._enums.AppProtocol

	
auto_start

	Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to
the appropriate read function (if not already started using
nixnet._session.base.SessionBase.start). This is done
because there is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write
function contains valid data, you can leave this property at its default
value of true. If you need to call the appropriate write function
multiple times prior to starting the session, or if you are starting
multiple sessions simultaneously, you can set this property to false.
After calling the appropriate write function as desired, you can call
nixnet._session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to
nixnet._session.base.SessionBase.start with scope set to Normal.
This starts the session itself, and if the interface is not already
started, it starts the interface also.

	Type

	bool

	
can_comm

	CAN Communication state

	Type

	nixnet.types.CanComm

	
change_lin_diagnostic_schedule(schedule)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the diagnostic schedule.

	Parameters

	schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic schedule
that the LIN master executes.

	
change_lin_schedule(sched_index)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the running schedule.

According to the LIN protocol, only the master executes schedules,
not slaves. If the
nixnet._session.intf.Interface.lin_master property is false (slave),
this write function implicitly sets that property to true (master). If the
interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

	Parameters

	sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the
database with the nixnet.database._cluster.Cluster.lin_schedules
property.

	
check_fault()

	Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET
application calls. The fault cause may be related to network
communication, but it also can be related to XNET hardware, such as a
fault in the onboard processor. Although faults are extremely rare,
nxReadState provides a detection method distinct from the status of
NI-XNET function calls, yet easy to use alongside the common practice
of checking the communication state.

	
close()

	Close (clear) the XNET session.

This function stops communication for the session and releases all
resources the session uses. It internally calls
nixnet._session.base.SessionBase.stop with normal scope, so if
this is the last session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to
create a new session that uses the same objects. For example, if you
create a session for a frame named frame_a using Frame Output
Single-Point mode, then you create a second session for frame_a using
Frame Output Queued mode, the second call to the session constructor
returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can
close the previous use of frame_a to create the new session.

	
cluster_name

	This property returns the cluster (network) name used with the session.

	Type

	str

	
connect_terminals(source, destination)

	Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on
the interface hardware. The XNET terminal represents an external or
internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI
card, RTSI terminals for a PCI card, or the single external terminal for
a C Series module. Internal terminals include timebases (clocks) and
logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the
pair is an internal and the other an external.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
database_name

	This property returns the database name used with the session.

	Type

	str

	
disconnect_terminals(source, destination)

	Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals
previously connected with nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET
automatically disconnects all terminal connections for that interface.
Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections
dynamically while an application is running. To disconnect a terminal,
you first must stop the interface using
nixnet._session.base.SessionBase.stop with the Interface Only
scope. Then you can call ‘disconnect_terminals’ and
nixnet._session.base.SessionBase.connect_terminals to adjust
terminal connections. Finally, you can call
nixnet._session.base.SessionBase.start with the Interface Only
scope to restart the interface.

You can disconnect only a terminal that has been previously connected.
Attempting to disconnect a nonconnected terminal results in an error.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
flush()

	Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to
store frames. For input modes, the queues store frame values (or
corresponding signal values) that have been received, but not obtained
by calling the read function. For output sessions, the queues store
frame values provided to write function, but not transmitted successfully.

nixnet._session.base.SessionBase.start and
nixnet._session.base.SessionBase.stop have no effect on these
queues. Use ‘flush’ to discard all values in the session’s queues.

For example, if you call a write function to write three frames, then
immediately call nixnet._session.base.SessionBase.stop, then
call nixnet._session.base.SessionBase.start a few seconds
later, the three frames transmit. If you call ‘flush’ between
nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, no frames transmit.

As another example, if you receive three frames, then call
nixnet._session.base.SessionBase.stop, the three frames remains
in the queue. If you call nixnet._session.base.SessionBase.start
a few seconds later, then call a read function, you obtain the three
frames received earlier, potentially followed by other frames received
after calling nixnet._session.base.SessionBase.start. If you
call ‘flush’ between nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, read function returns
only frames received after the calling
nixnet._session.base.SessionBase.start.

	
intf

	Returns the Interface configuration object for the session.

	Type

	nixnet._session.intf.Interface

	
j1939

	Returns the J1939 configuration object for the session.

	Type

	nixnet._session.j1939.J1939

	
lin_comm

	LIN Communication state

	Type

	nixnet.types.LinComm

	
mode

	This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

	Type

	nixnet._enums.CreateSessionMode

	
num_pend

	This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available
to the appropriate read function. If you call the appropriate read
function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided
to the appropriate write function but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
num_unused

	This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the
size of the underlying queue(s). Contrary to the Queue Size property,
this value is in number of frames for Frame I/O, not number of bytes;
for Signal I/O, it is the number of signal values in both cases. After
start, this property returns the queue size minus the
Number of Values Pending
property.

For input sessions, this is the number of frame/signal values unused in
the underlying queue(s).

For output sessions, this is the number of frame/signal values you can
provide to a subsequent call to the appropriate write function. If you
call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
protocol

	This property returns the protocol that the interface in the session uses.

	Type

	nixnet._enums.Protocol

	
queue_size

	Get or set queue size.

For output sessions, queues store data passed to the appropriate
write function and not yet transmitted onto the network. For input
sessions, queues store data received from the network and not yet
obtained using the appropriate read function.

For most applications, the default queue sizes are sufficient. You can
write to this property to override the default. When you write (set)
this property, you must do so prior to the first session start. You
cannot set this property again after calling
nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values
stored. This is analogous to the number of values you use with the
appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame
data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24
bytes. You can use this number to convert the Queue Size (in bytes)
to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can
vary depending on the payload length. For more information, refer to
Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame.
Within the implementation, each frame uses a dedicated queue. According
to the formulas below, the default queue sizes can be different for each
frame. If you read the default Queue Size property for a Signal Input XY
session, the largest queue size is returned, so that a call to the
appropriate read function of that size can empty all queues. If you
read the default Queue Size property for a Signal Output XY session, the
smallest queue size is returned, so that a call to the appropriate write
function of that size can succeed when all queues are empty. If you
write the Queue Size property for a Signal I/O XY session, that size is
used for all frames, so you must ensure that it is sufficient for the
frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one
frame. Within the implementation, each frame uses a dedicated queue. The
Queue Size property does not represent the memory in these queues, but
rather the amount of time stored. The default queue allocations store
Application Time worth of resampled signal values. If you read the
default Queue Size property for a Signal I/O Waveform session, it
returns Application Time multiplied by the time Resample Rate. If you
write the Queue Size property for a Signal I/O Waveform session, that
value is translated from a number of samples to a time, and that time is
used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored.
Single-Point sessions always use a value of 1 as the effective queue size.

	Type

	int

	
signals

	Operate on session’s signals

	Type

	nixnet._session.signals.SinglePointInSignals

	
start(scope=<StartStopScope.NORMAL: 0>)

	Start communication for the XNET session.

Because the session is started automatically by default, this function
is optional. This function is for more advanced applications to start
multiple sessions in a specific order. For more information about the
automatic start feature, refer to the
nixnet._session.base.SessionBase.auto_start property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can start each logical unit separately. When a session is started,
all contained frames or signals are placed in a state where they are
ready to communicate. When the interface is started, it takes data from
all started sessions to communicate with other nodes on the bus. For a
specification of the state models for the session and interface, refer
to State Models.

If an output session starts before you write data, or you read an input
session before it receives a frame, default data is used. For more
information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
state

	Session running state.

	Type

	nixnet._enums.SessionInfoState

	
stop(scope=<StartStopScope.NORMAL: 0>)

	Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared),
this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can stop each logical unit separately. When a session is stopped,
all contained frames or signals are placed in a state where they are no
longer ready to communicate. When the interface is stopped, it no longer
takes data from sessions to communicate with other nodes on the bus. For
a specification of the state models for the session and interface, refer
to State Models.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
time_communicating

	Time the interface started communicating.

The time is usually later than time_start because the interface
must undergo a communication startup procedure.

	Type

	int

	
time_current

	Current interface time.

	Type

	int

	
time_start

	Time the interface was started.

	Type

	int

	
wait_for_intf_communicating(timeout=10)

	Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for
the trigger. Once the interface is started, this waits for the
protocol’s communication state to transition to a value that indicates
communication with remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for
communication (invalid time of 0 prior)

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_intf_remote_wakeup(timeout=10)

	Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the
network. This wait is used for CAN, when you set the ‘can_tcvr_state’
property to ‘constants.CanTcvrState.SLEEP’. Although the interface
itself is ready to communicate, this places the transceiver into a sleep
state. When a remote CAN node transmits a frame, the transceiver wakes
up, and communication is restored. This wait detects that remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to
‘constants.LinSleep.REMOTE_SLEEP’ or ‘constants.LinSleep.LOCAL_SLEEP’.
When asleep, if a remote LIN ECU transmits the wakeup pattern (break),
the XNET LIN interface detects this transmission and wakes up. This wait
detects that remote wakeup.

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_transmit_complete(timeout=10)

	Wait for transmition to complete.

All frames written for the session have been transmitted on the bus.
This condition applies to CAN, LIN, and FlexRay. This condition is state
based, and the state is Boolean (true/false).

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
class nixnet.session.SignalOutSinglePointSession(interface_name, database_name, cluster_name, signals)[source]

	Bases: nixnet._session.base.SessionBase

Signal Out Single-Point session.

This session writes signal values for the next frame transmit.

This session does not use queues to store signal values. If
nixnet._session.signals.SinglePointOutSignals.write is called twice
before the next transmit, the transmitted frame uses signal values from the
second call to nixnet._session.signals.SinglePointOutSignals.write.

Use nixnet._session.signals.SinglePointOutSignals.write for this session.

You also can specify a trigger signal for a frame. This signal name is
:trigger:.<frame name>, and once it is specified in the __init__ signals
list, you can write a value of 0.0 to suppress writing of that frame, or any
value not equal to 0.0 to write the frame. You can specify multiple trigger
signals for different frames in the same session.

Note

Typical use case: Control or simulation applications, such as
Hardware In the Loop (HIL).

	
application_protocol

	This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

	Type

	nixnet._enums.AppProtocol

	
auto_start

	Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to
the appropriate read function (if not already started using
nixnet._session.base.SessionBase.start). This is done
because there is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write
function contains valid data, you can leave this property at its default
value of true. If you need to call the appropriate write function
multiple times prior to starting the session, or if you are starting
multiple sessions simultaneously, you can set this property to false.
After calling the appropriate write function as desired, you can call
nixnet._session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to
nixnet._session.base.SessionBase.start with scope set to Normal.
This starts the session itself, and if the interface is not already
started, it starts the interface also.

	Type

	bool

	
can_comm

	CAN Communication state

	Type

	nixnet.types.CanComm

	
change_lin_diagnostic_schedule(schedule)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the diagnostic schedule.

	Parameters

	schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic schedule
that the LIN master executes.

	
change_lin_schedule(sched_index)

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the running schedule.

According to the LIN protocol, only the master executes schedules,
not slaves. If the
nixnet._session.intf.Interface.lin_master property is false (slave),
this write function implicitly sets that property to true (master). If the
interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

	Parameters

	sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the
database with the nixnet.database._cluster.Cluster.lin_schedules
property.

	
check_fault()

	Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET
application calls. The fault cause may be related to network
communication, but it also can be related to XNET hardware, such as a
fault in the onboard processor. Although faults are extremely rare,
nxReadState provides a detection method distinct from the status of
NI-XNET function calls, yet easy to use alongside the common practice
of checking the communication state.

	
close()

	Close (clear) the XNET session.

This function stops communication for the session and releases all
resources the session uses. It internally calls
nixnet._session.base.SessionBase.stop with normal scope, so if
this is the last session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to
create a new session that uses the same objects. For example, if you
create a session for a frame named frame_a using Frame Output
Single-Point mode, then you create a second session for frame_a using
Frame Output Queued mode, the second call to the session constructor
returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can
close the previous use of frame_a to create the new session.

	
cluster_name

	This property returns the cluster (network) name used with the session.

	Type

	str

	
connect_terminals(source, destination)

	Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on
the interface hardware. The XNET terminal represents an external or
internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI
card, RTSI terminals for a PCI card, or the single external terminal for
a C Series module. Internal terminals include timebases (clocks) and
logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the
pair is an internal and the other an external.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
database_name

	This property returns the database name used with the session.

	Type

	str

	
disconnect_terminals(source, destination)

	Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals
previously connected with nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET
automatically disconnects all terminal connections for that interface.
Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections
dynamically while an application is running. To disconnect a terminal,
you first must stop the interface using
nixnet._session.base.SessionBase.stop with the Interface Only
scope. Then you can call ‘disconnect_terminals’ and
nixnet._session.base.SessionBase.connect_terminals to adjust
terminal connections. Finally, you can call
nixnet._session.base.SessionBase.start with the Interface Only
scope to restart the interface.

You can disconnect only a terminal that has been previously connected.
Attempting to disconnect a nonconnected terminal results in an error.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
flush()

	Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to
store frames. For input modes, the queues store frame values (or
corresponding signal values) that have been received, but not obtained
by calling the read function. For output sessions, the queues store
frame values provided to write function, but not transmitted successfully.

nixnet._session.base.SessionBase.start and
nixnet._session.base.SessionBase.stop have no effect on these
queues. Use ‘flush’ to discard all values in the session’s queues.

For example, if you call a write function to write three frames, then
immediately call nixnet._session.base.SessionBase.stop, then
call nixnet._session.base.SessionBase.start a few seconds
later, the three frames transmit. If you call ‘flush’ between
nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, no frames transmit.

As another example, if you receive three frames, then call
nixnet._session.base.SessionBase.stop, the three frames remains
in the queue. If you call nixnet._session.base.SessionBase.start
a few seconds later, then call a read function, you obtain the three
frames received earlier, potentially followed by other frames received
after calling nixnet._session.base.SessionBase.start. If you
call ‘flush’ between nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, read function returns
only frames received after the calling
nixnet._session.base.SessionBase.start.

	
intf

	Returns the Interface configuration object for the session.

	Type

	nixnet._session.intf.Interface

	
j1939

	Returns the J1939 configuration object for the session.

	Type

	nixnet._session.j1939.J1939

	
lin_comm

	LIN Communication state

	Type

	nixnet.types.LinComm

	
mode

	This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

	Type

	nixnet._enums.CreateSessionMode

	
num_pend

	This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available
to the appropriate read function. If you call the appropriate read
function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided
to the appropriate write function but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
num_unused

	This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the
size of the underlying queue(s). Contrary to the Queue Size property,
this value is in number of frames for Frame I/O, not number of bytes;
for Signal I/O, it is the number of signal values in both cases. After
start, this property returns the queue size minus the
Number of Values Pending
property.

For input sessions, this is the number of frame/signal values unused in
the underlying queue(s).

For output sessions, this is the number of frame/signal values you can
provide to a subsequent call to the appropriate write function. If you
call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
protocol

	This property returns the protocol that the interface in the session uses.

	Type

	nixnet._enums.Protocol

	
queue_size

	Get or set queue size.

For output sessions, queues store data passed to the appropriate
write function and not yet transmitted onto the network. For input
sessions, queues store data received from the network and not yet
obtained using the appropriate read function.

For most applications, the default queue sizes are sufficient. You can
write to this property to override the default. When you write (set)
this property, you must do so prior to the first session start. You
cannot set this property again after calling
nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values
stored. This is analogous to the number of values you use with the
appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame
data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24
bytes. You can use this number to convert the Queue Size (in bytes)
to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can
vary depending on the payload length. For more information, refer to
Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame.
Within the implementation, each frame uses a dedicated queue. According
to the formulas below, the default queue sizes can be different for each
frame. If you read the default Queue Size property for a Signal Input XY
session, the largest queue size is returned, so that a call to the
appropriate read function of that size can empty all queues. If you
read the default Queue Size property for a Signal Output XY session, the
smallest queue size is returned, so that a call to the appropriate write
function of that size can succeed when all queues are empty. If you
write the Queue Size property for a Signal I/O XY session, that size is
used for all frames, so you must ensure that it is sufficient for the
frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one
frame. Within the implementation, each frame uses a dedicated queue. The
Queue Size property does not represent the memory in these queues, but
rather the amount of time stored. The default queue allocations store
Application Time worth of resampled signal values. If you read the
default Queue Size property for a Signal I/O Waveform session, it
returns Application Time multiplied by the time Resample Rate. If you
write the Queue Size property for a Signal I/O Waveform session, that
value is translated from a number of samples to a time, and that time is
used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored.
Single-Point sessions always use a value of 1 as the effective queue size.

	Type

	int

	
signals

	Operate on session’s signals

	Type

	nixnet._session.signals.SinglePointInSignals

	
start(scope=<StartStopScope.NORMAL: 0>)

	Start communication for the XNET session.

Because the session is started automatically by default, this function
is optional. This function is for more advanced applications to start
multiple sessions in a specific order. For more information about the
automatic start feature, refer to the
nixnet._session.base.SessionBase.auto_start property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can start each logical unit separately. When a session is started,
all contained frames or signals are placed in a state where they are
ready to communicate. When the interface is started, it takes data from
all started sessions to communicate with other nodes on the bus. For a
specification of the state models for the session and interface, refer
to State Models.

If an output session starts before you write data, or you read an input
session before it receives a frame, default data is used. For more
information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
state

	Session running state.

	Type

	nixnet._enums.SessionInfoState

	
stop(scope=<StartStopScope.NORMAL: 0>)

	Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared),
this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can stop each logical unit separately. When a session is stopped,
all contained frames or signals are placed in a state where they are no
longer ready to communicate. When the interface is stopped, it no longer
takes data from sessions to communicate with other nodes on the bus. For
a specification of the state models for the session and interface, refer
to State Models.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
time_communicating

	Time the interface started communicating.

The time is usually later than time_start because the interface
must undergo a communication startup procedure.

	Type

	int

	
time_current

	Current interface time.

	Type

	int

	
time_start

	Time the interface was started.

	Type

	int

	
wait_for_intf_communicating(timeout=10)

	Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for
the trigger. Once the interface is started, this waits for the
protocol’s communication state to transition to a value that indicates
communication with remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for
communication (invalid time of 0 prior)

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_intf_remote_wakeup(timeout=10)

	Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the
network. This wait is used for CAN, when you set the ‘can_tcvr_state’
property to ‘constants.CanTcvrState.SLEEP’. Although the interface
itself is ready to communicate, this places the transceiver into a sleep
state. When a remote CAN node transmits a frame, the transceiver wakes
up, and communication is restored. This wait detects that remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to
‘constants.LinSleep.REMOTE_SLEEP’ or ‘constants.LinSleep.LOCAL_SLEEP’.
When asleep, if a remote LIN ECU transmits the wakeup pattern (break),
the XNET LIN interface detects this transmission and wakes up. This wait
detects that remote wakeup.

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_transmit_complete(timeout=10)

	Wait for transmition to complete.

All frames written for the session have been transmitted on the bus.
This condition applies to CAN, LIN, and FlexRay. This condition is state
based, and the state is Boolean (true/false).

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

API Reference:

	nixnet.session.frames

	nixnet.session.signals

	nixnet.session.intf

	nixnet.session.j1939

	nixnet.session.base

nixnet.session.frames

	
class nixnet._session.frames.Frame(handle, index, name)[source]

	Bases: nixnet._session.collection.Item

Frame configuration for a session.

	
set_can_start_time_off(offset)[source]

	Set CAN Start Time Offset.

Use this function to have more control over the schedule of frames on
the bus, to offer more determinism by configuring cyclic frames to be
spaced evenly.

If you do not call this function or you set it to a negative number,
NI-XNET chooses this start time offset based on the arbitration
identifier and periodic transmit time.

offset takes effect whenever a session is started. If you stop a
session and restart it, the start time offset is re-evaluated.

	Parameters

	offset (float) – The amount of time that must elapse between the
session being started and the time that the first frame is
transmitted across the bus. This is different than the cyclic
rate, which determines the time between subsequent frame
transmissions.

	
set_can_tx_time(time)[source]

	Set CAN Transmit Time.

If you call this function while a frame object is currently started, the
frame object is stopped, the cyclic rate updated, and then the frame
object is restarted. Because of the stopping and starting, the frame’s
start time offset is re-evaluated.

The first time a queued frame object is started, the XNET frame’s
transmit time determines the object’s default queue size. Changing this
rate has no impact on the queue size. Depending on how you change the
rate, the queue may not be sufficient to store data for an extended
period of time. You can mitigate this by setting the session Queue Size
property to provide sufficient storage for all rates you use. If you are
using a single-point session, this is not relevant.

	Parameters

	time (float) – Frame’s transmit time while the session is running.
The transmit time is the amount of time that must elapse
between subsequent transmissions of a cyclic frame. The default
value of this property comes from the database (the XNET Frame
CAN Transmit Time property).

	
set_j1939_addr_filter(address='')[source]

	Set J1939 Address Filter.

Define a filter for the source address of the PGN transmitting node.
You can use it when multiple nodes with different addresses are
transmitting the same PGN.

If the filter is active, the session accepts only frames transmitted by
a node with the defined address. All other frames with the same PGN but
transmitted by other nodes are ignored.

Note

You can use this function in input sessions only.

	Parameters

	address (str or int) – Decimal value of the address. Leave blank to
reset the filter.

	
set_lin_tx_n_corrupted_chksums(n)[source]

	Set LIN Transmit N Corrupted Checksums.

When set to a nonzero value, this function causes the next N number of
checksums to be corrupted. The checksum is corrupted by negating the
value calculated per the database; (EnhancedValue * -1) or
(ClassicValue * -1).

If the frame is transmitted in an unconditional or sporadic schedule
slot, N is always decremented for each frame transmission. If the frame
is transmitted in an event-triggered slot and a collision occurs, N is
not decremented. In that case, N is decremented only when the collision
resolving schedule is executed and the frame is successfully
transmitted. If the frame is the only one to transmit in the
event-triggered slot (no collision), N is decremented at
event-triggered slot time.

This function is useful for testing ECU behavior when a corrupted
checksum is transmitted.

Note

This function is valid only for output sessions.

	Parameters

	n (int) – Number of checksums to be corrupted.

	
set_skip_n_cyclic_frames(n)[source]

	Set Skip N Cyclic Frames

When the frame’s transmission time arrives and the skip count is
nonzero, a frame value is dequeued (if this is not a single-point
session), and the skip count is decremented, but the frame actually is
not transmitted across the bus. When the skip count decrements to zero,
subsequent cyclic transmissions resume.

This function is useful for testing of ECU behavior when a cyclic frame
is expected, but is missing for N cycles.

Note

Only CAN interfaces currently support this function.

Note

This property is valid only for output sessions and frames
with cyclic timing (that is, not event-based frames).

	Parameters

	n (int) – Skip the next N cyclic frames when nonzero.

	
class nixnet._session.frames.Frames(handle)[source]

	Bases: nixnet._session.collection.Collection

Frames in a session.

	
count(value) → integer -- return number of occurrences of value

	

	
get(index, default=None)

	Access an item, returning default on failure.

	Parameters

	
	index (str or int) – Item name or index

	default – Value to return when lookup fails

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
payld_len_max

	Returns the maximum payload length of all frames in this session, expressed as bytes (0-254).

For CAN Stream (Input and Output), this property depends on the XNET
Cluster CAN I/O Mode property. If the I/O mode is
constants.CanIoMode.CAN, this property is 8 bytes. If the I/O mode is
‘constants.CanIoMode.CAN_FD’ or ‘constants.CanIoMode.CAN_FD_BRS’, this
property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes.

For FlexRay Stream (Input and Output), this property is the same as the
XNET Cluster FlexRay Payload Length Maximum property value.

For Queued and Single-Point (Input and Output), this is the maximum
payload of all frames specified in the List property.

	Type

	int

	
class nixnet._session.frames.InFrames(handle)[source]

	Bases: nixnet._session.frames.Frames

Frames in a session.

	
count(value) → integer -- return number of occurrences of value

	

	
get(index, default=None)

	Access an item, returning default on failure.

	Parameters

	
	index (str or int) – Item name or index

	default – Value to return when lookup fails

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
payld_len_max

	Returns the maximum payload length of all frames in this session, expressed as bytes (0-254).

For CAN Stream (Input and Output), this property depends on the XNET
Cluster CAN I/O Mode property. If the I/O mode is
constants.CanIoMode.CAN, this property is 8 bytes. If the I/O mode is
‘constants.CanIoMode.CAN_FD’ or ‘constants.CanIoMode.CAN_FD_BRS’, this
property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes.

For FlexRay Stream (Input and Output), this property is the same as the
XNET Cluster FlexRay Payload Length Maximum property value.

For Queued and Single-Point (Input and Output), this is the maximum
payload of all frames specified in the List property.

	Type

	int

	
read(num_frames, timeout=0, frame_type=<class 'nixnet.types.XnetFrame'>)[source]

	Read frames.

	Parameters

	
	num_frames (int) – Number of frames to read.

	timeout (float) – The time in seconds to wait for number to read
frame bytes to become available.

If ‘timeout’ is positive, this function waits for
‘num_frames’ frames to be received, then
returns complete frames up to that number. If the frames do not
arrive prior to the ‘timeout’, an error is returned.

If ‘timeout’ is ‘constants.TIMEOUT_INFINITE’, this function
waits indefinitely for ‘num_frames’ frames.

If ‘timeout’ is ‘constants.TIMEOUT_NONE’, this function does not
wait and immediately returns all available frames up to the
limit ‘num_frames’ specifies.

	frame_type (nixnet.types.FrameFactory) – A factory for the
desired frame formats.

	Yields

	nixnet.types.Frame

	
read_bytes(num_bytes, timeout=0)[source]

	Read data as a list of raw bytes (frame data).

The raw bytes encode one or more frames using the Raw Frame Format.

	Parameters

	
	num_bytes (int) – The number of bytes to read.

	timeout (float) – The time in seconds to wait for number to read
frame bytes to become available.

To avoid returning a partial frame, even when
‘num_bytes’ are available from the hardware, this
read may return fewer bytes in buffer. For example, assume you
pass ‘num_bytes’ 70 bytes and ‘timeout’ of 10
seconds. During the read, two frames are received, the first 24
bytes in size, and the second 56 bytes in size, for a total of
80 bytes. The read returns after the two frames are received,
but only the first frame is copied to data. If the read copied
46 bytes of the second frame (up to the limit of 70), that frame
would be incomplete and therefore difficult to interpret. To
avoid this problem, the read always returns complete frames in
buffer.

If ‘timeout’ is positive, this function waits for
‘num_bytes’ frame bytes to be received, then
returns complete frames up to that number. If the bytes do not
arrive prior to the ‘timeout’, an error is returned.

If ‘timeout’ is ‘constants.TIMEOUT_INFINITE’, this
function waits indefinitely for ‘num_bytes’ frame bytes.

If ‘timeout’ is ‘constants.TIMEOUT_NONE’, this
function does not wait and immediately returns all available
frame bytes up to the limit ‘num_bytes’ specifies.

	Returns

	A list of raw bytes representing the data.

	
class nixnet._session.frames.OutFrames(handle)[source]

	Bases: nixnet._session.frames.Frames

Frames in a session.

	
count(value) → integer -- return number of occurrences of value

	

	
get(index, default=None)

	Access an item, returning default on failure.

	Parameters

	
	index (str or int) – Item name or index

	default – Value to return when lookup fails

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
payld_len_max

	Returns the maximum payload length of all frames in this session, expressed as bytes (0-254).

For CAN Stream (Input and Output), this property depends on the XNET
Cluster CAN I/O Mode property. If the I/O mode is
constants.CanIoMode.CAN, this property is 8 bytes. If the I/O mode is
‘constants.CanIoMode.CAN_FD’ or ‘constants.CanIoMode.CAN_FD_BRS’, this
property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes.

For FlexRay Stream (Input and Output), this property is the same as the
XNET Cluster FlexRay Payload Length Maximum property value.

For Queued and Single-Point (Input and Output), this is the maximum
payload of all frames specified in the List property.

	Type

	int

	
write(frames, timeout=10)[source]

	Write frame data.

	Parameters

	
	frames (list of float) – One or more nixnet.types.Frame objects to be
written to the session.

	timeout (float) – The time in seconds to wait for number to read
frame bytes to become available.

If ‘timeout’ is positive, this function waits up to that ‘timeout’
for space to become available in queues. If the space is not
available prior to the ‘timeout’, a ‘timeout’ error is returned.

If ‘timeout’ is ‘constants.TIMEOUT_INFINITE’, this functions
waits indefinitely for space to become available in queues.

If ‘timeout’ is ‘constants.TIMEOUT_NONE’, this function does not
wait and immediately returns with a ‘timeout’ error if all data
cannot be queued. Regardless of the ‘timeout’ used, if a ‘timeout’
error occurs, none of the data is queued, so you can attempt to
call this function again at a later time with the same data.

	
write_bytes(frame_bytes, timeout=10)[source]

	Write a list of raw bytes (frame data).

The raw bytes encode one or more frames using the Raw Frame Format.

	Parameters

	
	frame_bytes (bytes) – Frames to transmit.

	timeout (float) – The time in seconds to wait for number to read
frame bytes to become available.

If ‘timeout’ is positive, this function waits up to that ‘timeout’
for space to become available in queues. If the space is not
available prior to the ‘timeout’, a ‘timeout’ error is returned.

If ‘timeout’ is ‘constants.TIMEOUT_INFINITE’, this functions
waits indefinitely for space to become available in queues.

If ‘timeout’ is ‘constants.TIMEOUT_NONE’, this function does not
wait and immediately returns with a ‘timeout’ error if all data
cannot be queued. Regardless of the ‘timeout’ used, if a ‘timeout’
error occurs, none of the data is queued, so you can attempt to
call this function again at a later time with the same data.

	
class nixnet._session.frames.SinglePointInFrames(handle)[source]

	Bases: nixnet._session.frames.Frames

Frames in a session.

	
count(value) → integer -- return number of occurrences of value

	

	
get(index, default=None)

	Access an item, returning default on failure.

	Parameters

	
	index (str or int) – Item name or index

	default – Value to return when lookup fails

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
payld_len_max

	Returns the maximum payload length of all frames in this session, expressed as bytes (0-254).

For CAN Stream (Input and Output), this property depends on the XNET
Cluster CAN I/O Mode property. If the I/O mode is
constants.CanIoMode.CAN, this property is 8 bytes. If the I/O mode is
‘constants.CanIoMode.CAN_FD’ or ‘constants.CanIoMode.CAN_FD_BRS’, this
property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes.

For FlexRay Stream (Input and Output), this property is the same as the
XNET Cluster FlexRay Payload Length Maximum property value.

For Queued and Single-Point (Input and Output), this is the maximum
payload of all frames specified in the List property.

	Type

	int

	
read(frame_type=<class 'nixnet.types.XnetFrame'>)[source]

	Read frames.

	Parameters

	frame_type (nixnet.types.FrameFactory) – A factory for the
desired frame formats.

	Yields

	nixnet.types.Frame

	
read_bytes(num_bytes)[source]

	Read data as a list of raw bytes (frame data).

	Parameters

	num_bytes (int) – Number of bytes to read.

	Returns

	Raw bytes representing the data.

	Return type

	bytes

	
class nixnet._session.frames.SinglePointOutFrames(handle)[source]

	Bases: nixnet._session.frames.Frames

Frames in a session.

	
count(value) → integer -- return number of occurrences of value

	

	
get(index, default=None)

	Access an item, returning default on failure.

	Parameters

	
	index (str or int) – Item name or index

	default – Value to return when lookup fails

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
payld_len_max

	Returns the maximum payload length of all frames in this session, expressed as bytes (0-254).

For CAN Stream (Input and Output), this property depends on the XNET
Cluster CAN I/O Mode property. If the I/O mode is
constants.CanIoMode.CAN, this property is 8 bytes. If the I/O mode is
‘constants.CanIoMode.CAN_FD’ or ‘constants.CanIoMode.CAN_FD_BRS’, this
property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes.

For FlexRay Stream (Input and Output), this property is the same as the
XNET Cluster FlexRay Payload Length Maximum property value.

For Queued and Single-Point (Input and Output), this is the maximum
payload of all frames specified in the List property.

	Type

	int

	
write(frames)[source]

	Write frame data.

	Parameters

	frames (list of float) – One or more nixnet.types.Frame objects to be
written to the session.

	
write_bytes(frame_bytes)[source]

	Write a list of raw bytes (frame data).

The raw bytes encode one or more frames using the Raw Frame Format.

	Parameters

	frame_bytes (bytes) – Frames to transmit.

nixnet.session.signals

	
class nixnet._session.signals.Signal(handle, index, name)[source]

	Bases: nixnet._session.collection.Item

Signal configuration for a session.

	
class nixnet._session.signals.Signals(handle)[source]

	Bases: nixnet._session.collection.Collection

Signals in a session.

	
count(value) → integer -- return number of occurrences of value

	

	
get(index, default=None)

	Access an item, returning default on failure.

	Parameters

	
	index (str or int) – Item name or index

	default – Value to return when lookup fails

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
class nixnet._session.signals.SinglePointInSignals(handle)[source]

	Bases: nixnet._session.signals.Signals

Writeable signals in a session.

	
count(value) → integer -- return number of occurrences of value

	

	
get(index, default=None)

	Access an item, returning default on failure.

	Parameters

	
	index (str or int) – Item name or index

	default – Value to return when lookup fails

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
read()[source]

	Read data from a Signal Input Single-Point session.

	Yields

	tuple of int and float – Timestamp and signal

	
class nixnet._session.signals.SinglePointOutSignals(handle)[source]

	Bases: nixnet._session.signals.Signals

Writeable signals in a session.

	
count(value) → integer -- return number of occurrences of value

	

	
get(index, default=None)

	Access an item, returning default on failure.

	Parameters

	
	index (str or int) – Item name or index

	default – Value to return when lookup fails

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
write(signals)[source]

	Write data to a Signal Output Single-Point session.

	Parameters

	signals (list of float) – A list of signal values (float).

nixnet.session.intf

	
class nixnet._session.intf.Interface(handle)[source]

	Bases: object

Interface configuration for a session

	
baud_rate

	CAN, FlexRay, or LIN interface baud rate.

The default value for this interface property is the same as the
cluster’s baud rate in the database. Your application can set this
interface baud rate to override the value in the database, or when no
database is used.

CAN

When the upper nibble (0xF0000000) is clear, this is a numeric baud
rate (for example, 500000).

NI-XNET CAN hardware currently accepts the following numeric baud
rates: 33333, 40000, 50000, 62500, 80000, 83333, 100000, 125000,
160000, 200000, 250000, 400000, 500000, 800000, and 1000000.

LIN

When the upper nibble (0xF0000000) is clear, you can set only baud
rates within the LIN-specified range (2400 to 20000) for the interface.

	Type

	int

	
bus_err_to_in_strm

	Bus Error Frames to Input Stream?

Specifies whether the hardware should place a CAN or LIN bus error
frame into the Stream Input queue after it is generated.

	Type

	bool

	
can_disable_prot_exception_handling

	CAN Disable Protocol Exception Handling.

A protocol exception occurs when the CAN hardware detects an invalid
combination of bits on the CAN bus reserved for a future protocol
expansion. NI-XNET allows you to define how the hardware should behave
in case of a protocol exception:

False (default): the CAN hardware stops receiving frames and starts a bus integration.

True: the CAN hardware transmits an error frame when it detects a
protocol exception condition.

	Type

	bool

	
can_edge_filter

	CAN Enable Edge Filter.

When this property is enabled, the CAN hardware requires two
consecutive dominant tq for hard synchronization.

	Type

	bool

	
can_fd_baud_rate

	The fast data baud rate for can_io_mode of nixnet._enums.CanIoMode CAN_FD_BRS

The default value for this interface property is the same as the
cluster’s FD baud rate in the database. Your application can set this
interface FD baud rate to override the value in the database.

When the upper nibble (0xF0000000) is clear, this is a numeric baud
rate (for example, 500000).

NI-XNET CAN hardware currently accepts the following numeric baud
rates: 200000, 250000, 400000, 500000, 800000, 1000000, 1250000,
1600000, 2000000, 2500000, 4000000, 5000000, and 8000000.

Note

Not all CAN transceivers are rated to transmit at the requested
rate. If you attempt to use a rate that exceeds the transceiver’s
qualified rate, XNET Start returns a warning. NI-XNET Hardware
Overview describes the CAN transceivers’ limitations.

	Type

	int

	
can_fd_iso_mode

	CAN FS ISO Mode.

This property is valid only when the interface is in CAN FD(+BRS) mode.
It specifies whether the interface is working in the ISO CAN FD
standard (ISO standard 11898-1:2015) or non-ISO CAN FD standard (Bosch
CAN FD 1.0 specification). Two ports using different standards (ISO CAN
FD vs. non-ISO CAN FD) cannot communicate with each other.

When you use a CAN FD database (DBC or FIBEX file created with
NI-XNET), you can specify the ISO CAN FD mode when creating an alias
name for the database. An alias is created automatically when you open
a new database in the NI-XNET Database Editor. The specified ISO CAN FD
mode is used as default, which you can change in the session using this
property.

	Type

	nixnet._enums.CanFdIsoMode

	
can_io_mode

	CAN IO Mode.

This property indicates the I/O Mode the interface is using.

The value is initialized from the database cluster when the session is
created and cannot be changed later. However, you can transmit standard
CAN frames on a CAN FD network.

	Type

	nixnet._enums.CanIoMode

	
can_lstn_only

	Listen Only? property configures whether the CAN interface transmits any information to the CAN bus.

When this property is false, the interface can transmit CAN frames and
acknowledge received CAN frames.

When this property is true, the interface can neither transmit CAN
frames nor acknowledge a received CAN frame. The true value enables
passive monitoring of network traffic, which can be useful for
debugging scenarios when you do not want to interfere with a
communicating network cluster.

	Type

	bool

	
can_pend_tx_order

	Pending Transmit Order

The Pending Transmit Order property configures how the CAN interface
manages the internal queue of frames. More than one frame may desire to
transmit at the same time. NI-XNET stores the frames in an internal
queue and transmits them onto the CAN bus when the bus is idle.

Note

You can modify this property only when the interface is
stopped.

Note

Setting this property causes the internal queue to be flushed.
If you start a session, queue frames, and then stop the session and
change this mode, some frames may be lost. Set this property to the
desired value once; do not constantly change modes.

	Type

	nixnet._enums.CanPendTxOrder

	
can_sing_shot

	Single Shot Transmit?

The Single Shot Transmit? property configures whether the CAN interface
retries failed transmissions.

When this property is false, failed transmissions retry as specified by
the CAN protocol (ISO 11898-1, 6.11 Automatic Retransmission). If a CAN
frame is not transmitted successfully, the interface attempts to
retransmit the frame as soon as the bus is idle again. This retransmit
process continues until the frame is successfully transmitted.

When this property is true, failed transmissions do not retry. If a CAN
frame is not transmitted successfully, no further transmissions are
attempted.

Note

You can modify this property only when the interface is
stopped.

Note

Setting this property causes the internal queue to be flushed.
If you start a session, queue frames, and then stop the session and
change this mode, some frames may be lost. Set this property to the
desired value once; do not constantly change modes.

	Type

	bool

	
can_tcvr_state

	CAN Transceiver State.

The Transceiver State property configures the CAN transceiver and CAN
controller modes. The transceiver state controls whether the
transceiver is asleep or communicating, as well as configuring other
special modes.

	Type

	nixnet._enums.CanTcvrState

	
can_tcvr_type

	CAN Transceiver Type.

For XNET hardware that provides a software-selectable transceiver, the
Transceiver Type property allows you to set the transceiver type. Use
the XNET Interface CAN.Tranceiver Capability property to determine
whether your hardware supports a software-selectable transceiver.

The default value for this property depends on your type of hardware.
If you have fixed-personality hardware, the default value is the
hardware value. If you have hardware that supports software-selectable
transceivers, the default is High-Speed.

	Type

	nixnet._enums.CanTcvrType

	
can_term

	CAN Termination.

The Termination property configures the onboard termination of the
NI-XNET interface CAN connector (port). The enumeration is generic and
supports two values: Off and On. However, different CAN hardware has
different termination requirements, and the Off and On values have
different meanings, see nixnet._enums.CanTerm.

Note

You can modify this property only when the interface is
stopped.

Note

This property does not take effect until the interface is
started.

	Type

	nixnet._enums.CanTerm

	
can_transmit_pause

	CAN Transmit Pause.

When this property is enabled, the CAN hardware waits for two bit times
before transmitting the next frame. This allows other CAN nodes to
transmit lower priority CAN messages while this CAN node is
transmitting high-priority CAN messages with high speed.

	Type

	bool

	
can_tx_io_mode

	CAN Transmit IO Mode

This property specifies the I/O Mode the interface uses when
transmitting a CAN frame. By default, it is the same as the XNET
Cluster CAN:I/O Mode property. However, even if the interface is in CAN
FD+BRS mode, you can force it to transmit frames in the standard CAN
format. For this purpose, set this property to CAN.

The Transmit I/O mode may not exceed the mode set by the XNET Cluster
CAN:I/O Mode property.

Note

This property is not supported in CAN FD+BRS ISO mode. If you
are using ISO CAN FD mode, you define the transmit I/O mode in the
database with the I/O Mode property of the frame. (When a database
is not used (for example, in frame stream mode), define the transmit
I/O mode with the frame type field of the frame data.) Note that ISO
CAN FD mode is the default mode for CAN FD in NI-XNET.

Note

This property affects only the transmission of frames. Even if
you set the transmit I/O mode to CAN, the interface still can
receive frames in FD modes (if the XNET Cluster CAN:I/O Mode
property is configured in an FD mode).

	Type

	nixnet._enums.CanIoMode

	
echo_tx

	Echo Transmit?

Determines whether Frame Input or Signal Input sessions contain frames
that the interface transmits.

When this property is true, and a frame transmit is complete for an
Output session, the frame is echoed to the Input session. Frame Input
sessions can use the Flags field to differentiate frames received from
the bus and frames the interface transmits. When reading frames with
the nixnet.types.RawFrame, you can parse the Flags field
manually by reviewing the Raw Frame Format section. Signal Input
sessions cannot differentiate the origin of the incoming data.

Note

Echoed frames are placed into the input sessions only after
the frame transmit is complete. If there are bus problems (for
example, no listener) such that the frame did not transmit, the
frame is not received.

	Type

	bool

	
lin_alw_start_wo_bus_pwr

	LIN Start Allowed without Bus Power?

Configures whether the LIN interface does not check for bus power
present at interface start, or checks and reports an error if bus power
is missing.

When this property is true, the LIN interface does not check for bus
power present at start, so no error is reported if the interface is
started without bus power.

When this property is false, the LIN interface checks for bus power
present at start, and an error is reported if the interface
is started without bus power.

Note

You can modify this property only when the interface is
stopped.

	Type

	bool

	
lin_break_length

	LIN Break Length

The length of the serial break used at the start of a frame header
(schedule entry). The value is specified in bit-times.

The valid range is 10-36 (inclusive). The default value is 13, which is
the value the LIN standard specifies.

At baud rates below 9600, the upper limit may be lower than 36 to avoid
violating hold times for the bus. For example, at 2400 baud, the valid
range is 10-14.

Note

This property is applicable only when the interface is the
master.

	Type

	int

	
lin_checksum_to_in_strm

	LIN Checksum to Input Stream?

Configure the hardware to place the received checksum for each LIN Data frame into the Event ID (Info) field.
When False, the Event ID field contains 0 for all LIN Data stream input frames.

	Type

	bool

	
lin_diag_p2min

	LIN Diag P2min

This is the minimum time in seconds between reception of the last frame
of the diagnostic request message and transmission of the response for
the first frame in the diagnostic response message by the slave.

Note

This property applies only to the interface as slave.

	Type

	float

	
lin_diag_stmin

	LIN Diag STmin

	master:

	The minimum time in seconds the interface places between the end of
transmission of a frame in a diagnostic request message and the
start of transmission of the next frame in the diagnostic request
message.

	slave:

	The minimum time in seconds the interface places between the end of
transmission of a frame in a diagnostic response message and the
start of transmission of the response for the next frame in the
diagnostic response message.

	Type

	float

	
lin_master

	LIN Master?

Specifies the NI-XNET LIN interface role on the network: master (true)
or slave (false).

In a LIN network (cluster), there always is a single ECU in the system
called the master. The master transmits a schedule of frame headers.
Each frame header is a remote request for a specific frame ID. For each
header, typically a single ECU in the network (slave) responds by
transmitting the requested ID payload. The master ECU can respond to a
specific header as well, and thus the master can transmit payload data
for the slave ECUs to receive.

The default value for this property is false (slave). This means that
by default, the interface does not transmit frame headers onto the
network. When you use input sessions, you read frames that other ECUs
transmit. When you use output sessions, the NI-XNET interface waits for
the remote master to send a header for a frame in the output sessions,
then the interface responds with data for the requested frame.

If you call the nixnet._session.base.SessionBase.change_lin_schedule function to request execution of a
schedule, that implicitly sets this property to true (master). You also
can set this property to true using, but no schedule is active by
default, so you still must call the
nixnet._session.base.SessionBase.change_lin_schedule function at some
point to request a specific schedule.

Regardless of this property’s value, you use can input and output
sessions. This property specifies which hardware transmits the
scheduled frame headers: NI-XNET (true) or a remote master ECU (false).

	Type

	bool

	
lin_no_response_to_in_strm

	LIN No Response Frames to Input Stream?

Configure the hardware to place a LIN no response frame into the
Stream Input queue after it is generated. A no response frame is
generated when the hardware detects a header with no response. For more
information about the no response frame, see
nixnet.types.NoResponseFrame.

	Type

	bool

	
lin_ostr_slv_rsp_lst_by_nad

	LIN Output Stream Slave Response List By NAD

A list of NADs for use with the replay feature
(nixnet._session.intf.Interface.out_strm_timng set to Replay
Exclusive or Replay Inclusive).

For LIN, the array of frames to replay might contain multiple slave
response frames, each with the same slave response identifier, but each
having been transmitted by a different slave (per the NAD value in the
data payload). This means that processing slave response frames for
replay requires two levels of filtering. First, you can include or
exclude the slave response frame or ID for replay using
Interface:Output Stream List or Interface:Output Stream List By ID. If
you do not include the slave response frame or ID for replay, no slave
responses are transmitted. If you do include the slave response frame
or ID for replay, you can use the Output Stream Slave Response List by
NAD property to filter which slave responses (per the NAD values in the
array) are transmitted. This property is always inclusive, regardless
of the replay mode (inclusive or exclusive). If the NAD is in the list
and the response frame or ID has been enabled for replay, any slave
response for that NAD is transmitted. If the NAD is not in the list, no
slave response for that NAD is transmitted.

	Type

	list of int

	
lin_sched_names

	LIN Schedule Names

List of schedules for use when the NI-XNET LIN interface acts as a
master (lin_master is true). When the interface is master, you can
pass the index of one of these schedules to the
nixnet._session.base.SessionBase.change_lin_schedule function to request
a schedule change.

This list of schedules is the same as Cluster.lin_schedules used to
configure the session.

	Type

	list of str

	
lin_term

	LIN Termination

The Termination property configures the NI-XNET interface LIN connector
(port) onboard termination. The enumeration is generic and supports two
values: Off (disabled) and On (enabled).

Per the LIN 2.1 standard, the Master ECU has a ~1 kOhm termination
resistor between Vbat and Vbus. Therefore, use this property only if
you are using your interface as the master and do not already have
external termination.

Note

You can modify this property only when the interface is
stopped.

Note

This property does not take effect until the interface is
started.

	Type

	nixnet._enums.LinTerm

	
out_strm_list

	Output Stream List.

The Output Stream List property provides a list of frames for use with
the replay feature (out_strm_timng property set to
OutStrmTimng REPLAY_EXCLUSIVE or REPLAY_INCLUSIVE). In
Replay Exclusive mode, the hardware transmits only frames that do not
appear in the list. In Replay Inclusive mode, the hardware transmits
only frames that appear in the list. For a LIN interface, the header of
each frame written to stream output is transmitted, and the Exclusive
or Inclusive mode controls the response transmission. Using these
modes, you can either emulate an ECU (Replay Inclusive, where the list
contains the frames the ECU transmits) or test an ECU (Replay
Exclusive, where the list contains the frames the ECU transmits), or
some other combination.

This property’s data type is an array of database handles to frames. If
you are not using a database file or prefer to specify the frames using
CAN arbitration IDs or LIN unprotected IDs, you can use
Interface:Output Stream List By ID instead of this property.

Note

Only CAN and LIN interfaces currently support this property.

	
out_strm_list_by_id

	Output Stream List by Frame Identifier.

Provide a list of frames for use with the replay feature
Interface:Output Stream Timing property.

This property serves the same purpose as Interface:Output Stream List,
in that it provides a list of frames for replay filtering. This
property provides an alternate format for you to specify the frames by
their CAN arbitration ID or LIN unprotected ID. The property’s data
type is an array of integers. Each integer represents a CAN or LIN
frame’s identifier, using the same encoding as nixnet.types.RawFrame.

For CAN Frames, see nixnet.types.CanIdentifier for parsing and
generating raw identifiers.

LIN frame ID values may be within the range of possible LIN
IDs (0-63).

See also Interface.out_strm_list.

	Type

	int

	
out_strm_timng

	Output Stream Timing.

The Output Stream Timing property configures how the hardware transmits
frames queued using a Frame Output Stream session.

See also Interface.out_strm_list.

Note

Only CAN and LIN interfaces currently support this property.

	Type

	nixnet._enums.OutStrmTimng

	
set_can_ext_tcvr_config(value)[source]

	Configure XS series CAN hardware to communicate properly with your external transceiver.

	Parameters

	value (int) – Bitfield

	
set_lin_sleep(state)[source]

	Set LIN Sleep State

Use the Sleep property to change the NI-XNET LIN interface sleep/awake
state and optionally to change remote node (ECU) sleep/awake states.

Note

Setting a new value is effectively a request, and the
function returns before the request is complete. To detect the
current interface sleep/wake state, use
nixnet._session.base.SessionBase.lin_comm.

	Parameters

	state (nixnet._enums.LinSleep) – Desired state.

	
src_term_start_trigger

	Source Terminal Start Trigger

Specifies the name of the internal terminal to use as the interface
Start Trigger.

This property is supported for C Series modules in a CompactDAQ
chassis. It is not supported for CompactRIO, PXI, or PCI (refer to
nixnet._session.base.SessionBase.connect_terminals for those platforms).

The digital trigger signal at this terminal is for the Start Interface
transition, to begin communication for all sessions that use the
interface. This property routes the start trigger, but not the timebase
(used for timestamp of received frames and cyclic transmit of frames).
Routing the timebase is not required for CompactDAQ, because all
modules in the chassis automatically use a shared timebase.

Use this property to connect the interface Start Trigger to triggers in
other modules and/or interfaces. When you read this property, you
specify the interface Start Trigger as the source of a connection. When
you write this property, you specify the interface Start Trigger as the
destination of a connection, and the value you write represents the
source.

The connection this property creates is disconnected when you clear
(close) all sessions that use the interface.

	Type

	string

	
start_trig_to_in_strm

	Start Trigger Frames to Input Stream?

Configures the hardware to place a start trigger frame into the Stream
Input queue after it is generated. A Start Trigger frame is generated
when the interface is started.

The start trigger frame is especially useful if you plan to log and
replay CAN data.

	Type

	bool

nixnet.session.j1939

	
class nixnet._session.j1939.J1939(handle)[source]

	Bases: object

J1939 configuration for a session

	
include_dest_addr_in_pgn

	SAE J1939 Include Destination Address in PGN

Incoming J1939 frames are matched to an XNET database by the Parameter Group Number (PGN) of the frame.
When receiving PDU1 frames,
the destination address of the frame (J1939 PS field) is ignored when calculating the PGN,
in accordance to the J1939 specification.
This causes an XNET session to receive all frames that share the same PGN,
making it difficult to distinguish destinations for traffic.

When set to True,
this property instructs NI-XNET to include the destination address when extracting the PGN from the frame.
This allows the same PGN sent to different destination addresses to be handled by separate input sessions.

This property may be set at any time.
When set after session start,
it will not affect frames already received.

This property is valid only for input sessions.
It is not valid for stream sessions.
This property affects all frames in a session.

	Type

	bool

nixnet.session.base

	
class nixnet._session.base.SessionBase(database_name, cluster_name, list, interface_name, mode)[source]

	Bases: object

Session base object.

	
application_protocol

	This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

	Type

	nixnet._enums.AppProtocol

	
auto_start

	Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to
the appropriate read function (if not already started using
nixnet._session.base.SessionBase.start). This is done
because there is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write
function contains valid data, you can leave this property at its default
value of true. If you need to call the appropriate write function
multiple times prior to starting the session, or if you are starting
multiple sessions simultaneously, you can set this property to false.
After calling the appropriate write function as desired, you can call
nixnet._session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to
nixnet._session.base.SessionBase.start with scope set to Normal.
This starts the session itself, and if the interface is not already
started, it starts the interface also.

	Type

	bool

	
can_comm

	CAN Communication state

	Type

	nixnet.types.CanComm

	
change_lin_diagnostic_schedule(schedule)[source]

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the diagnostic schedule.

	Parameters

	schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic schedule
that the LIN master executes.

	
change_lin_schedule(sched_index)[source]

	Writes communication states of an XNET session.

This function writes a request for the LIN interface to change
the running schedule.

According to the LIN protocol, only the master executes schedules,
not slaves. If the
nixnet._session.intf.Interface.lin_master property is false (slave),
this write function implicitly sets that property to true (master). If the
interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

	Parameters

	sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the
database with the nixnet.database._cluster.Cluster.lin_schedules
property.

	
check_fault()[source]

	Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET
application calls. The fault cause may be related to network
communication, but it also can be related to XNET hardware, such as a
fault in the onboard processor. Although faults are extremely rare,
nxReadState provides a detection method distinct from the status of
NI-XNET function calls, yet easy to use alongside the common practice
of checking the communication state.

	
close()[source]

	Close (clear) the XNET session.

This function stops communication for the session and releases all
resources the session uses. It internally calls
nixnet._session.base.SessionBase.stop with normal scope, so if
this is the last session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to
create a new session that uses the same objects. For example, if you
create a session for a frame named frame_a using Frame Output
Single-Point mode, then you create a second session for frame_a using
Frame Output Queued mode, the second call to the session constructor
returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can
close the previous use of frame_a to create the new session.

	
cluster_name

	This property returns the cluster (network) name used with the session.

	Type

	str

	
connect_terminals(source, destination)[source]

	Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on
the interface hardware. The XNET terminal represents an external or
internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI
card, RTSI terminals for a PCI card, or the single external terminal for
a C Series module. Internal terminals include timebases (clocks) and
logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the
pair is an internal and the other an external.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
database_name

	This property returns the database name used with the session.

	Type

	str

	
disconnect_terminals(source, destination)[source]

	Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals
previously connected with nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET
automatically disconnects all terminal connections for that interface.
Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections
dynamically while an application is running. To disconnect a terminal,
you first must stop the interface using
nixnet._session.base.SessionBase.stop with the Interface Only
scope. Then you can call ‘disconnect_terminals’ and
nixnet._session.base.SessionBase.connect_terminals to adjust
terminal connections. Finally, you can call
nixnet._session.base.SessionBase.start with the Interface Only
scope to restart the interface.

You can disconnect only a terminal that has been previously connected.
Attempting to disconnect a nonconnected terminal results in an error.

	Parameters

	
	source (str) – Connection source name.

	destination (str) – Connection destination name.

	
flush()[source]

	Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to
store frames. For input modes, the queues store frame values (or
corresponding signal values) that have been received, but not obtained
by calling the read function. For output sessions, the queues store
frame values provided to write function, but not transmitted successfully.

nixnet._session.base.SessionBase.start and
nixnet._session.base.SessionBase.stop have no effect on these
queues. Use ‘flush’ to discard all values in the session’s queues.

For example, if you call a write function to write three frames, then
immediately call nixnet._session.base.SessionBase.stop, then
call nixnet._session.base.SessionBase.start a few seconds
later, the three frames transmit. If you call ‘flush’ between
nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, no frames transmit.

As another example, if you receive three frames, then call
nixnet._session.base.SessionBase.stop, the three frames remains
in the queue. If you call nixnet._session.base.SessionBase.start
a few seconds later, then call a read function, you obtain the three
frames received earlier, potentially followed by other frames received
after calling nixnet._session.base.SessionBase.start. If you
call ‘flush’ between nixnet._session.base.SessionBase.stop and
nixnet._session.base.SessionBase.start, read function returns
only frames received after the calling
nixnet._session.base.SessionBase.start.

	
intf

	Returns the Interface configuration object for the session.

	Type

	nixnet._session.intf.Interface

	
j1939

	Returns the J1939 configuration object for the session.

	Type

	nixnet._session.j1939.J1939

	
lin_comm

	LIN Communication state

	Type

	nixnet.types.LinComm

	
mode

	This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

	Type

	nixnet._enums.CreateSessionMode

	
num_pend

	This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available
to the appropriate read function. If you call the appropriate read
function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided
to the appropriate write function but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
num_unused

	This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the
size of the underlying queue(s). Contrary to the Queue Size property,
this value is in number of frames for Frame I/O, not number of bytes;
for Signal I/O, it is the number of signal values in both cases. After
start, this property returns the queue size minus the
Number of Values Pending
property.

For input sessions, this is the number of frame/signal values unused in
the underlying queue(s).

For output sessions, this is the number of frame/signal values you can
provide to a subsequent call to the appropriate write function. If you
call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a
variable size of frames. In these cases, this property assumes the
largest possible frame size. If you use smaller frames, the real number
of pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment
and the maximum frame size in the dynamic segment. The XNET Cluster
FlexRay Payload Length Maximum property provides this value.

	Type

	int

	
protocol

	This property returns the protocol that the interface in the session uses.

	Type

	nixnet._enums.Protocol

	
queue_size

	Get or set queue size.

For output sessions, queues store data passed to the appropriate
write function and not yet transmitted onto the network. For input
sessions, queues store data received from the network and not yet
obtained using the appropriate read function.

For most applications, the default queue sizes are sufficient. You can
write to this property to override the default. When you write (set)
this property, you must do so prior to the first session start. You
cannot set this property again after calling
nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values
stored. This is analogous to the number of values you use with the
appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame
data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24
bytes. You can use this number to convert the Queue Size (in bytes)
to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can
vary depending on the payload length. For more information, refer to
Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame.
Within the implementation, each frame uses a dedicated queue. According
to the formulas below, the default queue sizes can be different for each
frame. If you read the default Queue Size property for a Signal Input XY
session, the largest queue size is returned, so that a call to the
appropriate read function of that size can empty all queues. If you
read the default Queue Size property for a Signal Output XY session, the
smallest queue size is returned, so that a call to the appropriate write
function of that size can succeed when all queues are empty. If you
write the Queue Size property for a Signal I/O XY session, that size is
used for all frames, so you must ensure that it is sufficient for the
frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one
frame. Within the implementation, each frame uses a dedicated queue. The
Queue Size property does not represent the memory in these queues, but
rather the amount of time stored. The default queue allocations store
Application Time worth of resampled signal values. If you read the
default Queue Size property for a Signal I/O Waveform session, it
returns Application Time multiplied by the time Resample Rate. If you
write the Queue Size property for a Signal I/O Waveform session, that
value is translated from a number of samples to a time, and that time is
used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored.
Single-Point sessions always use a value of 1 as the effective queue size.

	Type

	int

	
start(scope=<StartStopScope.NORMAL: 0>)[source]

	Start communication for the XNET session.

Because the session is started automatically by default, this function
is optional. This function is for more advanced applications to start
multiple sessions in a specific order. For more information about the
automatic start feature, refer to the
nixnet._session.base.SessionBase.auto_start property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can start each logical unit separately. When a session is started,
all contained frames or signals are placed in a state where they are
ready to communicate. When the interface is started, it takes data from
all started sessions to communicate with other nodes on the bus. For a
specification of the state models for the session and interface, refer
to State Models.

If an output session starts before you write data, or you read an input
session before it receives a frame, default data is used. For more
information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
state

	Session running state.

	Type

	nixnet._enums.SessionInfoState

	
stop(scope=<StartStopScope.NORMAL: 0>)[source]

	Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared),
this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains
frames or signals to be transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits
(or receives) data for the sessions.

You can stop each logical unit separately. When a session is stopped,
all contained frames or signals are placed in a state where they are no
longer ready to communicate. When the interface is stopped, it no longer
takes data from sessions to communicate with other nodes on the bus. For
a specification of the state models for the session and interface, refer
to State Models.

	Parameters

	scope (nixnet._enums.StartStopScope) – Describes the impact of
this operation on the underlying state models for the session
and its interface.

	
time_communicating

	Time the interface started communicating.

The time is usually later than time_start because the interface
must undergo a communication startup procedure.

	Type

	int

	
time_current

	Current interface time.

	Type

	int

	
time_start

	Time the interface was started.

	Type

	int

	
wait_for_intf_communicating(timeout=10)[source]

	Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for
the trigger. Once the interface is started, this waits for the
protocol’s communication state to transition to a value that indicates
communication with remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for
communication (invalid time of 0 prior)

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_intf_remote_wakeup(timeout=10)[source]

	Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the
network. This wait is used for CAN, when you set the ‘can_tcvr_state’
property to ‘constants.CanTcvrState.SLEEP’. Although the interface
itself is ready to communicate, this places the transceiver into a sleep
state. When a remote CAN node transmits a frame, the transceiver wakes
up, and communication is restored. This wait detects that remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to
‘constants.LinSleep.REMOTE_SLEEP’ or ‘constants.LinSleep.LOCAL_SLEEP’.
When asleep, if a remote LIN ECU transmits the wakeup pattern (break),
the XNET LIN interface detects this transmission and wakes up. This wait
detects that remote wakeup.

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

	
wait_for_transmit_complete(timeout=10)[source]

	Wait for transmition to complete.

All frames written for the session have been transmitted on the bus.
This condition applies to CAN, LIN, and FlexRay. This condition is state
based, and the state is Boolean (true/false).

	Parameters

	timeout (float) – The maximum amount of time to wait in seconds.

nixnet.convert

	
class nixnet.convert.SignalConversionSinglePointSession(database_name, cluster_name, signals)[source]

	Bases: object

Convert NI-XNET signal data to frame data or vice versa.

Conversion works similar to Single-Point mode. You specify a set of signals
that can span multiple frames. Signal to frame conversion reads a set of
values for the signals specified and writes them to the respective
frame(s). Frame to signal conversion parses a set of frames and returns the
latest signal value read from a corresponding frame.

	
application_protocol

	This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

	Type

	nixnet._enums.AppProtocol

	
close()[source]

	Close (clear) the XNET session.

	
cluster_name

	This property returns the cluster (network) name used with the session.

	Type

	str

	
convert_frames_to_signals(frames)[source]

	Convert Frames to signals.

The frames passed into the frames array are read one by one, and
the signal values found are written to internal buffers for each
signal. Frames are identified by their identifier (FlexRay: slot)
field. After all frames in frames array are processed, the internal
signal buffers’ status is returned with the corresponding timestamps
from the frames where a signal value was found. The signal internal
buffers’ status is being preserved over multiple calls to this
function.

This way, for example, data returned from multiple calls of nxFrameRead
for a Frame Input Stream Mode session (or any other Frame Input
session) can be passed to this function directly.

Note

Frames unknown to the session are silently ignored.

	
convert_signals_to_frames(signals, frame_type=<class 'nixnet.types.XnetFrame'>)[source]

	Convert signals to frames.

The signal values written to the signals array are written to a raw
frame buffer array. For each frame included in the session, one frame
is generated in the array that contains the signal values. Signals not
present in the session are written as their respective default values;
empty space in the frames that signals do not occupy is written with
the frame’s default payload.

The frame header values are filled with appropriate values so that this
function’s output can be directly written to a Frame Output session.

	Parameters

	
	signals (list of float) – Values corresponding to signals configured
in this session.

	frame_type (nixnet.types.FrameFactory) – A factory for the
desired frame formats.

	Yields

	nixnet.types.Frame

	
database_name

	This property returns the database name used with the session.

	Type

	str

	
j1939

	Returns the J1939 configuration object for the session.

	Type

	nixnet._session.j1939.J1939

	
mode

	This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

	Type

	nixnet._enums.CreateSessionMode

	
protocol

	This property returns the protocol that the interface in the session uses.

	Type

	nixnet._enums.Protocol

	
signals

	Operate on session’s signals

	Type

	nixnet._session.signals.Signals

API Reference:

	nixnet.session.signals

	nixnet.session.j1939

nixnet.session.signals

	
class nixnet._session.signals.Signal(handle, index, name)[source]

	Bases: nixnet._session.collection.Item

Signal configuration for a session.

	
class nixnet._session.signals.Signals(handle)[source]

	Bases: nixnet._session.collection.Collection

Signals in a session.

	
count(value) → integer -- return number of occurrences of value

	

	
get(index, default=None)

	Access an item, returning default on failure.

	Parameters

	
	index (str or int) – Item name or index

	default – Value to return when lookup fails

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
class nixnet._session.signals.SinglePointInSignals(handle)[source]

	Bases: nixnet._session.signals.Signals

Writeable signals in a session.

	
count(value) → integer -- return number of occurrences of value

	

	
get(index, default=None)

	Access an item, returning default on failure.

	Parameters

	
	index (str or int) – Item name or index

	default – Value to return when lookup fails

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
read()[source]

	Read data from a Signal Input Single-Point session.

	Yields

	tuple of int and float – Timestamp and signal

	
class nixnet._session.signals.SinglePointOutSignals(handle)[source]

	Bases: nixnet._session.signals.Signals

Writeable signals in a session.

	
count(value) → integer -- return number of occurrences of value

	

	
get(index, default=None)

	Access an item, returning default on failure.

	Parameters

	
	index (str or int) – Item name or index

	default – Value to return when lookup fails

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
write(signals)[source]

	Write data to a Signal Output Single-Point session.

	Parameters

	signals (list of float) – A list of signal values (float).

nixnet.session.j1939

	
class nixnet._session.j1939.J1939(handle)[source]

	Bases: object

J1939 configuration for a session

	
include_dest_addr_in_pgn

	SAE J1939 Include Destination Address in PGN

Incoming J1939 frames are matched to an XNET database by the Parameter Group Number (PGN) of the frame.
When receiving PDU1 frames,
the destination address of the frame (J1939 PS field) is ignored when calculating the PGN,
in accordance to the J1939 specification.
This causes an XNET session to receive all frames that share the same PGN,
making it difficult to distinguish destinations for traffic.

When set to True,
this property instructs NI-XNET to include the destination address when extracting the PGN from the frame.
This allows the same PGN sent to different destination addresses to be handled by separate input sessions.

This property may be set at any time.
When set after session start,
it will not affect frames already received.

This property is valid only for input sessions.
It is not valid for stream sessions.
This property affects all frames in a session.

	Type

	bool

nixnet.system

API Reference:

	nixnet.system.system

	nixnet.system.databases

	nixnet.system.device

	nixnet.system.interface

nixnet.system.system

	
class nixnet.system.system.System[source]

	Interact with the NI driver and interface hardware.

	
databases

	Operate on systems’s database’s aliases

	Type

	nixnet.system._databases.AliasCollection

	
dev_refs

	Physical XNET devices in the system.

	Type

	iter of nixnet.system._device.Device

	
intf_refs

	Available interfaces on the system.

	Type

	iter of nixnet.system._interface.Interface

	
intf_refs_all

	Available interfaces on the system.

This Includes those not equipped with a Transceiver Cable.

	Type

	iter of nixnet.system._interface.Interface

	
intf_refs_can

	Available interfaces on the system (CAN Protocol).

	Type

	iter of nixnet.system._interface.Interface

	
intf_refs_lin

	Available interfaces on the system (LIN Protocol).

	Type

	iter of nixnet.system._interface.Interface

	
ver

	The driver version (larger numbers imply a newer version).

Use this for:

	Determining the driver functionality or release date

	Determining upgrade availability

	Type

	nixnet.types.DriverVersion

nixnet.system.databases

	
class nixnet.system._databases.Alias(database_alias, database_filepath)[source]

	Bases: object

Alias alias.

	
filepath

	Get the filepath associated with the Alias object

	Type

	str

	
class nixnet.system._databases.AliasCollection(handle)[source]

	Bases: collections.abc.Mapping

Alias aliases.

	
add_alias(database_alias, database_filepath, default_baud_rate=None)[source]

	Add a new alias with baud rate size of up to 64 bits to a database file.

NI-XNET uses alias names for database files. The alias names provide a
shorter name for display, allow for changes to the file system without
changing the application.

This function is supported on Windows only.

	Parameters

	
	database_alias (str) – Provides the desired alias name. Unlike the names of
other XNET database objects, the alias name can use special
characters such as space and dash. Commas are not allowed in the
alias name. If the alias name already exists, this function
changes the previous filepath to the specified filepath.

	database_filepath (str) – Provides the path to the CANdb, FIBEX, or LDF
file. Commas are not allowed in the filepath name.

	default_baud_rate (int) – Provides the default baud rate, used when
filepath refers to a CANdb database (.dbc) or an NI-CAN database
(.ncd). These database formats are specific to CAN and do not
specify a cluster baud rate. Use this default baud rate to
specify a default CAN baud rate to use with this alias. If
database_filepath refers to a FIBEX database (.xml) or LIN LDF
file, the default_baud_rate parameter is ignored. The FIBEX and
LDF database formats require a valid baud rate for every
cluster, and NI-XNET uses that baud rate as the default.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items()[source]

	Return all aliases and database objects associated with those aliases in the system.

	Yields

	An iterator to tuple pairs of alias and database objects in the system.

	
keys()[source]

	Return all keys (alias names) used in the AliasCollection object.

	Yields

	An iterator to all the keys in the Alias object.

	
values()[source]

	Return all Alias objects in the system.

	Yields

	An iterator to all the values in the AliasCollection object.

nixnet.system.device

	
class nixnet.system._device.Device(handle)[source]

	Bases: object

Physical XNET devices in the system.

	
form_fac

	XNET board form factor.

	Type

	nixnet._enums.DevForm

	
intf_refs

	Interfaces associated with this device.

	Type

	iter of nixnet.system._interface.Interface

	
intf_refs_all

	Interfaces associated with this device.

This Includes those not equipped with a Transceiver Cable.

	Type

	iter of nixnet.system._interface.Interface

	
num_ports

	The number of physical port connectors on the XNET board.

	Type

	int

	
num_ports_all

	The number of physical port connectors on the XNET board.

This Includes those not equipped with a Transceiver Cable.

	Type

	int

	
product_name

	The XNET device product name.

	Type

	str

	
product_num

	The numeric portion of the XNET device product name.

	Type

	int

	
ser_num

	Serial number associated with the XNET device.

	Type

	int

	
slot_num

	Physical slot where the module is located within a chassis.

	Type

	int

nixnet.system.interface

	
class nixnet.system._interface.Interface(handle)[source]

	Bases: object

Interfaces associated with a physical hardware device.

	
blink(modifier)[source]

	Blinks LEDs for the XNET interface to identify its physical port in the system.

Each XNET device contains one or two physical ports. Each port is
labeled on the hardware as Port 1 or Port 2. The XNET device also
provides two LEDs per port. For a two-port board, LEDs 1 and 2 are
assigned to Port 1, and LEDs 3 and 4 are assigned to physical Port 2.

When your application uses multiple XNET devices, this function helps
to identify each interface to associate its software behavior to its
hardware connection (port). Prior to running your XNET sessions, you
can call this function to blink the interface LEDs.

For example, if you have a system with three PCI CAN cards, each with
two ports, you can use this function to blink the LEDs for interface
CAN4, to identify it among the six CAN ports.

	The LEDs of each port support two states:

	
	Identification:

	Blink LEDs to identify the physical port assigned to the interface.

	In Use:

	LED behavior that XNET sessions control.

Identification LED State

You can use the blink function only in the Identification state. If
you call this function while one or more XNET sessions for the
interface are open (created), it returns an error, because the port’s
LEDs are in the In Use state.

In Use LED State

When you create an XNET session for the interface, the LEDs for that
physical port transition to the In Use state. If you called the blink
function previously to enable blinking for identification, that LED
behavior no longer applies. The In Use LED state remains until all XNET
sessions are cleared. This typically occurs when the application
terminates. The patterns that appear on the LEDs while In Use are
documented in LEDs.

	Parameters

	moodifier (nixnet._enums.BlinkMode) – Controls LED blinking

Both LEDs blink green (not red). The blinking rate is approximately
three times per second.

	
can_tcvr_cap

	Indicates the CAN bus physical transceiver support.

	Type

	nixnet._enums.CanTcvrCap

	
can_term_cap

	Indicates whether the XNET interface can terminate the CAN bus.

Signal reflections on the CAN bus can cause communication failure. To
prevent reflections, termination can be present as external resistance
or resistance the XNET board applies internally. This property
determines whether the XNET board can add termination to the bus.

	Type

	nixnet._enums.CanTermCap

	
dongle_compatible_firmware_version

	The oldest driver version compatible with the connected Transceiver Cable’s firmware.

The number is relative to the first driver version that supported the
Transceiver Cable, starting with 1 for the original revision.

	..note:: A Transceiver Cable running an updated firmware version may

	require a later XNET driver than the version it shipped with for
operation.

	Type

	int

	
dongle_compatible_revision

	The oldest driver version compatible with the connected Transceiver Cable’s hardware revision.

The number is relative to the first driver version that supported the
particular Transceiver Cable model, starting with 1 for the original
revision.

Note

A Transceiver Cable hardware revision might require a later
XNET driver than the version that introduced support for this model for
operation.

	Type

	int

	
dongle_firmware_version

	The connected Transceiver Cable’s firmware revision number.

	Type

	int

	
dongle_id

	Indicates the connected Transceiver Cable’s type.

Dongle-Less Design indicates this interface is not a Transceiver Cable
but a regular XNET expansion card, cDAQ Module, and so on.

	Type

	nixnet._enums.DongleId

	
dongle_revision

	The connected Transceiver Cable’s hardware revision number.

	Type

	int

	
dongle_state

	Indicates the connected Transceiver Cable’s state.

Some Transceiver Cable types require external power from the network
connector for operation. Refer to the hardware-specific manual for more
information.

	Type

	nixnet._enums.DongleState

	
num

	The unique number associated with the XNET interface.

The XNET driver assigns each port connector in the system a unique
number XNET driver. This number, plus its protocol name, is the
interface name.

	Type

	int

	
port_num

	Physical port number printed near the connector on the XNET device.

The port numbers on an XNET board are physically identified with
numbering. Use this property, along with the XNET Device Serial Number
property, to associate an XNET interface with a physical (XNET board
and port) combination.

	Type

	int

	
protocol

	Protocol supported by the interface.

	Type

	nixnet._enums.Protocol

nixnet.database

API Reference:

	nixnet.database.cluster

	nixnet.database.database

	nixnet.database.ecu

	nixnet.database.frame

	nixnet.database.lin_sched

	nixnet.database.lin_sched_entry

	nixnet.database.pdu

	nixnet.database.signal

	nixnet.database.subframe

	nixnet.database.collection

	nixnet.database.dbc_attributes

	nixnet.database.dbc_signal_value_table

nixnet.database.cluster

	
class nixnet.database._cluster.Cluster(**kwargs)[source]

	Bases: nixnet.database._database_object.DatabaseObject

Database cluster

	
application_protocol

	Get or set the application protocol.

	Type

	AppProtocol

	
baud_rate

	Get or set the buad rate all custer nodes use.

This baud rate represents the rate from the database,
so it is read-only from the session.
Use a session interface property (for example, Interface.baud_rate)
to override the database baud rate with an application-specific baud rate.

CAN

For CAN, this rate can be 33333, 40000, 50000, 62500, 80000, 83333,
100000, 125000, 160000, 200000, 250000, 400000, 500000, 800000, or
1000000. Some transceivers may support only a subset of these values.

LIN

For LIN, this rate can be 2400-20000 inclusive.

If you need values other than these,
use the custom settings as described in Interface.baud_rate.

	Type

	int

	
can_fd_baud_rate

	Get or set the fast data baud rate when Cluster.can_io_mode is CanIoMode.CAN_FD_BRS.

Refer to the CanIoMode for a description of CanIoMode.CAN_FD_BRS.
Use a session interface property (for example, Interface.can_fd_baud_rate)
to override the database fast baud rate with an application-specific fast baud rate.

NI-XNET CAN hardware currently accepts the following numeric baud rates:
200000, 250000, 400000, 500000, 800000, 1000000, 1250000, 1600000,
2000000, 2500000, 4000000, 5000000, and 8000000.
Some transceivers may support only a subset of these values.

If you need values other than these,
use the custom settings as described in Interface.can_fd_baud_rate.

	Type

	int

	
can_fd_iso_mode

	Returns the mode of a CAN FD cluster.

The default is CanFdIsoMode.ISO.
You define the value in a dialog box that appears when you define an alias for the database.

	Type

	CanFdIsoMode

	
can_io_mode

	Get or set the CAN I/O Mode of the cluster.

	Type

	CanIoMode

	
check_config_status()[source]

	Check this cluster’s configuration status.

By default, incorrectly configured clusters in the database are not returned from
Database.clusters because they cannot be used in the bus communication.
You can change this behavior by setting Database.show_invalid_from_open to True.
When a cluster configuration status becomes invalid after the database is opened,
the cluster still is returned from Database.clusters
even if Database.show_invalid_from_open is False.

	Raises

	XnetError – The cluster is incorrectly configured.

	
comment

	Get or set a comment describing the cluster object.

A comment is a string containing up to 65535 characters.

	Type

	str

	
dbc_attributes

	Access the cluster’s DBC attributes.

	Type

	DbcAttributeCollection

	
ecus

	Returns a collection of Ecu objects in this cluster.

An ECU is assigned to a cluster when the ECU object is created.
You cannot change this assignment afterwards.

	Type

	DbCollection

	
export(db_filepath)[source]

	Exports this cluster to a CANdb++ or LIN database file format.

A CAN cluster is exported as a CANdb++ database file (.dbc).
A LIN cluster is exported as a LIN database file (.ldf).
If the target file exists, it is overwritten.

Exporting a cluster is not supported under Real-Time (RT).

	Parameters

	db_filepath (str) – Contains the pathname to the database file.

	
find(object_class, object_name)[source]

	Finds an object in the database.

This function finds a database object relative to this parent object.
This object may be a grandparent or great-grandparent.

If this object is a direct parent
(for example, Frame for Signal),
the object_name to search for can be short, and the search proceeds quickly.

If this object is not a direct parent
(for example, Database for Signal),
the object_name to search for must be qualified such
that it is unique within the scope of this object.

For example, if the class of this object is Cluster,
and object_class is Signal,
you can specify object_name of mySignal,
assuming that signal name is unique to the cluster.
If not, you must include the Frame name as a prefix,
such as myFrameA.mySignal.

NI-XNET supports the following subclasses of DatabaseObject as arguments for object_class:

	nixnet.database.Cluster

	nixnet.database.Frame

	nixnet.database.Pdu

	nixnet.database.Signal

	nixnet.database.SubFrame

	nixnet.database.Ecu

	nixnet.database.LinSched

	nixnet.database.LinSchedEntry

	Parameters

	
	object_class (DatabaseObject) – The class of the object to find.

	object_name (str) – The name of the object to find.

	Returns

	An instance of the found object.

	Raises

	
	ValueError – Unsupported value provided for argument object_class.

	XnetError – The object is not found.

	
frames

	Returns a collection of Frame objects in this cluster.

A frame is assigned to a cluster when the frame object is created.
You cannot change this assignment afterwards.

	Type

	DbCollection

	
lin_schedules

	Returns a collection of LinSched defined in this cluster.

You assign a LIN schedule to a cluster when you create the LIN schedule object.
You cannot change this assignment afterwards.
The schedules in this collection are sorted alphabetically by schedule name.

	Type

	DbCollection

	
lin_tick

	Returns the relative time between LIN ticks (relative f64 in seconds).

The LinSchedEntry.delay property must be a multiple of this tick.

This tick is referred to as the “timebase” in the LIN specification.

The Ecu.lin_master property defines the Tick property in this cluster.
You cannot use the Tick property when there is no LIN Master property defined in this cluster.

	Type

	float

	
merge(source_obj, copy_mode, prefix, wait_for_complete)[source]

	Merges database objects and related subobjects from the source to this cluster.

The source can be any of the following objects:

	Frame

	Pdu

	Ecu

	LinSched

	Cluster

All listed objects must have unique names in the cluster.
They are referenced here as objects,
as opposed to child objects (for example, a signal is a child of a frame).

If the source object name is not used in the target cluster,
this function copies the source objects with the child objects to the target.
If an object with the same name exists in this cluster,
you can avoid name collisions by specifying the prefix to be added to the name.

If an object with the same name exists in this cluster,
the merge behavior depends on the copy_mode input.

Example

Target frame F1(v1) has signals S1 and S2(v1). Source frame F1(v2) has signals S2(v2) and S3.

(v1) and (v2) are two versions of one object with same name, but with different properties.

	Result when copy_mode is COPY_USE_SOURCE: F1(v2), S2(v2), S3.

	Result when copy_mode is COPY_USE_TARGET: F1(v1), S1, S2(v1).

	Result when copy_mode is MERGE_USE_SOURCE: F1(v2), S1, S2(v2), S3.

	Result when copy_mode is MERGE_USE_TARGET: F1(v1), S1, S2(v1), S3.

If the source object is a cluster,
this function copies all contained PDUs, ECUs, and LIN schedules
with their child objects to this cluster.

Depending on the number of contained objects in the source and destination clusters,
the execution can take a longer time.
If wait_for_complete is True, this function waits until the merging process gets completed.
If the execution completes without errors,
perecent_complete returns 100.
If wait_for_complete is False,
the function returns quickly,
and perecent_complete returns values less than 100.
You must call Cluster.merge repeatedly until perecent_complete returns 100.
You can use the time between calls to perform asynchronous tasks.

	Parameters

	
	source_obj (object) – The object to be merged into this cluster.

	copy_mode (Merge) – Defines the merging behavior if this cluster
already contains an object with the same name.

	prefix (str) – The prefix to be added to the source object name if an
object with the same name and type exists in this cluster.

	wait_for_complete (bool) – Determines whether the function returns directly
or waits until the entire transmission is completed.

	Returns

	A value which indicates the merging progress as a percentage. 100 indicates completion.

	Return type

	int

	
name

	Get or set the name of the cluster object.

Lowercase letters, uppercase letters, numbers,
and the underscore (_) are valid characters for the short name.
The space (), period (.), and other special characters are not supported within the name.
The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
The short name is limited to 128 characters.

If you use a FIBEX file, the short name comes from the file.
If you use a CANdb (.dbc), LDF (.ldf),
or NI-CAN (.ncd) file,
no cluster name is stored in the file,
so NI-XNET uses the name Cluster.
If you create the cluster yourself,
the name that you provide is used.

A cluster name must be unique for all clusters in a database.

This short name does not include qualifiers to ensure that it is unique,
such as the database name. It is for display purposes.

	Type

	str

	
pdus

	Returns a collection of Pdu objects in this cluster.

A PDU is assigned to a cluster when the PDU object is created.
You cannot change this assignment afterwards.

	Type

	DbCollection

	
pdus_reqd

	Returns whether using PDUs in the database API is required for this cluster.

If this property returns False,
it is safe to use signals as child objects of a frame without PDUs.
This behavior is compatible with NI-XNET 1.1 or earlier.
Clusters from .dbc, .ncd, or FIBEX 2 files always return False for this property,
so using PDUs from those files is not required.

If this property returns True,
the cluster contains PDU configuration,
which requires reading the PDUs as frame child objects and then signals as PDU child objects,
as shown in the following figure.

Internally, the database always uses PDUs,
but shows the same signal objects also as children of a frame.

[image: ../../_images/pdusrequired.gif]

For this property to return False,
the following conditions must be fulfilled for all frames in the cluster:

	Only one PDU is mapped to the frame.

	This PDU is not mapped to other frames.

	The PDU Start Bit in the frame is 0.

	The PDU Update Bit is not used.

If the conditions are not fulfilled for a given frame,
signals from the frame are still returned,
but reading the property returns a warning.

	Type

	bool

	
protocol

	Get or set the cluster protocol.

	Type

	Protocol

	
sigs

	Returns a list of all Signal objects in this cluster.

	Type

	list of Signal

nixnet.database.database

	
class nixnet.database.database.Database(database_name)[source]

	Bases: nixnet.database._database_object.DatabaseObject

Opens a database file.

When an already open database is opened,
this class grants access to the same database and increases an internal reference counter.
A multiple referenced (open) database must be closed as many times as it has been opened.
Until it is completely closed, the access to this database remains granted,
and the database uses computer resources (memory and handles).
For more information, refer to Database.close.

	Parameters

	database_name (str) – The database alias or file pathname to open.

	
close(close_all_refs=False)[source]

	Closes the database.

For the case that different threads of an application are using the same database,
Database and Database.close
maintain a reference counter indicating how many times the database is open.
Every thread can open the database, work with it,
and close the database independently using close_all_refs set to False.
Only the last call to Database.close actually closes access to the database.

Note

Database.__exit__ calls Database.close with close_all_refs set to False.
See examples of this in CAN Dynamic Database Creation
and LIN Dynamic Database Creation.

Another option is that only one thread executes Database.close once,
using close_all_refs set to True, which closes access for all other threads.
This may be convenient when, for example,
the main program needs to stop all running threads
and be sure the database is closed properly,
even if some threads could not execute Database.close.

	Parameters

	close_all_refs (bool) – Indicates that a database open multiple times
(refer to Database) should be closed completely
(close_all_refs is True),
or just the reference counter should be decremented
(close_all_refs is False),
and the database remains open.
When the database is closed completely,
all references to objects in this database become invalid.

	
clusters

	Returns a collection of Cluster objects in this database.

A cluster is assigned to a database when the cluster object is created.
You cannot change this assignment afterwards.

FIBEX and AUTOSAR files can contain any number of clusters,
and each cluster uses a unique name.

For CANdb (.dbc), LDF (.ldf), or NI-CAN (.ncd) files,
the file contains only one cluster, and no cluster name is stored in the file.
For these database formats, NI-XNET uses the name Cluster for the single cluster.

	Type

	DbCollection

	
find(object_class, object_name)[source]

	Finds an object in the database.

This function finds a database object relative to this parent object.
This object may be a grandparent or great-grandparent.

If this object is a direct parent
(for example, Frame for Signal),
the object_name to search for can be short, and the search proceeds quickly.

If this object is not a direct parent
(for example, Database for Signal),
the object_name to search for must be qualified such
that it is unique within the scope of this object.

For example, if the class of this object is Cluster,
and object_class is Signal,
you can specify object_name of mySignal,
assuming that signal name is unique to the cluster.
If not, you must include the Frame name as a prefix,
such as myFrameA.mySignal.

NI-XNET supports the following subclasses of DatabaseObject as arguments for object_class:

	nixnet.database.Cluster

	nixnet.database.Frame

	nixnet.database.Pdu

	nixnet.database.Signal

	nixnet.database.SubFrame

	nixnet.database.Ecu

	nixnet.database.LinSched

	nixnet.database.LinSchedEntry

	Parameters

	
	object_class (DatabaseObject) – The class of the object to find.

	object_name (str) – The name of the object to find.

	Returns

	An instance of the found object.

	Raises

	
	ValueError – Unsupported value provided for argument object_class.

	XnetError – The object is not found.

	
save(db_filepath='')[source]

	Saves the open database to a FIBEX 3.1.0 file.

The file extension must be .xml. If the target file exists, it is overwritten.

XNET saves to the FIBEX file only features that XNET sessions use to communicate on the network.
If the original file was created using non-XNET software,
the target file may be missing details from the original file.
For example, NI-XNET supports only linear scaling.
If the original FIBEX file used a rational equation that cannot be expressed as a linear scaling,
XNET converts this to a linear scaling with factor 1.0 and offset 0.0.

If db_filepath is empty, the file is saved to the same FIBEX file specified when opened.
If opened as a file path, it uses that file path.
If opened as an alias, it uses the file path registered for that alias.

Saving a database is not supported under Real-Time (RT),
but you can deploy and use a database saved on Windows on a Real-Time (RT) target (refer to Database.deploy).

	Parameters

	db_filepath (str) – Contains the pathname to the database file or is
empty (saves to the original filepath).

	
show_invalid_from_open

	Show or hide Frame and Signal objects that are invalid.

After opening a database, this property always is set to False,
meaning that invalid Cluster, Frame,
and Signal objects
are not returned in properties that return a DbCollection for the database
(for example, Cluster.frames and Frame.mux_static_signals).
Invalid Cluster, Frame,
and Signal objects are incorrectly defined
and therefore cannot be used in the bus communication.
The False setting is recommended when you use the database to create XNET sessions.

In case the database was opened to correct invalid configuration
(for example, in a database editor),
you must set the property to True prior to reading properties that return
a DbCollection for the database
(for example, Cluster.frames and Frame.mux_static_signals).

For invalid objects,
the Cluster.check_config_status,
Frame.check_config_status,
and Signal.check_config_status methods raise an exception if there is a problem.
For valid objects, no error is raised.

Cluster, Frame, and Signal objects that became
invalid after the database is opened are still returned from the
Database.clusters, Cluster.frames, and Frame.mux_static_signals,
even if Database.show_invalid_from_open is False
and Configuration Status returns an error code.
For example, if you open a Frame with valid properties,
then you set Signal.start_bit beyond the Frame.payload_len,
Frame.check_config_status raises an exception,
but the frame is returned from Cluster.frames.

	Type

	bool

nixnet.database.ecu

	
class nixnet.database._ecu.Ecu(**kwargs)[source]

	Bases: nixnet.database._database_object.DatabaseObject

Database ECU

	
check_config_status()[source]

	Check this ECU’s configuration status.

By default, incorrectly configured ECUs in the database are not returned from
Cluster.ecus because they cannot be used in the bus communication.
You can change this behavior by setting Database.show_invalid_from_open to True.
When an ECU configuration status becomes invalid after the database is opened,
the ECU still is returned from Cluster.ecus
even if Database.show_invalid_from_open is False.

	Raises

	XnetError – The ECU is incorrectly configured.

	
clst

	Returns the parent cluster to which the ECU is connected.

The parent cluster is determined when the ECU object is created.
You cannot change it afterwards.

	Type

	Cluster

	
comment

	Get or set a comment describing the ECU object.

A comment is a string containing up to 65535 characters.

	Type

	str

	
dbc_attributes

	Access the ECU’s DBC attributes.

	Type

	DbcAttributeCollection

	
j1939_node_name

	Get or set the preferred J1939 node address to be used when simulating this ECU.

If you assign this ECU to an XNET session (j1939.set_ecu),
XNET will start address claiming for this address using
this node name and Ecu.j1939_preferred_address.

	Type

	int

	
j1939_preferred_address

	Get or set the preferred J1939 node address to be used when simulating this ECU.

If you assign this ECU to an XNET session (j1939.set_ecu),
XNET will start address claiming for this address using
Ecu.j1939_node_name and use the address for the session when the address is granted.

	Type

	int

	
lin_config_nad

	Get or set the configured NAD of a LIN slave node.

NAD is the address of a slave node and is used in diagnostic services.
Initial NAD is replaced by configured NAD with node configuration services.

Warning

This property is not saved in the FIBEX database.
You can import it only from an LDF file.

	Type

	int

	
lin_function_id

	Get or set the function ID.

Function ID is a 16-bit value identifying the function of the LIN node (ECU).

Warning

This property is not saved in the FIBEX database.
You can import it only from an LDF file.

	Type

	int

	
lin_initial_nad

	Get or set the initial NAD of a LIN slave node.

NAD is the address of a slave node and is used in diagnostic services.
Initial NAD is replaced by configured NAD with node configuration services.

Warning

This property is not saved in the FIBEX database.
You can import it only from an LDF file.

	Type

	int

	
lin_master

	Get or set whether the ECU is a LIN master (True) or LIN slave (False).

	Type

	bool

	
lin_p2_min

	Get or set the minimum time in seconds between frame reception and node response.

This is the minimum time between reception of the last frame
of the diagnostic request and the response sent by the node.

Warning

This property is not saved in the FIBEX database.
You can import it only from an LDF file.

	Type

	float

	
lin_protocol_ver

	Get or set the version of the LIN standard this ECU uses.

	Type

	LinProtocolVer

	
lin_st_min

	Get or set the minimum time in seconds for node preparation.

This is the minimum time the node requires to prepare
for the next frame of the diagnostic service.

Warning

This property is not saved in the FIBEX database.
You can import it only from an LDF file.

	Type

	float

	
lin_supplier_id

	Get or set the supplier ID.

Supplier ID is a 16-bit value identifying the supplier of the LIN node (ECU).

Warning

This property is not saved in the FIBEX database.
You can import it only from an LDF file.

	Type

	int

	
name

	Get or set the name of the ECU object.

Lowercase letters, uppercase letters, numbers,
and the underscore (_) are valid characters for the short name.
The space (), period (.), and other special characters are not supported within the name.
The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
The short name is limited to 128 characters.

An ECU name must be unique for all ECUs in a cluster.

This short name does not include qualifiers to ensure that it is unique,
such as the database and cluster name.
It is for display purposes.

	Type

	str

	
rx_frms

	Get or set a list of frames the ECU receives.

This property defines all frames the ECU receives.
All frames an ECU receives in a given cluster must be defined in the same cluster.

	Type

	list of Frame

	
tx_frms

	Get or set a list of frames the ECU transmits.

This property defines all frames the ECU transmits.
All frames an ECU transmits in a given cluster must be defined in the same cluster.

	Type

	list of Frame

nixnet.database.frame

	
class nixnet.database._frame.Frame(**kwargs)[source]

	Bases: nixnet.database._database_object.DatabaseObject

Database frame

	
application_protocol

	Get or set the frame’s application protocol.

	Type

	AppProtocol

	
can_ext_id

	Get or set whether the Frame.id property in a CAN cluster is extended.

The frame identifier represents a standard 11-bit (False) or extended 29-bit (True) arbitration ID.

	Type

	bool

	
can_io_mode

	Get or set the frame’s I/O mode.

This property is used in ISO CAN FD+BRS mode only.
In this mode,
you can specify every frame to be transmitted in CAN 2.0, CAN FD, or CAN FD+BRS mode.
CAN FD+BRS frames require the interface to be in CAN FD+BRS mode;
otherwise, it is transmitted in CAN FD mode.

When the interface is in Non-ISO CAN FD or Legacy ISO CAN FD mode,
this property is disregarded.
In Non-ISO CAN FD and Legacy ISO CAN FD mode,
you must use Interface.can_tx_io_mode to switch the transmit mode.

When the assigned database does not define the property in ISO CAN FD mode,
the frames are transmitted with Interface.can_io_mode.

	Type

	CanIoMode

	
can_timing_type

	Get or set the CAN frame timing.

Because this property specifies the behavior of the frame’s transfer within the embedded system
(for example, a vehicle),
it describes the transfer between ECUs in the network.
In the following description,
transmitting ECU refers to the ECU that transmits the CAN data frame
(and possibly receives the associated CAN remote frame).
Receiving ECU refers to an ECU that receives the CAN data frame
(and possibly transmits the associated CAN remote frame).

When you use the frame within an NI-XNET session,
an output session acts as the transmitting ECU,
and an input session acts as a receiving ECU.
For a description of how these CAN timing types apply to the NI-XNET session mode,
refer to CAN Timing Type and Session Mode.

If you are using a FIBEX or AUTOSAR database,
this property is a required part of the XML schema for a frame,
so the default (initial) value is obtained from the file.

If you are using a CANdb (.dbc) database,
this property is an optional attribute in the file.
If NI-XNET finds an attribute named GenMsgSendType,
that attribute is the default value of this property.
If the GenMsgSendType attribute begins with cyclic,
this property’s default value is CYCLIC_DATA;
otherwise, it is EVENT_DATA.
If the CANdb file does not use the GenMsgSendType attribute,
this property uses a default value of EVENT_DATA,
which you can change in your application.

If you are using an .ncd database or an in-memory database,
this property uses a default value of EVENT_DATA.
Within your application,
change this property to the desired timing type.

	Type

	FrmCanTiming

	
can_tx_time

	Get or set the time between consecutive frames from the transmitting ECU.

The units are in seconds.

Although the fractional part of the float can provide resolution of picoseconds,
the NI-XNET CAN transmit supports an accuracy of 500 microseconds.
Therefore, when used within an NI-XNET output session,
this property is rounded to the nearest 500 microsecond increment (0.0005).

For a Frame.can_timing_type of CYCLIC_DATA or CYCLIC_REMOTE,
this property specifies the time between consecutive data/remote frames.
A time of 0.0 is invalid.

For a Frame.can_timing_type of EVENT_DATA or EVENT_REMOTE,
this property specifies the minimum time between consecutive
data/remote frames when the event occurs quickly.
This is also known as the debounce time or minimum interval.
The time is measured from the end of previous frame (acknowledgment) to the start of the next frame.
A time of 0.0 specifies no minimum (back to back frames allowed).

If you are using a FIBEX or AUTOSAR database,
this property is a required part of the XML schema for a frame,
so the default (initial) value is obtained from the file.

If you are using a CANdb (.dbc) database,
this property is an optional attribute in the file.
If NI-XNET finds an attribute named GenMsgCycleTime,
that attribute is interpreted as a number of milliseconds and used as the default value of this property.
If the CANdb file does not use the GenMsgCycleTime attribute,
this property uses a default value of 0.1 (100 ms),
which you can change in your application.

If you are using a .ncd database or an in-memory database,
this property uses a default value of 0.1 (100 ms).
Within your application, change this property to the desired time.

	Type

	float

	
check_config_status()[source]

	Check this frame’s configuration status.

By default, incorrectly configured frames in the database are not returned from
Cluster.frames because they cannot be used in the bus communication.
You can change this behavior by setting Database.show_invalid_from_open to True.
When a frame configuration status becomes invalid after the database is opened,
the frame still is returned from Cluster.frames
even if Database.show_invalid_from_open is False.

	Raises

	XnetError – The frame is incorrectly configured.

	
cluster

	Get the parent cluster in which the frame has been created.

You cannot change the parent cluster after the frame object has been created.

	Type

	Cluster

	
comment

	Get or set a comment describing the frame object.

A comment is a string containing up to 65535 characters.

	Type

	str

	
dbc_attributes

	Access the frame’s DBC attributes.

	Type

	DbcAttributeCollection

	
default_payload

	Get or set the frame default payload, specified as a list of ints.

Each int in the list represents a byte (U8).
The number of bytes in the list must match the Frame.payload_len property.

This property’s initial value is an list of all 0,
except the frame is located in a CAN cluster with J1939 application protocol,
which uses 0xFF by default.
For the database formats NI-XNET supports,
this property is not provided in the database file.

When you use this frame within an NI-XNET session,
this property’s use varies depending on the session mode.
The following sections describe this property’s behavior for each session mode.

	Frame Output Single-Point and Frame Output Queued Modes:

	Use this property when a frame transmits prior to a call to write.
This can occur when you set the SessionBase.auto_start property to False
and start a session prior to writing.
When SessionBase.auto_start is True (default),
the first frame write also starts frame transmit, so this property is not used.

The following frame configurations potentially can transmit prior to a call to write:

	Frame.can_timing_type is CYCLIC_DATA.

	Frame.can_timing_type is CYCLIC_REMOTE.
(for example, a remote frame received prior to a call to writing).

	Frame.can_timing_type is EVENT_REMOTE.
(for example, a remote frame received prior to a call to writing).

	Frame.can_timing_type is CYCLIC_EVENT.

	LIN frame in a schedule entry where LinSchedEntry.type is UNCONDITIONAL.

The following frame configurations cannot transmit prior to writing, so this property is not used:

	Frame.can_timing_type is EVENT_DATA..

	LIN frame in a schedule entry where LinSchedEntry.type is SPORADIC
or EVENT_TRIGGERED.

	Frame Output Stream Mode:

	This property is not used. Transmit is limited to frames provided to write.

	Signal Output Single-Point, Signal Output Waveform, and Signal Output XY Modes:

	Use this property when a frame transmits prior to a call to write.
Refer to Frame Output Single-Point and Frame Output Queued Modes
for a list of applicable frame configurations.

This property is used as the initial payload,
then each XNET Signal Default Value is mapped into that payload,
and the result is used for the frame transmit.

	Frame Input Stream and Frame Input Queued Modes:

	This property is not used.
These modes do not return data prior to receiving frames.

	Frame Input Single-Point Mode:

	This property is used for frames read returns prior to receiving the first frame.

	Signal Input Single-Point, Signal Input Waveform, and Signal Input XY Modes:

	This property is not used.
Each Signal.default is used when
reading from a session prior to receiving the first frame.

	Type

	list of int

	
find(object_class, object_name)[source]

	Finds an object in the database.

This function finds a database object relative to this parent object.
This object may be a grandparent or great-grandparent.

If this object is a direct parent
(for example, Frame for Signal),
the object_name to search for can be short, and the search proceeds quickly.

If this object is not a direct parent
(for example, Database for Signal),
the object_name to search for must be qualified such
that it is unique within the scope of this object.

For example, if the class of this object is Cluster,
and object_class is Signal,
you can specify object_name of mySignal,
assuming that signal name is unique to the cluster.
If not, you must include the Frame name as a prefix,
such as myFrameA.mySignal.

NI-XNET supports the following subclasses of DatabaseObject as arguments for object_class:

	nixnet.database.Cluster

	nixnet.database.Frame

	nixnet.database.Pdu

	nixnet.database.Signal

	nixnet.database.SubFrame

	nixnet.database.Ecu

	nixnet.database.LinSched

	nixnet.database.LinSchedEntry

	Parameters

	
	object_class (DatabaseObject) – The class of the object to find.

	object_name (str) – The name of the object to find.

	Returns

	An instance of the found object.

	Raises

	
	ValueError – Unsupported value provided for argument object_class.

	XnetError – The object is not found.

	
id

	Get or set the frame identifier.

This property is required.
If the property does not contain a valid value,
and you create an XNET session that uses this frame,
the session returns an error.
To ensure that the property contains a valid value,
you can do one of the following:

	Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

	Set a value at runtime using this property.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case,
so you must set a valid value prior to creating a session.

	CAN:

	For CAN frames, this is the Arbitration ID.

When Frame.can_ext_id is set to False,
this is the standard CAN identifier with a size of 11 bits,
which results in allowed range of 0-2047.
However, the CAN standard disallows identifiers in which the first 7 bits are all recessive,
so the working range of identifiers is 0-2031.

When Frame.can_ext_id is set to True,
this is the extended CAN identifier with a size of 29 bits,
which results in allowed range of 0-536870911.

	LIN:

	For LIN frames, this is the frame’s ID (unprotected).
The valid range for a LIN frame ID is 0-63 (inclusive)

	Type

	int

	
lin_checksum

	Returns whether the LIN frame transmitted checksum is classic or enhanced.

The enhanced checksum considers the protected identifier when it is generated.

The checksum is determined from the Ecu.lin_protocol_ver properties
of the transmitting and receiving the frame.
The lower version of both ECUs is significant.
If the LIN version of both ECUs is 2.0 or higher,
the checksum type is enhanced;
otherwise, the checksum type is classic.

Diagnostic frames (with decimal identifier 60 or 61) always use classic checksum,
even on LIN 2.x.

	Type

	FrmLinChecksum

	
mux_data_mux_sig

	Returns a data multiplexer signal object in the frame.

Use the Frame.mux_is_muxed property to determine whether the frame contains a multiplexer signal.

You can create a data multiplexer signal by creating a signal
and then setting the Signal.mux_is_data_mux property to True.

A frame can contain only one data multiplexer signal.

	Raises

	XnetError – The data multiplexer signal is not defined in the frame

	Type

	Signal

	
mux_is_muxed

	Returns whether this frame is data multiplexed.

This property returns True if the frame contains a multiplexer signal.
Frames containing a multiplexer contain subframes that allow using bits
of the frame payload for different information (signals) depending on
the multiplexer value.

	Type

	bool

	
mux_static_signals

	Collection of static Signal objects in this frame.

Static signals are contained in every frame transmitted,
as opposed to dynamic signals,
which are transmitted depending on the multiplexer value.

If the frame is not multiplexed,
this property returns the same objects as Frame.sigs.

	Type

	DbCollection

	
mux_subframes

	Collection of SubFrame objects in this frame.

A subframe defines a group of signals transmitted using the same multiplexer value.
Only one subframe at a time is transmitted in the frame.

A subframe is defined by creating a subframe object as a child of a frame.

	Type

	DbCollection

	
name

	String identifying a frame object.

Lowercase letters, uppercase letters, numbers,
and the underscore (_) are valid characters for the short name.
The space (), period (.), and other special characters are not supported within the name.
The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
The short name is limited to 128 characters.

A frame name must be unique for all frames in a cluster.

This short name does not include qualifiers to ensure that it is unique,
such as the database and cluster name.
It is for display purposes.

	Type

	str

	
payload_len

	Get or set the number of bytes of data in the payload.

For CAN and LIN, this is 0-8.

This property is required.
If the property does not contain a valid value,
and you create an XNET session that uses this frame,
the session returns an error.
To ensure that the property contains a valid value,
you can do one of the following:

	Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

	Set a value at runtime using this property.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case,
so you must set a valid value prior to creating a session.

	Type

	int

	
pdu_properties

	Get or set a list that maps existing PDUs to a frame.

A mapped PDU is transmitted inside the frame payload when the frame is transmitted.
You can map one or more PDUs to a frame and one PDU to multiple frames.

Mapping PDUs to a frame requires setting pdu_properties with a list of PduProperties tuples.
Each tuple contains the following properties:

	PduProperties.pdu: Defines the sequence of values for the other two properties.

	PduProperties.start_bit: Defines the start bit of the PDU inside the frame.

	PduProperties.update_bit: Defines the update bit for the PDU inside the frame.
If the update bit is not used, set the value to -1.

Databases imported from FIBEX prior to version 3.0,
from DBC, NCD, or LDF files have a strong one-to-one relationship between frames and PDUs.
Every frame has exactly one PDU mapped, and every PDU is mapped to exactly one frame.

To unmap PDUs from a frame, set this property to an empty list.
A frame without mapped PDUs contains no signals.

For CAN and LIN, NI-XNET supports only a one-to-one relationship between frames and PDUs.
For those interfaces, advanced PDU configuration returns
raises an exception when calling Frame.check_config_status and when creating a session.
If you do not use advanced PDU configuration,
you can avoid using PDUs in the database API
and create signals and subframes directly on a frame.

	Type

	list of PduProperties

	
sigs

	Get a list of all Signal objects in the frame.

This property returns a list to all Signal objects in the frame,
including static and dynamic signals and the multiplexer signal.

	Type

	list of Signal

nixnet.database.lin_sched

	
class nixnet.database._lin_sched.LinSched(**kwargs)[source]

	Bases: nixnet.database._database_object.DatabaseObject

Database LIN schedule

	
check_config_status()[source]

	Check this LIN schedule’s configuration status.

By default, incorrectly configured schedules in the database are not returned from
Cluster.lin_schedules because they cannot be used in the bus communication.
You can change this behavior by setting Database.show_invalid_from_open to True.
When a schedule configuration status becomes invalid after the database is opened,
the schedule still is returned from Cluster.lin_schedules
even if Database.show_invalid_from_open is False.

	Raises

	XnetError – The LIN schedule is incorrectly configured.

	
clst

	Get the parent cluster in which the you created the schedule.

You cannot change the parent cluster after creating the schedule object.

	Type

	Cluster

	
comment

	Get or set a comment describing the schedule object.

A comment is a string containing up to 65535 characters.

	Type

	str

	
entries

	Collection of LinSchedEntry for this LIN schedule.

The position of each entry in this collection specifies the position in the schedule.
The database file and/or the order that you create entries at runtime determine the position.

	Type

	DbCollection

	
find(object_class, object_name)[source]

	Finds an object in the database.

This function finds a database object relative to this parent object.
This object may be a grandparent or great-grandparent.

If this object is a direct parent
(for example, Frame for Signal),
the object_name to search for can be short, and the search proceeds quickly.

If this object is not a direct parent
(for example, Database for Signal),
the object_name to search for must be qualified such
that it is unique within the scope of this object.

For example, if the class of this object is Cluster,
and object_class is Signal,
you can specify object_name of mySignal,
assuming that signal name is unique to the cluster.
If not, you must include the Frame name as a prefix,
such as myFrameA.mySignal.

NI-XNET supports the following subclasses of DatabaseObject as arguments for object_class:

	nixnet.database.Cluster

	nixnet.database.Frame

	nixnet.database.Pdu

	nixnet.database.Signal

	nixnet.database.SubFrame

	nixnet.database.Ecu

	nixnet.database.LinSched

	nixnet.database.LinSchedEntry

	Parameters

	
	object_class (DatabaseObject) – The class of the object to find.

	object_name (str) – The name of the object to find.

	Returns

	An instance of the found object.

	Raises

	
	ValueError – Unsupported value provided for argument object_class.

	XnetError – The object is not found.

	
name

	Get or set the name of the LIN schedule object.

Lowercase letters, uppercase letters, numbers,
and the underscore (_) are valid characters for the short name.
The space (), period (.),
and other special characters are not supported within the name.
The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
The short name is limited to 128 characters.

A schedule name must be unique for all schedules in a cluster.

	Type

	str

	
priority

	Get or set the priority of a run-once LIN schedule.

This priority applies when multiple run-once schedules are pending for execution.

The valid range for this property is 1-254.
Lower values correspond to higher priority.

This property applies only when the LinSched.run_mode property is ONCE.
Run-once schedule requests are queued for execution based on this property.
When all run-once schedules have completed,
the master returns to the previously running continuous schedule (or null).

Run-continuous schedule requests are not queued.
Only the most recent run-continuous schedule is used,
and it executes only if no run-once schedule is pending.
Therefore, a run-continuous schedule has an effective priority of 255,
but this property is not used.

Null schedule requests take effect immediately
and supercede any running run-once or run-continuous schedule.
The queue of pending run-once schedule requests
is flushed (emptied without running them).
Therefore, a null schedule has an effective priority of 0,
but this property is not used.

This property is not read from the database,
but is handled like a database property.
After opening the database, the default value is returned,
and you can change the property.
But similar to database properties,
you cannot change it after a session is created.

	Type

	int

	
run_mode

	Get or set how the master runs this schedule.

This property is not read from the database,
but is handled like a database property.
After opening the database, the default value is returned,
and you can change the property.
But similar to database properties,
you cannot change it after a session is created.

Usually, the default value for the run mode is CONTINUOUS.
If the schedule is configured to be a collision resolving table
for an event-triggered entry, the default is ONCE.

	Type

	LinSchedRunMode

nixnet.database.lin_sched_entry

	
class nixnet.database._lin_sched_entry.LinSchedEntry(**kwargs)[source]

	Bases: nixnet.database._database_object.DatabaseObject

Database LIN schedule entry

	
collision_res_sched

	Get or set a LIN schedule that resolves a collision for this event-triggered entry.

This property applies only when LinSchedEntry.type is EVENT_TRIGGERED.
When a collision occurs for the event-triggered entry in this schedule,
the master must switch to the collision resolving schedule to transfer the unconditional frames successfully.

	Raises

	XnetError – The property requires that LinSchedEntry.type be set to EVENT_TRIGGERED.

	Type

	LinSched

	
delay

	Get or set the time from the start of this entry (slot) to the start of the next entry.

The property uses a float value in seconds, with the fractional part used for milliseconds or microseconds.

	Type

	float

	
event_id

	Get or set the event-triggered entry identifier.

This identifier is unprotected (NI-XNET handles the protection).

This property applies only when LinSchedEntry.type is EVENT_TRIGGERED.
This identifier is for the event triggered entry itself,
and the first payload byte is for the protected identifier of the contained unconditional frame.

	Type

	int

	
frames

	Get or set a list of frames for this LIN schedule entry.

If LinSchedEntry.type is UNCONDITIONAL,
this list contains one frame,
which is the single unconditional frame for this entry.

If LinSchedEntry.type is SPORADIC,
this list contains one or more unconditional frames for this entry.
When multiple frames are pending for this entry,
the order in the list determines the priority to transmit.

If LinSchedEntry.type is EVENT_TRIGGERED,
this list contains one or more unconditional frames for this entry.
When multiple frames for this entry are pending to be sent by distinct slaves,
this property uses the LinSchedEntry.collision_res_sched to process the frames.

	Type

	list of Frame

	
name

	Get or set the name of the LIN schedule entry object.

Lowercase letters, uppercase letters, numbers,
and the underscore (_) are valid characters for the short name.
The space (), period (.), and other special characters are not supported within the name.
The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
The short name is limited to 128 characters.

A schedule entry name must be unique for all entries in the same schedule.

	Type

	str

	
name_unique_to_cluster

	Returns a LIN schedule entry name unique to the cluster that contains the object.

If the single name is not unique within the cluster,
the name is <schedule-name>.<schedule-entry-name>.

You can pass the name to the find function to retrieve the reference to the object,
while the single name is not guaranteed success in find
because it may be not unique in the cluster.

	Type

	str

	
nc_ff_data_bytes

	Get or set a list of 8 ints containing raw data for LIN node configuration.

Node configuration defines a set of services used to configure slave nodes in the cluster.
Every service has a specific set of parameters coded in this int list.
In the LDF, file those parameters are stored, for example, in the node (ECU) or the frame object.
NI-XNET LDF reader composes those parameters to the byte values like they are sent on the bus.
The LIN specification document describes the node configuration services
and the mapping of the parameters to the free format bytes.

The node configuration service is executed only if
LinSchedEntry.type is set to NODE_CONFIG_SERVICE.

Warning

This property is not saved to the FIBEX file.
If you write this property, save the database, and reopen it,
the node configuration services are not contained in the database.
Writing this property is useful only in the NI-XNET session immediately following.

	Type

	list of int

	
sched

	Returns the LIN schedule that uses this entry.

This LIN schedule is considered this entry’s parent.
You define the parent schedule when you create the entry object.
You cannot change it afterwards.

	Type

	LinSched

	
type

	Get or set the LIN schedule entry type.

All frames that contain a payload are UNCONDITIONAL.
The LIN schedule entry type determines the mechanism for transferring frames in this entry (slot).

	Type

	LinSchedEntryType

nixnet.database.pdu

	
class nixnet.database._pdu.Pdu(**kwargs)[source]

	Bases: nixnet.database._database_object.DatabaseObject

Database PDU

	
check_config_status()[source]

	Check this PDU’s configuration status.

By default, incorrectly configured PDUs in the database are not returned from
Cluster.pdus because they cannot be used in the bus communication.
You can change this behavior by setting Database.show_invalid_from_open to True.
When a PDU configuration status becomes invalid after the database is opened,
the PDU still is returned from Cluster.pdus
even if Database.show_invalid_from_open is False.

	Raises

	XnetError – The PDU is incorrectly configured.

	
cluster

	Get the parent cluster in which the PDU has been created.

You cannot change the parent cluster after creating the PDU object.

	Type

	Cluster

	
comment

	Get or set a comment describing the PDU object.

A comment is a string containing up to 65535 characters.

	Type

	str

	
find(object_class, object_name)[source]

	Finds an object in the database.

This function finds a database object relative to this parent object.
This object may be a grandparent or great-grandparent.

If this object is a direct parent
(for example, Frame for Signal),
the object_name to search for can be short, and the search proceeds quickly.

If this object is not a direct parent
(for example, Database for Signal),
the object_name to search for must be qualified such
that it is unique within the scope of this object.

For example, if the class of this object is Cluster,
and object_class is Signal,
you can specify object_name of mySignal,
assuming that signal name is unique to the cluster.
If not, you must include the Frame name as a prefix,
such as myFrameA.mySignal.

NI-XNET supports the following subclasses of DatabaseObject as arguments for object_class:

	nixnet.database.Cluster

	nixnet.database.Frame

	nixnet.database.Pdu

	nixnet.database.Signal

	nixnet.database.SubFrame

	nixnet.database.Ecu

	nixnet.database.LinSched

	nixnet.database.LinSchedEntry

	Parameters

	
	object_class (DatabaseObject) – The class of the object to find.

	object_name (str) – The name of the object to find.

	Returns

	An instance of the found object.

	Raises

	
	ValueError – Unsupported value provided for argument object_class.

	XnetError – The object is not found.

	
frms

	Returns a list of all frames to which the PDU is mapped.

A PDU is transmitted within the frames to which it is mapped.

To map a PDU to a frame,
use the Frame.pdu_properties property.
You can map one PDU to multiple frames.

	Type

	list of Frame

	
mux_data_mux_sig

	Data multiplexer signal in the PDU.

This property returns the reference to the data multiplexer signal.
If data multiplexer is not defined in the PDU, the property raises an XnetError exception.
Use the Pdu.mux_is_muxed property to determine whether the PDU contains a multiplexer signal.

You can create a data multiplexer signal by creating a signal
and then setting the Signal.mux_is_data_mux property to True.

A PDU can contain only one data multiplexer signal.

	Raises

	XnetError – The data multiplexer is not defined in the PDU.

	Type

	Signal

	
mux_is_muxed

	Returns True if the PDU contains a multiplexer signal.

PDUs containing a multiplexer contain subframes that allow
using bits of the payload for different information (signals),
depending on the value of the SubFrame.mux_value property.

	Type

	bool

	
mux_static_sigs

	Returns a list of static signals in the PDU.

Returns an list of signal objects in the PDU that do not depend
on value of the SubFrame.mux_value property.
Static signals are contained in every PDU transmitted,
as opposed to dynamic signals,
which are transmitted depending on the value of the SubFrame.mux_value property.

You can create static signals by specifying the PDU as the parent object.
You can create dynamic signals by specifying a subframe as the parent.

If the PDU is not multiplexed,
this property returns the same list as the Pdu.signals property.

	Type

	list of Signal

	
mux_subframes

	Collection of SubFrame objects in this PDU.

A subframe defines a group of signals transmitted using the same value of the SubFrame.mux_value.
Only one subframe is transmitted in the PDU at a time.

	Type

	DbCollection

	
name

	Get or set the name of the PDU object.

Lowercase letters, uppercase letters, numbers,
and the underscore (_) are valid characters for the short name.
The space (), period (.), and other special characters are not supported within the name.
The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
The short name is limited to 128 characters.

A PDU name must be unique for all PDUs in a cluster.

	Type

	str

	
payload_len

	Get or set the size of the PDU data in bytes.

This property is required.
If the property does not contain a valid value,
and you create an XNET session that uses this PDU,
the session returns an error.
To ensure that the property contains a valid value,
you can do one of the following:

	Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

	Set a value at runtime using this property.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case,
so you must set a valid value prior to creating a session.

	Type

	int

	
signals

	Collection of all Signal objects in this PDU.

The collection includes all signals in the PDU,
including static and dynamic signals and the multiplexer signal.

	Type

	DbCollection

nixnet.database.signal

	
class nixnet.database._signal.Signal(**kwargs)[source]

	Bases: nixnet.database._database_object.DatabaseObject

Database signal

	
byte_ordr

	Signal byte order in the frame payload.

This property defines how signal bytes are ordered in the frame payload when the frame is loaded in memory.

This property is required.
If the property does not contain a valid value,
and you create an XNET session that uses this signal,
the session returns an error.
To ensure that the property contains a valid value,
you can do one of the following:

	Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

	Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case,
so you must set a valid value prior to creating a session.

	Type

	SigByteOrdr

	
check_config_status()[source]

	Check this signal’s configuration status.

By default, incorrectly configured signals in the database are not returned from
Frame.sigs because they cannot be used in the bus communication.
You can change this behavior by setting Database.show_invalid_from_open to True.
When a signal configuration status becomes invalid after the database is opened,
the signal still is returned from Frame.sigs
even if Database.show_invalid_from_open is False.

Examples of invalid signal configuration:

	The signal is specified using bits outside the frame payload.

	The signal overlaps another signal in the frame.
For example,
two multiplexed signals with the same multiplexer value are using the same bit in the frame payload.

	The signal with integer data type (signed or unsigned) is specified with more than 52 bits.
This is not allowed due to internal limitation of the double data type that NI-XNET uses for signal values.

	The frame containing the signal is invalid
(for example, a CAN frame is defined with more than 8 payload bytes).

	Raises

	XnetError – The signal is incorrectly configured.

	
comment

	Get or set a comment describing the signal object.

A comment is a string containing up to 65535 characters.

	Type

	str

	
data_type

	Get or set the signal data type.

This property determines how the bits of a signal in a frame must be interpreted to build a value.

This property is required.
If the property does not contain a valid value,
and you create an XNET session that uses this signal,
the session returns an error.
To ensure that the property contains a valid value,
you can do one of the following:

	Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

	Set a value at runtime using this property.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case,
so you must set a valid value prior to creating a session.

	Type

	SigDataType

	
dbc_attributes

	Access the signal’s DBC attributes.

	Type

	DbcAttributeCollection

	
dbc_signal_value_table

	Access the signal’s DBC value table.

	Type

	DbcSignalValueTable

	
default

	Get or set the signal default value, specified as scaled floating-point units.

The initial value of this property comes from the database.
If the database does not provide a value, this property uses a default value of 0.0.

For all three signal output sessions,
this property is used when a frame transmits prior to writing to a session.
The Frame.default_payload property is used as the initial payload,
then the default value of each signal is mapped into that payload using this property,
and the result is used for the frame transmit.

For all three signal input sessions,
this property is returned for each signal when reading a session prior to receiving the first frame.

For more information about when this property is used,
refer to the discussion of read and write for each session mode.

	Type

	float

	
frame

	Returns the signal parent frame object.

The parent frame is defined when the signal object is created. You cannot change it afterwards.

	Type

	Frame

	
max

	Get or set the scaled signal value maximum.

Session read and write methods do not limit the signal value to a maximum value.
Use this database property to set the maximum value.

	Type

	float

	
min

	The scaled signal value minimum.

Session read and write methods do not limit the signal value to a minimum value.
Use this database property to set the minimum value.

	Type

	float

	
mux_is_data_mux

	Get or set whether this signal is a multiplexer signal.

A frame containing a multiplexer value is called a multiplexed frame.

A multiplexer defines an area within the frame to contain different information
(dynamic signals) depending on the multiplexer signal value.
Dynamic signals with a different multiplexer value
(defined in a different subframe)
can share bits in the frame payload.
The multiplexer signal value determines which dynamic signals are transmitted in the given frame.

To define dynamic signals in the frame transmitted with a given multiplexer value,
you first must create a subframe in this frame and set the multiplexer value in the subframe.
Then you must create dynamic signals using
SubFrame.dyn_signals to create child signals of this subframe.

Multiplexer signals may not overlap other static or dynamic signals in the frame.

Dynamic signals may overlap other dynamic signals when they have a different multiplexer value.

A frame may contain only one multiplexer signal.

The multiplexer signal is not scaled.
Scaling factor and offset do not apply.

In NI-CAN, the multiplexer signal was called mode channel.

	Type

	bool

	
mux_is_dynamic

	returns whether this signal is a dynamic signal.

Use this property to determine if a signal is static or dynamic.
Dynamic signals are transmitted in the frame when the multiplexer signal
in the frame has a given value specified in the subframe.
Use the Signal.mux_value property to determine with which
multiplexer value the dynamic signal is transmitted.

This property is read only.
To create a dynamic signal,
create the signal object as a child of a subframe instead of a frame.
The dynamic signal cannot be changed to a static signal afterwards.

In NI-CAN, dynamic signals were called mode-dependent signals.

	Type

	bool

	
mux_subfrm

	Returns the subframe parent.

This property is valid only for dynamic signals that have a subframe parent.
For static signals or the multiplexer signal,
this property raises an XnetError exception.

	Raises

	XnetError – The signal does not have a subframe parent.

	Type

	SubFrame

	
mux_value

	Returns the multiplexer value of a dynamic signal.

The multiplexer value applies to dynamic signals only
(when Signal.mux_is_dynamic is True).
This property defines which multiplexer value is transmitted in the
multiplexer signal when this dynamic signal is transmitted in the frame.

The multiplexer value is determined in the subframe.
All dynamic signals that are children of the same subframe object use the same multiplexer value.

Dynamic signals with the same multiplexer value may not overlap each other,
the multiplexer signal, or static signals.

	Type

	int

	
name

	Get or set a string identifying a signal object.

Lowercase letters, uppercase letters, numbers,
and the underscore (_) are valid characters for the short name.
The space (), period (.), and other special characters are not supported within the name.
The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
The short name is limited to 128 characters.

A signal name must be unique for all signals in a frame.

This short name does not include qualifiers to ensure that it is unique,
such as the database, cluster, and frame name.
It is for display purposes.

	Type

	str

	
name_unique_to_cluster

	Returns a signal name unique to the cluster that contains the signal.

If the single name is not unique within the cluster,
the name is <frame-name>.<signal-name>.

You can pass the name to the find function to retrieve the reference to the object,
while the single name is not guaranteed success in find because it may be not unique in the cluster.

	Type

	str

	
num_bits

	The number of bits the signal uses in the frame payload.

IEEE Float numbers are limited to 32 bit or 64 bit.

Integer (signed and unsigned) numbers are limited to 1-52 bits.
NI-XNET converts all integers to doubles (64-bit IEEE Float).
Integer numbers with more than 52 bits
(the size of the mantissa in a 64-bit IEEE Float)
cannot be converted exactly to double, and vice versa; therefore,
NI-XNET does not support this.

This property is required.
If the property does not contain a valid value,
and you create an XNET session that uses this signal,
the session returns an error.
To ensure that the property contains a valid value,
you can do one of the following:

	Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

	Set a value at runtime using this property.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case,
so you must set a valid value prior to creating a session.

	Type

	int

	
pdu

	Returns to the signal’s parent PDU.

The parent PDU is defined when the signal object is created.
You cannot change it afterwards.

	Type

	Pdu

	
scale_fac

	Get or set factor a for linear scaling ax+b.

Linear scaling is applied to all signals with the IEEE Float data type,
unsigned and signed.
For identical scaling 1.0x+0.0,
NI-XNET optimized scaling routines do not perform the multiplication and addition

	Type

	float

	
scale_off

	Get or set offset b for linear scaling ax+b.

Linear scaling is applied to all signals with the IEEE Float data type,
unsigned and signed.
For identical scaling 1.0x+0.0,
NI-XNET optimized scaling routines do not perform the multiplication and addition

	Type

	float

	
start_bit

	Get or set the least significant signal bit position in the frame payload.

This property determines the signal starting point in the frame.
For the integer data type (signed and unsigned),
it means the binary signal representation least significant bit position.
For IEEE Float signals, it means the mantissa least significant bit.

The NI-XNET Database Editor shows a graphical overview of the frame.
It enumerates the frame bytes on the left and the byte bits on top.
The bit number in the frame is calculated as byte number x 8 + bit number.
The maximum bit number in a CAN or LIN frame is 63 (7 x 8 + 7);
the maximum bit number in a FlexRay frame is 2031 (253 x 8 + 7).

[image: ../../_images/frameoverviewsignalstartingbit12.gif]
Frame Overview in the NI-XNET Database Editor with a Signal Starting in Bit 12

This property is required.
If the property does not contain a valid value,
and you create an XNET session that uses this signal,
the session returns an error.
To ensure that the property contains a valid value,
you can do one of the following:

	Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

	Set a value at runtime using this property.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case,
so you must set a valid value prior to creating a session.

	Type

	int

	
unit

	Get or set the signal value unit.

NI-XNET does not use the unit internally for calculations.
You can use the string to display the signal value along with the unit.

	Type

	str

nixnet.database.subframe

	
class nixnet.database._subframe.SubFrame(**kwargs)[source]

	Bases: nixnet.database._database_object.DatabaseObject

Database subframe

	
check_config_status()[source]

	Check this subframe’s configuration status.

By default, incorrectly configured subframes in the database are not returned from
Frame.mux_subframes because they cannot be used in the bus communication.
You can change this behavior by setting Database.show_invalid_from_open to True.
When a subframe configuration status becomes invalid after the database is opened,
the subframe still is returned from Frame.mux_subframes
even if Database.show_invalid_from_open is False.

	Raises

	XnetError – The subframe is incorrectly configured.

	
dyn_signals

	Returns a collection of dynamic Signal objects in the subframe.

Those signals are transmitted when the multiplexer signal
in the frame has the multiplexer value defined in the subframe.

	Type

	DbCollection

	
find(object_class, object_name)[source]

	Finds an object in the database.

This function finds a database object relative to this parent object.
This object may be a grandparent or great-grandparent.

If this object is a direct parent
(for example, Frame for Signal),
the object_name to search for can be short, and the search proceeds quickly.

If this object is not a direct parent
(for example, Database for Signal),
the object_name to search for must be qualified such
that it is unique within the scope of this object.

For example, if the class of this object is Cluster,
and object_class is Signal,
you can specify object_name of mySignal,
assuming that signal name is unique to the cluster.
If not, you must include the Frame name as a prefix,
such as myFrameA.mySignal.

NI-XNET supports the following subclasses of DatabaseObject as arguments for object_class:

	nixnet.database.Cluster

	nixnet.database.Frame

	nixnet.database.Pdu

	nixnet.database.Signal

	nixnet.database.SubFrame

	nixnet.database.Ecu

	nixnet.database.LinSched

	nixnet.database.LinSchedEntry

	Parameters

	
	object_class (DatabaseObject) – The class of the object to find.

	object_name (str) – The name of the object to find.

	Returns

	An instance of the found object.

	Raises

	
	ValueError – Unsupported value provided for argument object_class.

	XnetError – The object is not found.

	
frm

	Returns the reference to the parent frame.

The parent frame is defined when the subframe is created,
and you cannot change it afterwards.

	Type

	Frame

	
mux_value

	Get or set the multiplexer value for this subframe.

This property specifies the multiplexer signal value used when the
dynamic signals in this subframe are transmitted in the frame.
Only one subframe is transmitted at a time in the frame.

There also is a multiplexer value for a signal object as a read-only property.
It reflects the value set on the parent subframe object.

This property is required. If the property does not contain a valid value,
and you create an XNET session that uses this subframe,
the session returns an error.
To ensure that the property contains a valid value,
you can do one of the following:

	Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

	Set a value at runtime using this property.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case,
so you must set a valid value prior to creating a session.

	Type

	int

	
name

	Get or set the name of the subframe object.

Lowercase letters, uppercase letters, numbers,
and the underscore (_) are valid characters for the short name.
The space (), period (.), and other special characters are not supported within the name.
The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
The short name is limited to 128 characters.

A subframe name must be unique for all subframes in a frame.

This short name does not include qualifiers to ensure that it is unique,
such as the database, cluster, and frame name. It is for display purposes.

	Type

	str

	
name_unique_to_cluster

	Returns a subframe name unique to the cluster that contains the subframe.

If the single name is not unique within the cluster, the name is <frame-name>.<subframe-name>.

You can pass the name to the find function to retrieve the reference to the object,
while the single name is not guaranteed success in find
because it may be not unique in the cluster.

	Type

	str

	
pdu

	Returns the subframe’s parent PDU.

This property returns the reference to the subframe’s parent PDU.
The parent PDU is defined when the subframe object is created.
You cannot change it afterwards.

	Type

	Pdu

nixnet.database.collection

	
class nixnet.database._collection.DbCollection(handle, db_type, prop_id, factory)[source]

	Bases: collections.abc.Mapping

Collection of database objects.

	
add(name)[source]

	Add a new database object to the collection.

	Parameters

	name (str) – Name of the new database object.

	Returns

	An instance of the new database object.

	Return type

	DatabaseObject

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items()[source]

	Return all database object names and objects in the collection.

	Yields

	An iterator to tuple pairs of database object names and objects in the collection

	
keys()[source]

	Return database object names in the collection.

	Yields

	An iterator to database object names in the collection.

	
values()[source]

	Return database objects in the collection.

	Yields

	An iterator to database objects in the collection.

nixnet.database.dbc_attributes

	
class nixnet.database._dbc_attributes.DbcAttributeCollection(handle)[source]

	Bases: collections.abc.Mapping

Collection for accessing DBC attributes.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items()[source]

	Return all attribute names and values in the collection.

	Yields

	An iterator to tuple pairs of attribute names and values in the collection.

	
keys()[source]

	Return all attribute names in the collection.

	Yields

	An iterator to all attribute names in the collection.

	
values()[source]

	Return all attribute values in the collection.

	Yields

	An iterator to all attribute values in the collection.

nixnet.database.dbc_signal_value_table

	
class nixnet.database._dbc_signal_value_table.DbcSignalValueTable(handle)[source]

	Bases: collections.abc.Mapping

Collection for accessing a DBC signal value table.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items()[source]

	Return all value descriptions and values in the collection.

	Yields

	An iterator to tuple pairs of value descriptions and values in the collection.

	
keys()[source]

	Return all value descriptions in the collection.

	Yields

	An iterator to all value descriptions in the collection.

	
values()[source]

	Return all values in the collection.

	Yields

	An iterator to all values in the collection.

nixnet.constants

	
class nixnet._enums.AppProtocol[source]

	Bases: enum.Enum

Application Protocol.

	Values:

	
	NONE:

	The default application protocol.

	J1939:

	Indicates J1939 clusters. The value enables the following features:

	Sending/receiving long frames as the SAE J1939 specification specifies,
using the J1939 transport protocol.

	Using a special notation for J1939 identifiers.

	Using J1939 address claiming.

	
class nixnet._enums.BlinkMode[source]

	Bases: enum.Enum

Interface blink mode.

	Values:

	
	DISABLE:

	Disable blinking for identification. This option turns off both
LEDs for the port.

	ENABLE:

	Enable blinking for identification. Both LEDs of the interface’s
physical port turn on and off. The hardware blinks the LEDs
automatically until you disable.

	
class nixnet._enums.CanCommState[source]

	Bases: enum.Enum

CAN Comm State.

	Values:

	
	ERROR_ACTIVE:

	This state reflects normal communication, with few errors detected.
The CAN interface remains in this state as long as receive error
counter and transmit error counter are both below 128.

	ERROR_PASSIVE:

	If either the receive error counter or transmit error counter
increment above 127, the CAN interface transitions into this state.
Although communication proceeds, the CAN device generally is assumed
to have problems with receiving frames.

When a CAN interface is in error passive state, acknowledgement
errors do not increment the transmit error counter. Therefore, if
the CAN interface transmits a frame with no other device (ECU)
connected, it eventually enters error passive state due to
retransmissions, but does not enter bus off state.

	BUS_OFF:

	If the transmit error counter increments above 255, the CAN
interface transitions into this state. Communication immediately
stops under the assumption that the CAN interface must be isolated
from other devices.

When a CAN interface transitions to the bus off state, communication
stops for the interface. All NI-XNET sessions for the interface no
longer receive or transmit frame values. To restart the CAN
interface and all its sessions, call
nixnet._session.base.SessionBase.start.

	INIT:

	This is the CAN interface initial state on power-up. The interface
is essentially off, in that it is not attempting to communicate with
other nodes (ECUs).

When the start trigger occurs for the CAN interface, it transitions
from the Init state to the Error Active state. When the interface
stops due to a call to nixnet._session.base.SessionBase.stop.,
the CAN interface transitions from either Error Active or Error Passive
to the Init state. When the interface stops due to the Bus Off state,
it remains in that state until you restart.

	
class nixnet._enums.CanFdIsoMode[source]

	Bases: enum.Enum

CAN FD ISO MODE.

	Values:

	
	ISO:

	ISO CAN FD standard (ISO standard 11898-1:2015)

In ISO CAN FD mode, for every transmitted frame, you can specify in
the database or frame header whether a frame must be sent in CAN
2.0, CAN FD, or CAN FD+BRS mode. In the frame type field of the
frame header, received frames indicate whether they have been sent
with CAN 2.0, CAN FD, or CAN FD+BRS. You cannot use the
Interface:CAN:Transmit I/O Mode property in ISO CAN FD mode, as the
frame defines the transmit mode.

	NON_ISO:

	non-ISO CAN FD standard (Bosch CAN FD 1.0 specification)

In Non-ISO CAN FD mode, CAN data frames are received at CAN
data typed frames, which is either CAN 2.0, CAN FD, or CAN FD+BRS,
but you cannot distinguish the standard in which the frame has been
transmitted.

	ISO_LEGACY:

	You also can set the mode to Legacy ISO mode. In this mode,
the behavior is the same as in Non-ISO CAN FD mode
(Interface:CAN:Transmit I/O Mode is working, and received frames
have the CAN data type). But the interface is working in ISO CAN FD
mode, so you can communicate with other ISO CAN FD devices. Use this
mode only for compatibility with existing applications.

	
class nixnet._enums.CanIoMode[source]

	Bases: enum.Enum

CAN I/O Mode.

	Values:

	
	CAN:

	This is the default CAN 2.0 A/B standard I/O mode as defined in ISO 11898-1:2003.
A fixed baud rate is used for transfer,
and the payload length is limited to 8 bytes.

	CAN_FD:

	This is the CAN FD mode as specified in the CAN with Flexible Data-Rate specification,
version 1.0. Payload lengths up to 64 are allowed,
but they are transmitted at a single fixed baud rate
(defined by Cluster.can_fd_baud_rate or Interface.can_fd_baud_rate).

	CAN_FD_BRS:

	This is the CAN FD as specified in the CAN with Flexible Data-Rate specification,
version 1.0, with the optional Baud Rate Switching enabled.
The same payload lengths as CAN FD mode are allowed; additionally,
the data portion of the CAN frame is transferred at a different (higher) baud rate
(defined by Cluster.can_fd_baud_rate or Interface.can_fd_baud_rate).

	
class nixnet._enums.CanLastErr[source]

	Bases: enum.Enum

CAN Last Error

	Values:

	
	NONE:

	The last receive or transmit was successful.

	STUFF:

	More than 5 equal bits have occurred in sequence, which the CAN
specification does not allow.

	FORM:

	A fixed format part of the received frame used the wrong format.

	ACK:

	Another node (ECU) did not acknowledge the frame transmit.

If you call the appropriate write function and do not have a
cable connected, or the cable is connected to a node that is not
communicating, you see this error repeatedly. The CAN communication
state eventually transitions to Error Passive, and the frame
transmit retries indefinitely.

	BIT1:

	During a frame transmit (with the exception of the arbitration ID
field), the interface wanted to send a recessive bit (logical 1),
but the monitored bus value was dominant (logical 0).

	BIT0:

	During a frame transmit (with the exception of the arbitration ID
field), the interface wanted to send a dominant bit (logical 0),
but the monitored bus value was recessive (logical 1).

	CRC:

	The CRC contained within a received frame does not match the CRC
calculated for the incoming bits.

	
class nixnet._enums.CanPendTxOrder[source]

	Bases: enum.Enum

Can Pending Transmit Order.

	Values:

	
	AS_SUBMITTED:

	Frames are transmitted in the order that they were submitted into
the queue. There is no reordering of any frames, and a higher
priority frame may be delayed due to the transmission or
retransmission of a previously submitted frame. However, this mode
has the highest performance.

	BY_IDENTIFIER:

	Frames with the highest priority identifier (lower CAN ID value)
transmit first. The frames are stored in a priority queue sorted by
ID. If a frame currently being transmitted requires retransmission
(for example, it lost arbitration or failed with a bus error), and
a higher priority frame is queued in the meantime, the lower
priority frame is not immediately retried, but the higher priority
frame is transmitted instead. In this mode, you can emulate
multiple ECUs and still see a behavior similar to a real bus in
that the highest priority message is transmitted on the bus. This
mode may be slower in performance (possible delays between
transmissions as the queue is re-evaluated), and lower priority
messages may be delayed indefinitely due to frequent high-priority
messages.

	
class nixnet._enums.CanTcvrCap[source]

	Bases: enum.Enum

CAN bus phusical transceivers support.

	Values:

	
	HS:

	High-Speed / Flexible Data-Rate (HS/FD).

	LS:

	Low-Speed / Fault-Tolerant (LS//FT)

	XS:

	XS (HS//FD, LS/FT, SW, or External)

	XSHSLS:

	XS (HS//FD, LS/FT)

	
class nixnet._enums.CanTcvrState[source]

	Bases: enum.Enum

CAN Transceiver State.

	Values:

	
	NORMAL:

	This state sets the transceiver to normal communication mode. If
the transceiver is in the Sleep mode, this performs a local wakeup
of the transceiver and CAN controller chip.

	SLEEP:

	This state sets the transceiver and CAN controller chip to Sleep
(or standby) mode. You can set the interface to Sleep mode only
while the interface is communicating. If the interface has not been
started, setting the transceiver to Sleep mode returns an error.

Before going to sleep, all pending transmissions are transmitted
onto the CAN bus. Once all pending frames have been transmitted,
the interface and transceiver go into Sleep (or standby) mode. Once
the interface enters Sleep mode, further communication is not
possible until a wakeup occurs. The transceiver and CAN controller
wake from Sleep mode when either a local wakeup or remote wakeup
occurs.

A local wakeup occurs when the application sets the transceiver
state to either Normal or Single Wire Wakeup.

A remote wakeup occurs when a remote node transmits a CAN frame
(referred to as the wakeup frame). The wakeup frame wakes up the
NI-XNET interface transceiver and CAN controller chip. The CAN
controller chip does not receive or acknowledge the wakeup frame.
After detecting the wakeup frame and idle bus, the CAN interface
enters Normal mode.

When the local or remote wakeup occurs, frame transmissions resume
from the point at which the original Sleep mode was set.

	SW_WAKEUP:

	For a remote wakeup to occur for Single Wire transceivers, the node
that transmits the wakeup frame first must place the network into
the Single Wire Wakeup Transmission mode by asserting a higher
voltage.

This state sets a Single Wire transceiver into the Single Wire
Wakeup Transmission mode, which forces the Single Wire transceiver
to drive a higher voltage level on the network to wake up all
sleeping nodes. Other than this higher voltage, this mode is
similar to Normal mode. CAN frames can be received and transmitted
normally.

If you are not using a Single Wire transceiver, setting this state
returns an error. If your current mode is Single Wire High-Speed,
setting this mode returns an error because you are not allowed to
wake up the bus in high-speed mode.

The application controls the timing of how long the wakeup voltage
is driven. The application typically changes to Single Wire Wakeup
mode, transmits a single wakeup frame, and then returns to Normal
mode.

	SW_HIGH_SPEED:

	This state sets a Single Wire transceiver into Single Wire
High-Speed Communication mode. If you are not using a Single Wire
transceiver, setting this state returns an error.

Single Wire High-Speed Communication mode disables the
transceiver’s internal waveshaping function, allowing the SAE J2411
High-Speed baud rate of 83.333 kbytes/s to be used. The
disadvantage versus Single Wire Normal Communication mode, which
allows only the SAE J2411 baud rate of 33.333 kbytes/s, is degraded
EMC performance. Other than the disabled waveshaping, this mode is
similar to Normal mode. CAN frames can be received and transmitted
normally.

This mode has no relationship to High-Speed transceivers. It is
merely a higher speed mode of the Single Wire transceiver,
typically used to download data when the onboard network is
attached to an offboard tester ECU.

The Single Wire transceiver does not support use of this mode in
conjunction with Sleep mode. For example, a remote wakeup cannot
transition from sleep to this Single Wire High-Speed mode.
Therefore, setting the mode to Sleep from Single Wire High-Speed
mode returns an error.

	
class nixnet._enums.CanTcvrType[source]

	Bases: enum.Enum

CAN Transceiver Type

	Values:

	
	High-Speed (HS):

	This configuration enables the High-Speed transceiver. This transceiver
supports baud rates of 40 kbaud to 1 Mbaud. When using a High-Speed
transceiver, you also can communicate with a CAN FD bus. Refer to NI-XNET
Hardware Overview to determine which CAN FD baud rates are supported.

	Low-Speed/Fault-Tolerant (LS):

	This configuration enables the Low-Speed/Fault-Tolerant
transceiver. This transceiver supports baud rates of 40-125 kbaud.

	Single Wire (SW):

	This configuration enables the Single Wire transceiver. This
transceiver supports baud rates of 33.333 kbaud and 83.333 kbaud.

	External (EXT):

	This configuration allows you to use an external transceiver to
connect to your CAN bus. Refer to the XNET Session
Interface:CAN:External Transceiver Config property for more
information.

	Disconnect (DISC):

	This configuration allows you to disconnect the CAN controller chip
from the connector. You can use this value when you physically
change the external transceiver.

	
class nixnet._enums.CanTerm[source]

	Bases: enum.Enum

CAN Termination.

Different CAN hardware has different termination requirements, and the OFF
and ON values have different meanings.

High-Speed CAN

High-Speed CAN networks are typically terminated on the bus itself instead
of within a node. However, NI-XNET allows you to configure termination
within the node to simplify testing. If your bus already has the correct
amount of termination, leave this property in the default state of Off.
However, if you require termination, set this property to On.

	Values:

	
	OFF:

	Termination is disabled.

	On:

	Termination (120 Ohms) is enabled.

Low-Speed/Fault-Tolerant CAN

Every node on a Low-Speed CAN network requires termination for each CAN
data line (CAN_H and CAN_L). This configuration allows the
Low-Speed/Fault-Tolerant CAN port to provide fault detection and recovery.
Refer to Termination for more information about low-speed termination. In
general, if the existing network has an overall network termination of 125 Ohms
or less, turn on termination to enable the 4.99 kOhms option. Otherwise, you
should select the default 1.11 kOhms option.

	Values:

	
	OFF:

	Termination is set to 1.11 kOhms.

	ON:

	Termination is set to 4.99 kOhms.

Single-Wire CAN

The ISO standard requires Single-Wire transceivers to have a 9.09 kOhms
resistor, and no additional configuration is supported.

	
class nixnet._enums.CanTermCap[source]

	Bases: enum.Enum

CAN Termination Capability.

	Values:

	NO
YES

	
class nixnet._enums.ClstFlexRaySampClkPer[source]

	Bases: enum.Enum

An enumeration.

	
class nixnet._enums.Condition[source]

	Bases: enum.Enum

An enumeration.

	
class nixnet._enums.CreateSessionMode[source]

	Bases: enum.Enum

Create Session Mode.

The session mode specifies the data type (signals or frames), direction
(input or output), and how data is transferred between your application and
the network.

	Values:

	
	SIGNAL_IN_SINGLE_POINT:

	Reads the most recent value received for each signal. This mode
typically is used for control or simulation applications, such as
Hardware In the Loop (HIL).

	SIGNAL_IN_WAVEFORM:

	Using the time when the signal frame is received, resamples the
signal data to a waveform with a fixed sample rate. This mode
typically is used for synchronizing XNET data with DAQmx
analog/digital input channels.

	SIGNAL_IN_XY:

	For each frame received, provides its signals as a value/timestamp
pair. This is the recommended mode for reading a sequence of all
signal values.

	SIGNAL_OUT_SINGLE_POINT:

	Writes signal values for the next frame transmit. This mode
typically is used for control or simulation applications, such as
Hardware In the Loop (HIL).

	SIGNAL_OUT_WAVEFORM:

	Using the time when the signal frame is transmitted according to the
database, resamples the signal data from a waveform with a fixed
sample rate. This mode typically is used for synchronizing XNET data
with DAQmx analog/digital output channels.

	SIGNAL_OUT_XY:

	Provides a sequence of signal values for transmit using each frame’s
timing as the database specifies. This is the recommended mode for
writing a sequence of all signal values.

	FRAME_IN_STREAM:

	Reads all frames received from the network using a single stream.
This mode typically is used for analyzing and/or logging all frame
traffic in the network.

	FRAME_IN_QUEUED:

	Reads data from a dedicated queue per frame. This mode enables your
application to read a sequence of data specific to a frame (for
example, CAN identifier).

	FRAME_IN_SINGLE_POINT:

	Reads the most recent value received for each frame. This mode
typically is used for control or simulation applications that
require lower level access to frames (not signals).

	FRAME_OUT_STREAM:

	Transmits an arbitrary sequence of frame values using a single
stream. The values are not limited to a single frame in the
database, but can transmit any frame.

	FRAME_OUT_QUEUED:

	Provides a sequence of values for a single frame, for transmit using
that frame’s timing as the database specifies.

	FRAME_OUT_SINGLE_POINT:

	Writes frame values for the next transmit. This mode typically is
used for control or simulation applications that require lower level
access to frames (not signals).

	SIGNAL_CONVERSION_SINGLE_POINT:

	This mode does not use any hardware. It is used to convert data
between the signal representation and frame representation.

	
class nixnet._enums.DevForm[source]

	Bases: enum.Enum

Device physical form factor.

	Values:

	C_SERIES
PCI
PCIE
PXI
PXIE
USB

	
class nixnet._enums.DongleId[source]

	Bases: enum.Enum

Dongle ID

	Values:

	
	HSCAN:

	CAN High Speed

	XSCAN:

	CAN Software-Selectable

	LIN:

	LIN

	DONGLE_LESS:

	Dongle-Less Design

	
class nixnet._enums.DongleState[source]

	Bases: enum.Enum

Dongle State.

	Values:

	
	NO_DONGLE_NO_EXT_POWER:

	No dongle, no external power.

	NO_DONGLE_EXT_POWER:

	No dongle, has external power.

	DONGLE_NO_EXT_POWER:

	Has dongle, no external power.

	READY:

	Ready.

	BUSY:

	Busy.

	COMM_ERROR:

	Comm Error.

	OVERCURRENT:

	Overcurrent.

	
class nixnet._enums.Err[source]

	Bases: enum.Enum

Error codes returned by NI-XNET.

	
class nixnet._enums.FlexRayPocState[source]

	Bases: enum.Enum

An enumeration.

	
class nixnet._enums.FlexRaySleep[source]

	Bases: enum.Enum

An enumeration.

	
class nixnet._enums.FlexRayTerm[source]

	Bases: enum.Enum

An enumeration.

	
class nixnet._enums.FrameType[source]

	Bases: enum.Enum

Frame format type.

	
class nixnet._enums.FrmCanTiming[source]

	Bases: enum.Enum

CAN Frame Timing

	Values:

	
	CYCLIC_DATA:

	The transmitting ECU transmits the CAN data frame in a cyclic (periodic) manner.
The Frame.can_tx_time property defines the time between cycles.
The transmitting ECU ignores CAN remote frames received for this frame.

	EVENT_DATA:

	The transmitting ECU transmits the CAN data frame in an event-driven manner.
The Frame.can_tx_time property defines the minimum interval.
For NI-XNET, the event occurs when you write data to a session.
The transmitting ECU ignores CAN remote frames received for this frame.

	CYCLIC_REMOTE:

	The receiving ECU transmits the CAN remote frame in a cyclic (periodic) manner.
The Frame.can_tx_time property defines the time between cycles.
The transmitting ECU responds to each CAN remote frame by transmitting the associated CAN data frame.

	EVENT_REMOTE:

	The receiving ECU transmits the CAN remote frame in an event-driven manner.
The Frame.can_tx_time property defines the minimum interval.
For NI-XNET, the event occurs when you write a frame to a session.
The transmitting ECU responds to each CAN remote frame by transmitting the associated CAN data frame.

	CYCLIC_EVENT:

	This timing type is a combination of the cyclic and event timing.
The frame is transmitted when you write to a session,
but also periodically sending the last recent values written.
The Frame.can_tx_time property defines the cycle period.
There is no minimum interval time defined in this mode,
so be careful not to write too frequently to avoid creating a high busload.

	
class nixnet._enums.FrmFlexRayChAssign[source]

	Bases: enum.Enum

An enumeration.

	
class nixnet._enums.FrmFlexRayTiming[source]

	Bases: enum.Enum

An enumeration.

	
class nixnet._enums.FrmLinChecksum[source]

	Bases: enum.Enum

LIN Frame Transmitted Checksum

	Values:

	
	CLASSIC:

	Classic checksum.

	ENHANCED:

	Enhanced checksum.

	
class nixnet._enums.GetDbcAttributeMode[source]

	Bases: enum.Enum

An enumeration.

	
class nixnet._enums.LinCommState[source]

	Bases: enum.Enum

LIN Comm State

	Values:

	
	IDLE:

	This is the LIN interface initial state on power-up. The
interface is essentially off, in that it is not attempting to
communicate with other nodes (ECUs). When the start trigger
occurs for the LIN interface, it transitions from the Idle
state to the Active state. When the interface stops due to a
call to XNET Stop, the LIN interface transitions from either
Active or Inactive to the Idle state.

	ACTIVE:

	This state reflects normal communication. The LIN interface remains
in this state as long as bus activity is detected (frame headers
received or transmitted).

	INACTIVE:

	This state indicates that no bus activity has been detected in the
past four seconds.

Regardless of whether the interface acts as a master or slave, it
transitions to this state after four seconds of bus inactivity. As
soon as bus activity is detected (break or frame header), the
interface transitions to the Active state.

The LIN interface does not go to sleep automatically when it
transitions to Inactive. To place the interface into sleep mode,
set the XNET Session Interface:LIN:Sleep property when you detect
the Inactive state.

	
class nixnet._enums.LinDiagnosticSchedule[source]

	Bases: enum.Enum

LIN Diagnostic Schedule

	Values:

	
	NULL:

	The master does not execute any diagnostic schedule. No master
request or slave response headers are transmitted on the LIN.

	MASTER_REQ:

	The master executes a diagnostic master request schedule
(transmits a master request header onto the LIN) if it can.
First, a master request schedule must be defined for the LIN
cluster in the imported or in-memory database. Otherwise, error
‘nixnet._enums.Err.DIAGNOSTIC_SCHEDULE_NOT_DEFINED’ is returned
when attempting to set this value. Second, the master must have
a frame output queued session created for the master request frame,
and there must be one or more new master request frames pending in
the queue. If no new frames are pending in the output queue, no
master request header is transmitted. This allows the timing of
master request header transmission to be controlled by the timing
of master request frame writes to the output queue.

If there are no normal schedules pending, the master is effectively
in diagnostics-only mode, and master request headers are transmitted
at a rate determined by the slot delay defined for the master request
frame slot in the master request schedule or the
nixnet._session.intf.Interface.lin_diag_s_tmin property time, whichever
is greater, and the state of the master request frame output queue
as described above.

If there are normal schedules pending, the master is effectively in
diagnostics-interleaved mode, and a master request header transmission
is inserted between each complete execution of a run-once or
run-continuous schedule, as long as the
nixnet._session.intf.Interface.lin_diag_s_tmin property time has
been met, and there are one or more new master request frames pending
in the master request frame output queue.

	SLAVE_RESP:

	The master executes a diagnostic slave response schedule
(transmits a slave response header onto the LIN) if it is able to.
A slave response schedule must be defined for the LIN cluster in the
imported or in-memory database. Otherwise, error
‘nixnet._enums.Err.DIAGNOSTIC_SCHEDULE_NOT_DEFINED’ is returned when
attempting to set this value.

If there are no normal schedules pending, the master is effectively
in diagnostics-only mode, and slave response headers are transmitted
at the rate of the slot delay defined for the slave response frame
slot in the slave response schedule. The addressed slave may or
may not respond to each header, depending on its specified
P2min and STmin timings.

If there are normal schedules pending, the master is effectively in
diagnostics-interleaved mode, and a slave response header transmission
is inserted between each complete execution of a run-once or run-continuous
schedule. Here again, the addressed slave may or may not respond to each
header, depending on its specified P2min and STmin timings.

	
class nixnet._enums.LinLastErr[source]

	Bases: enum.Enum

LIN Comm Last Error Code

	Values:

	
	NONE:

	No bus error has occurred since the previous communication state read.

	UNKNOWN_ID:

	Received a frame identifier that is not valid.

	FORM:

	The form of a received frame is incorrect. For example, the
database specifies 8 bytes of payload, but you receive only 4
bytes.

	FRAMING:

	The byte framing is incorrect (for example, a missing stop bit).

	READBACK:

	The interface transmitted a byte, but the value read back from the
transceiver was different. This often is caused by a cabling
problem, such as noise.

	TIMEOUT:

	Receiving the frame took longer than the LIN-specified timeout.

	CRC:

	The received checksum was different than the expected checksum.

	
class nixnet._enums.LinProtocolVer[source]

	Bases: enum.Enum

LIN Protocol Version

	Values:

	
	VER_1_2:

	Version 1.2

	VER_1_3:

	Version 1.3

	VER_2_0:

	Version 2.0

	VER_2_1:

	Version 2.1

	VER_2_2:

	Version 2.2

	
class nixnet._enums.LinSchedEntryType[source]

	Bases: enum.Enum

LIN Schedule Entry Type.

	Values:

	
	UNCONDITIONAL:

	A single frame transfers in this slot.

	SPORADIC:

	The master transmits in this slot.
The master can select from multiple frames to transmit.
Only updated frames are transmitted.
When more than one frame is updated,
the master decides by priority which frame to send.
The other updated frame remains pending
and can be sent when this schedule entry is processed the following time.
The order of unconditional frames in LinSchedEntry.frames
(the first frame has the highest priority) determines the frame priority.

	EVENT_TRIGGERED:

	Multiple slaves can transmit an unconditional frame in this slot.
The slave transmits the frame only if at least one frame signal has been updated.
When a collision occurs (multiple slaves try to transmit in the same slot),
this is detected and resolved using a different schedule
specified in the LinSchedEntry.collision_res_sched property.
The resolving schedule runs once,
starting in the subsequent slot after the collision,
and automatically returns to the previous schedule
at the subsequent position where the collision occurred.

	NODE_CONFIG_SERVICE:

	The schedule entry contains a node configuration service.
The node configuration service is defined as raw data bytes
in LinSchedEntry.nc_ff_data_bytes.

	
class nixnet._enums.LinSchedRunMode[source]

	Bases: enum.Enum

LIN Schedule Run Mode.

	Values:

	
	CONTINUOUS:

	The master runs the schedule continuously.
When the last entry executes,
the schedule starts again with the first entry.

	ONCE:

	The master runs the schedule once (all entries),
then returns to the previously running continuous schedule (or NULL).
If requests are submitted for multiple run-once schedules,
each run-once executes in succession based on its LinSched.priority,
then the master returns to the continuous schedule (or NULL).

	NULL:

	All communication stops immediately.
A schedule with this run mode is called a null schedule.

	
class nixnet._enums.LinSleep[source]

	Bases: enum.Enum

LIN interface sleep/awake state

	Values:

	
	REMOTE_SLEEP:

	Set interface to sleep locally and transmit sleep requests to
remote node.

	REMOTE_WAKE:

	Set interface to awake locally and transmit wakeup requests to
remote nodes.

	LOCAL_SLEEP:

	Set interface to sleep locally and not to interact with the network.

	LOCAL_WAKE:

	Set interface to awake locally and not to interact with the network.

	
class nixnet._enums.LinTerm[source]

	Bases: enum.Enum

LIN Termination

	
class nixnet._enums.Merge[source]

	Bases: enum.Enum

Cluster Merge Behavior

	Values:

	
	COPY_USE_SOURCE:

	The target object with all dependent child objects
is removed from the target cluster and replaced by the source objects.

	COPY_USE_TARGET:

	The source object is ignored (the target cluster object with child objects remains unchanged).

	MERGE_USE_SOURCE:

	This adds child objects from the source object to child objects from the destination object.
If target object contains a child object with the same name,
the child object from the source frame replaces it.
The source object properties (for example, payload length of the frame) replace the target properties.

	MERGE_USE_TARGET:

	This adds child objects from the source object to child objects from the destination object.
If the target object contains a child object with the same name, it remains unchanged.
The target object properties remain unchanged (for example, payload length).

	
class nixnet._enums.ObjectClass[source]

	Bases: enum.Enum

An enumeration.

	
class nixnet._enums.OutStrmTimng[source]

	Bases: enum.Enum

Output Stream Timing

	Values:

	
	IMMEDIATE:

	Frames are dequeued from the queue and transmitted immediately to
the bus. The hardware transmits all frames in the queue as fast as
possible. There are no restrictions on frames that you use in other
sessions.

For replay modes, the hardware is placed into a Replay mode. In
this mode, the hardware evaluates the frame timestamps and attempts
to maintain the original transmission times as the timestamp stored
in the frame indicates. The actual transmission time is based on
the relative time difference between the first dequeued frame and
the time contained in the dequeued frame.

	REPLAY_EXCLUSIVE:

	The hardware transmits only frames that do not appear in the list.
You cannot create any other output sessions. Attempting to create
an output session returns an error. Input sessions have no
restrictions.

This can be used to test an ECU when the output stream list
contains the frames the ECU transmits. You can replay all frames
in this mode if the output stream list is unset.

	REPLAY_INCLUSIVE:

	The hardware transmits only frames that appear in the list. You
can create output sessions that use frames that do not appear in
the Interface:Output Stream List property. Attempting to create an
output session that uses a frame from the Interface:Output Stream
List property results in an error. Input sessions have no
restrictions.

This can be used to emulate an ECU when the output stream list
contains the frames the ECU transmits.

	
class nixnet._enums.Phase[source]

	Bases: enum.Enum

Version Phase.

	Values:

	RELEASE

	
class nixnet._enums.Protocol[source]

	Bases: enum.Enum

Protocol.

	Values:

	
	UNKNOWN:

	Unknown protocol,

	CAN:

	CAN protocol.

	FLEX_RAY:

	FlexRay protocol.

	LIN:

	LIN protocol.

	
class nixnet._enums.ReadState[source]

	Bases: enum.Enum

An enumeration.

	
class nixnet._enums.SessionInfoState[source]

	Bases: enum.Enum

State of running session.

	Values:

	
	STOPPED:

	All frames in the session are stopped.

	STARTED:

	All frames in the session are started.

	MIX:

	Some frames in the session are started while other frames are
stopped. This state may occur when using start or stop with
StartStopScope.SESSION_ONLY.

	
class nixnet._enums.SigByteOrdr[source]

	Bases: enum.Enum

Signal Byte Order

	Values:

	
	Little Endian:

	Higher significant signal bits are placed on higher byte addresses.
In NI-CAN, this was called Intel Byte Order.

[image: ../_images/littleendianstartbit12.gif]
Little Endian Signal with Start Bit 12

	Big Endian:

	Higher significant signal bits are placed on lower byte addresses.
In NI-CAN, this was called Motorola Byte Order.

[image: ../_images/bigendianstartbit12.gif]
Big Endian Signal with Start Bit 12

	
class nixnet._enums.SigDataType[source]

	Bases: enum.Enum

Signal Data Type

	Values:

	
	SIGNED:

	Signed integer with positive and negative values.

	UNSIGNED:

	Unsigned integer with no negative values.

	IEEE_FLOAT:

	Float value with 7 or 15 significant decimal digits (32 bit or 64 bit).

	
class nixnet._enums.StartStopScope[source]

	Bases: enum.Enum

Start/Stop Scope enum.

	Values:

	
	NORMAL:

	The session is started followed by starting the interface. This is
equivalent to calling nixnet._session.base.SessionBase.start
with the Session Only Scope followed by calling
nixnet._session.base.SessionBase.start with the Interface Only Scope.

	SESSION_ONLY:

	The session is placed into the Started state (refer to State Models).
If the interface is in the Stopped state before this function runs,
the interface remains in the Stopped state, and no communication
occurs with the bus. To have multiple sessions start at exactly the
same time, start each session with the Session Only Scope. When you
are ready for all sessions to start communicating on the associated
interface, call nixnet._session.base.SessionBase.start with
the Interface Only scope. Starting a previously started session is
considered a no-op. This operation sends the command to start the
session, but does not wait for the session to be started. It is
ideal for a real-time application where performance is critical.

	INTERFACE_ONLY:

	If the underlying interface is not previously started, the interface
is placed into the Started state (refer to State Models). After the
interface starts communicating, all previously started sessions can
transfer data to and from the bus. Starting a previously started
interface is considered a no-op.

	SESSION_ONLY_BLOCKING:

	The session is placed in the Started state (refer to State Models).
If the interface is in the Stopped state before this function runs,
the interface remains in the Stopped state, and no communication
occurs with the bus. To have multiple sessions start at exactly the
same time, start each session with the Session Only Scope. When you
are ready for all sessions to start communicating on the associated
interface, call nxStart with the Interface Only Scope. Starting a
previously started session is considered a no-op. This operation
waits for the session to start before completing.

	
class nixnet._enums.Warn[source]

	Bases: enum.Enum

Warning codes returned by NI-XNET.

	
class nixnet._enums.WriteState[source]

	Bases: enum.Enum

An enumeration.

nixnet.types

	
class nixnet.types.DriverVersion[source]

	Bases: nixnet.types.DriverVersion_

Driver Version

The arguments align with the following fields: [major].[minor].[update][phase][build].

	
major

	
	Type

	int

	
minor

	
	Type

	int

	
update

	
	Type

	int

	
phase

	
	Type

	nixnet._enums.Phase

	
build

	
	Type

	int

	
class nixnet.types.CanComm[source]

	Bases: nixnet.types.CanComm_

CAN Communication State.

	
state

	Communication State

	Type

	nixnet._enums.CanCommState

	
tcvr_err

	Transceiver Error.
Transceiver error indicates whether an error condition exists on
the physical transceiver. This is typically referred to as the
transceiver chip NERR pin. False indicates normal operation (no
error), and true indicates an error.

	Type

	bool

	
sleep

	Sleep.
Sleep indicates whether the transceiver and communication
controller are in their sleep state. False indicates normal
operation (awake), and true indicates sleep.

	Type

	bool

	
last_err

	Last Error.
Last error specifies the status of the last attempt to receive or
transmit a frame

	Type

	nixnet._enums.CanLastErr

	
tx_err_count

	Transmit Error Counter.
The transmit error counter begins at 0 when communication starts on
the CAN interface. The counter increments when an error is detected
for a transmitted frame and decrements when a frame transmits
successfully. The counter increases more for an error than it is
decreased for success. This ensures that the counter generally
increases when a certain ratio of frames (roughly 1/8) encounter
errors.
When communication state transitions to Bus Off, the transmit error
counter no longer is valid.

	Type

	int

	
rx_err_count

	Receive Error Counter.
The receive error counter begins at 0 when communication starts on
the CAN interface. The counter increments when an error is detected
for a received frame and decrements when a frame is received
successfully. The counter increases more for an error than it is
decreased for success. This ensures that the counter generally
increases when a certain ratio of frames (roughly 1/8) encounter
errors.

	Type

	int

	
class nixnet.types.LinComm[source]

	Bases: nixnet.types.LinComm_

CAN Communication State.

	
sleep

	Sleep.
Indicates whether the transceiver and communication
controller are in their sleep state. False indicates normal
operation (awake), and true indicates sleep.

	Type

	bool

	
state

	Communication State

	Type

	nixnet._enums.LinCommState

	
last_err

	Last Error.
Last error specifies the status of the last attempt to receive or
transmit a frame

	Type

	nixnet._enums.LinLastErr

	
err_received

	Returns the value received from the network
when last error occurred.

When last_err is READBACK, this is the value read back.

When last_err is CHECKSUM, this is the received checksum.

	Type

	int

	
err_expected

	Returns the value that the LIN interface
expected to see (instead of last received).

When last_err is READBACK, this is the value transmitted.

When last_err is CHECKSUM, this is the calculated checksum.

	Type

	int

	
err_id

	Returns the frame identifier in which the last error
occurred.

This is not applicable when last_err is NONE or UNKNOWN_ID.

	Type

	int

	
tcvr_rdy

	Indicates whether the LIN transceiver is powered from
the bus.

True indicates the bus power exists, so it is safe to start
communication on the LIN interface.

If this value is false, you cannot start communication
successfully. Wire power to the LIN transceiver and run your
application again.

	Type

	bool

	
sched_index

	Indicates the LIN schedule that the interface
currently is running.

This index refers to a LIN schedule that you requested using the
nixnet._session.base.SessionBase.change_lin_schedule function. It
indexes the array of schedules represented in the
nixnet._session.intf.Interface.lin_sched_names.

This index applies only when the LIN interface is running as a
master. If the LIN interface is running as a slave only, this
element should be ignored.

	Type

	int

	
class nixnet.types.CanIdentifier(identifier, extended=False)[source]

	Bases: object

CAN frame arbitration identifier.

	
identifier

	CAN frame arbitration identifier

	Type

	int

	
extended

	If the identifier is extended

	Type

	bool

	
classmethod from_raw(raw)[source]

	Parse a raw frame identifier into a CanIdentifier

	Parameters

	raw (int) – A raw frame identifier

	Returns

	parsed value

	Return type

	CanIdentifier

>>> CanIdentifier.from_raw(0x1)
CanIdentifier(0x1)
>>> CanIdentifier.from_raw(0x20000001)
CanIdentifier(0x1, extended=True)

	
class nixnet.types.FrameFactory[source]

	Bases: object

ABC for creating nixnet.types.Frame objects.

	
classmethod from_raw(frame)[source]

	Convert from RawFrame.

	
class nixnet.types.Frame[source]

	Bases: nixnet.types.FrameFactory

ABC for frame objects.

	
to_raw()[source]

	Convert to RawFrame.

	
type

	Frame format.

	Type

	nixnet._enums.FrameType

	
class nixnet.types.RawFrame(timestamp, identifier, type, flags=0, info=0, payload=b'')[source]

	Bases: nixnet.types.Frame

Raw Frame.

	
timestamp

	Absolute time the XNET interface received the end-of-frame.

	Type

	int

	
identifier

	Frame identifier.

	Type

	int

	
type

	Frame type.

	Type

	nixnet._enums.FrameType

	
flags

	Flags that qualify the type.

	Type

	int

	
info

	Info that qualify the type.

	Type

	int

	
payload

	Payload.

	Type

	bytes

	
classmethod from_raw(frame)[source]

	Convert from RawFrame.

	
to_raw()[source]

	Convert to RawFrame.

	
type

	Frame format.

	Type

	nixnet._enums.FrameType

	
class nixnet.types.CanFrame(identifier, type=<FrameType.CAN_DATA: 0>, payload=b'')[source]

	Bases: nixnet.types.Frame

CAN Frame.

	
identifier

	CAN frame arbitration identifier.

	Type

	nixnet.types.CanIdentifier

	
echo

	If the frame is an echo of a successful
transmit rather than being received from the network.

	Type

	bool

	
type

	Frame type.

	Type

	nixnet._enums.FrameType

	
timestamp

	Absolute time the XNET interface received the end-of-frame.

	Type

	int

	
payload

	Payload.

	Type

	bytes

	
classmethod from_raw(frame)[source]

	Convert from RawFrame.

>>> raw = RawFrame(5, 0x20000001, constants.FrameType.CAN_DATA, _cconsts.NX_FRAME_FLAGS_TRANSMIT_ECHO, 0, b'')
>>> CanFrame.from_raw(raw)
CanFrame(CanIdentifier(0x1, extended=True), echo=True, timestamp=0x5)

	
to_raw()[source]

	Convert to RawFrame.

>>> CanFrame(CanIdentifier(1, True), constants.FrameType.CAN_DATA).to_raw()
RawFrame(timestamp=0x0, identifier=0x20000001, type=FrameType.CAN_DATA)
>>> c = CanFrame(CanIdentifier(1, True), constants.FrameType.CAN_DATA)
>>> c.echo = True
>>> c.to_raw()
RawFrame(timestamp=0x0, identifier=0x20000001, type=FrameType.CAN_DATA, flags=0x80)

	
type

	Frame format.

	Type

	nixnet._enums.FrameType

	
class nixnet.types.CanBusErrorFrame(timestamp, state, tcvr_err, bus_err, tx_err_count, rx_err_count)[source]

	Bases: nixnet.types.Frame

Error detected on hardware bus of a nixnet.session.FrameInStreamSession.

Note

This requires enabling
nixnet._session.intf.Interface.bus_err_to_in_strm.

See also nixnet.types.CanComm.

	
timestamp

	Absolute time when the bus error occurred.

	Type

	int

	
state

	Communication State

	Type

	nixnet._enums.CanCommState

	
tcvr_err

	Transceiver Error.

	Type

	bool

	
bus_err

	Last Error.

	Type

	nixnet._enums.CanLastErr

	
tx_err_count

	Transmit Error Counter.

	Type

	int

	
rx_err_count

	Receive Error Counter.

	Type

	int

	
classmethod from_raw(frame)[source]

	Convert from RawFrame.

>>> raw = RawFrame(0x64, 0x0, constants.FrameType.CAN_BUS_ERROR, 0, 0, b'\x00\x01\x02\x03\x04')
>>> CanBusErrorFrame.from_raw(raw)
CanBusErrorFrame(0x64, CanCommState.ERROR_ACTIVE, True, CanLastErr.ACK, 1, 2)

	
to_raw()[source]

	Convert to RawFrame.

>>> CanBusErrorFrame(100, constants.CanCommState.BUS_OFF, True, constants.CanLastErr.STUFF, 1, 2).to_raw()
RawFrame(timestamp=0x64, identifier=0x0, type=FrameType.CAN_BUS_ERROR, len(payload)=5)

	
type

	Frame format.

	Type

	nixnet._enums.FrameType

	
class nixnet.types.LinFrame(identifier, type=<FrameType.LIN_DATA: 64>, payload=b'')[source]

	Bases: object

LIN Frame.

	
identifier

	LIN frame arbitration identifier.

	Type

	int

	
echo

	If the frame is an echo of a successful
transmit rather than being received from the network.

	Type

	bool

	
type

	Frame type.

	Type

	nixnet._enums.FrameType

	
timestamp

	Absolute time the XNET interface received the end-of-frame.

	Type

	int

	
eventslot

	Whether the frame was received within an
event-triggered slot or an unconditional or sporadic slot.

	Type

	bool

	
eventid

	Identifier for an event-triggered slot.

	Type

	int

	
payload

	A byte string representing the payload.

	Type

	bytes

	
classmethod from_raw(frame)[source]

	Convert from RawFrame.

>>> raw = RawFrame(5, 2, constants.FrameType.LIN_DATA, 0x81, 1, b'

 nixnet.errors

nixnet.errors

	
exception nixnet.errors.XnetError(message, error_code)[source]

	Bases: nixnet.errors.Error

Error raised by any NI-XNET method.

	
error_code

	Error code reported by NI-XNET.

	Type

	int

	
error_type

	Error type reported by NI-XNET.

	Type

	nixnet._enums.Err

	
exception nixnet.errors.XnetWarning(message, warning_code)[source]

	Bases: Warning

Warning raised by any NI-XNET method.

	
warning_code

	Warning code reported by NI-XNET.

	Type

	int

	
warning_type

	Warning type reported by NI-XNET.

	Type

	nixnet._enums.Warn

	
nixnet.errors.XnetResourceWarning

	alias of builtins.ResourceWarning

 Examples

Examples

Table of Contents:

	Queued I/O Example
	CAN Queued I/O

	Stream I/O Example
	CAN Stream I/O

	LIN Stream I/O

	Single-Point I/O Example
	CAN Single-Point I/O

	Signal/Frame Conversion Example

	Adapting CAN examples to LIN

	Programmatic Database Usage

	Dynamic Database Creation
	CAN Dynamic Database Creation

	LIN Dynamic Database Creation

 Queued I/O Example

Queued I/O Example

This example uses nixnet.session.FrameInQueuedSession and
nixnet.session.FrameOutQueuedSession to demonstrate how queued sessions
work.

CAN Queued I/O

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

import six

import nixnet
from nixnet import constants
from nixnet import types

def main():
 database_name = 'NIXNET_example'
 cluster_name = 'CAN_Cluster'
 input_frame = 'CANEventFrame1'
 output_frame = 'CANEventFrame1'
 interface1 = 'CAN1'
 interface2 = 'CAN2'

 with nixnet.FrameInQueuedSession(
 interface1,
 database_name,
 cluster_name,
 input_frame) as input_session:
 with nixnet.FrameOutQueuedSession(
 interface2,
 database_name,
 cluster_name,
 output_frame) as output_session:
 terminated_cable = six.moves.input('Are you using a terminated cable (Y or N)? ')
 if terminated_cable.lower() == "y":
 input_session.intf.can_term = constants.CanTerm.ON
 output_session.intf.can_term = constants.CanTerm.OFF
 elif terminated_cable.lower() == "n":
 input_session.intf.can_term = constants.CanTerm.ON
 output_session.intf.can_term = constants.CanTerm.ON
 else:
 print("Unrecognised input ({}), assuming 'n'".format(terminated_cable))
 input_session.intf.can_term = constants.CanTerm.ON
 output_session.intf.can_term = constants.CanTerm.ON

 # Start the input session manually to make sure that the first
 # frame value sent before the initial read will be received.
 input_session.start()

 user_value = six.moves.input('Enter payload [int, int]: ')
 try:
 payload_list = [int(x.strip()) for x in user_value.split(",")]
 except ValueError:
 payload_list = [2, 4, 8, 16]
 print('Unrecognized input ({}). Setting data buffer to {}'.format(user_value, payload_list))

 id = types.CanIdentifier(0)
 payload = bytearray(payload_list)
 frame = types.CanFrame(id, constants.FrameType.CAN_DATA, payload)

 i = 0
 while True:
 for index, byte in enumerate(payload):
 payload[index] = byte + i

 frame.payload = payload
 output_session.frames.write([frame])
 print('Sent frame with ID: {} payload: {}'.format(frame.identifier,
 list(frame.payload)))

 # Wait 1 s and then read the received values.
 # They should be the same as the ones sent.
 time.sleep(1)

 count = 1
 frames = input_session.frames.read(count)
 for frame in frames:
 print('Received frame with ID: {} payload: {}'.format(frame.identifier,
 list(six.iterbytes(frame.payload))))

 i += 1
 if max(payload) + i > 0xFF:
 i = 0

 inp = six.moves.input('Hit enter to continue (q to quit): ')
 if inp.lower() == 'q':
 break

 print('Data acquisition stopped.')

if __name__ == '__main__':
 main()

Refer to Adapting CAN examples to LIN for how to adapt from CAN to LIN.

 Stream I/O Example

Stream I/O Example

This example uses nixnet.session.FrameInStreamSession and
nixnet.session.FrameOutStreamSession to demonstrate how streamed sessions
work.

CAN Stream I/O

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

import six

import nixnet
from nixnet import constants
from nixnet import types

def main():
 interface1 = 'CAN1'
 interface2 = 'CAN2'

 with nixnet.FrameInStreamSession(interface1) as input_session:
 with nixnet.FrameOutStreamSession(interface2) as output_session:
 terminated_cable = six.moves.input('Are you using a terminated cable (Y or N)? ')
 if terminated_cable.lower() == "y":
 input_session.intf.can_term = constants.CanTerm.ON
 output_session.intf.can_term = constants.CanTerm.OFF
 elif terminated_cable.lower() == "n":
 input_session.intf.can_term = constants.CanTerm.ON
 output_session.intf.can_term = constants.CanTerm.ON
 else:
 print("Unrecognised input ({}), assuming 'n'".format(terminated_cable))
 input_session.intf.can_term = constants.CanTerm.ON
 output_session.intf.can_term = constants.CanTerm.ON

 input_session.intf.baud_rate = 125000
 output_session.intf.baud_rate = 125000

 # Start the input session manually to make sure that the first
 # frame value sent before the initial read will be received.
 input_session.start()

 user_value = six.moves.input('Enter payload [int, int]: ')
 try:
 payload_list = [int(x.strip()) for x in user_value.split(",")]
 except ValueError:
 payload_list = [2, 4, 8, 16]
 print('Unrecognized input ({}). Setting data buffer to {}'.format(user_value, payload_list))

 id = types.CanIdentifier(0)
 payload = bytearray(payload_list)
 frame = types.CanFrame(id, constants.FrameType.CAN_DATA, payload)

 print('The same values should be received. Press q to quit')
 i = 0
 while True:
 for index, byte in enumerate(payload):
 payload[index] = byte + i

 frame.payload = payload
 output_session.frames.write([frame])
 print('Sent frame with ID: {} payload: {}'.format(frame.identifier,
 list(frame.payload)))

 # Wait 1 s and then read the received values.
 # They should be the same as the ones sent.
 time.sleep(1)

 count = 1
 frames = input_session.frames.read(count)
 for frame in frames:
 print('Received frame with ID: {} payload: {}'.format(frame.identifier,
 list(six.iterbytes(frame.payload))))

 i += 1
 if max(payload) + i > 0xFF:
 i = 0

 inp = six.moves.input('Hit enter to continue (q to quit): ')
 if inp.lower() == 'q':
 break

 print('Data acquisition stopped.')

if __name__ == '__main__':
 main()

LIN Stream I/O

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

import six

import nixnet
from nixnet import constants
from nixnet import types

def main():
 interface1 = 'LIN1'
 interface2 = 'LIN2'
 database = 'NIXNET_exampleLDF'

 with nixnet.FrameInStreamSession(interface1, database) as input_session:
 with nixnet.FrameOutStreamSession(interface2, database) as output_session:
 terminated_cable = six.moves.input('Are you using a terminated cable (Y or N)? ')
 if terminated_cable.lower() == "y":
 input_session.intf.lin_term = constants.LinTerm.ON
 output_session.intf.lin_term = constants.LinTerm.OFF
 elif terminated_cable.lower() == "n":
 input_session.intf.lin_term = constants.LinTerm.ON
 output_session.intf.lin_term = constants.LinTerm.ON
 else:
 print("Unrecognised input ({}), assuming 'n'".format(terminated_cable))
 input_session.intf.lin_term = constants.LinTerm.ON
 output_session.intf.lin_term = constants.LinTerm.ON

 output_session.intf.lin_master = True

 # Start the input session manually to make sure that the first
 # frame value sent before the initial read will be received.
 input_session.start()

 # Set the schedule. This will also automatically enable master mode.
 output_session.change_lin_schedule(0)

 user_value = six.moves.input('Enter payload [int, int]: ')
 try:
 payload_list = [int(x.strip()) for x in user_value.split(",")]
 except ValueError:
 payload_list = [2, 4, 8, 16]
 print('Unrecognized input ({}). Setting data buffer to {}'.format(user_value, payload_list))

 id = 0
 payload = bytearray(payload_list)
 frame = types.LinFrame(id, constants.FrameType.LIN_DATA, payload)

 print('The same values should be received. Press q to quit')
 i = 0
 while True:
 for index, byte in enumerate(payload):
 payload[index] = byte + i

 frame.payload = payload
 output_session.frames.write([frame])
 print('Sent frame with ID: {} payload: {}'.format(frame.identifier,
 list(frame.payload)))

 # Wait 1 s and then read the received values.
 # They should be the same as the ones sent.
 time.sleep(1)

 count = 1
 frames = input_session.frames.read(count)
 for frame in frames:
 print('Received frame with ID: {} payload: {}'.format(frame.identifier,
 list(six.iterbytes(frame.payload))))

 i += 1
 if max(payload) + i > 0xFF:
 i = 0

 inp = six.moves.input('Hit enter to continue (q to quit): ')
 if inp.lower() == 'q':
 break

 print('Data acquisition stopped.')

if __name__ == '__main__':
 main()

Refer to Adapting CAN examples to LIN for how to adapt from CAN to LIN.

 Single-Point I/O Example

Single-Point I/O Example

This example uses nixnet.session.SignalInSinglePointSession and
nixnet.session.SignalOutSinglePointSession to demonstrate how single-point sessions
work.

To adapt this to Frames, just change the sessions to
nixnet.session.FrameInSinglePointSession and
nixnet.session.FrameOutSinglePointSession with frames instead of
signals. Then adjust read/write to take a frame object per frame
configured in the session rather than signals.

This works for both CAN and LIN
frames. LIN frames also require change_lin_sched to write a request for the
LIN interface to change the running schedule. See Queued I/O Example to see how
to read and write frames.

CAN Single-Point I/O

def main():
 database_name = 'NIXNET_example'
 cluster_name = 'CAN_Cluster'
 input_signals = ['CANEventSignal1', 'CANEventSignal2']
 output_signals = ['CANEventSignal1', 'CANEventSignal2']
 interface1 = 'CAN1'
 interface2 = 'CAN2'

 with nixnet.SignalInSinglePointSession(
 interface1,
 database_name,
 cluster_name,
 input_signals) as input_session:
 with nixnet.SignalOutSinglePointSession(
 interface2,
 database_name,
 cluster_name,
 output_signals) as output_session:
 terminated_cable = six.moves.input('Are you using a terminated cable (Y or N)? ')
 if terminated_cable.lower() == "y":
 input_session.intf.can_term = constants.CanTerm.ON
 output_session.intf.can_term = constants.CanTerm.OFF
 elif terminated_cable.lower() == "n":
 input_session.intf.can_term = constants.CanTerm.ON
 output_session.intf.can_term = constants.CanTerm.ON
 else:
 print("Unrecognised input ({}), assuming 'n'".format(terminated_cable))
 input_session.intf.can_term = constants.CanTerm.ON
 output_session.intf.can_term = constants.CanTerm.ON

 # Start the input session manually to make sure that the first
 # signal value sent before the initial read will be received.
 input_session.start()

 user_value = six.moves.input('Enter {} signal values [float, float]: '.format(len(input_signals)))
 try:
 value_buffer = [float(x.strip()) for x in user_value.split(",")]
 except ValueError:
 value_buffer = [24.5343, 77.0129]
 print('Unrecognized input ({}). Setting data buffer to {}'.format(user_value, value_buffer))

 if len(value_buffer) != len(input_signals):
 value_buffer = [24.5343, 77.0129]
 print('Invalid number of signal values entered. Setting data buffer to {}'.format(value_buffer))

 print('The same values should be received. Press q to quit')
 i = 0
 while True:
 for index, value in enumerate(value_buffer):
 value_buffer[index] = value + i
 output_session.signals.write(value_buffer)
 print('Sent signal values: {}'.format(value_buffer))

 # Wait 1 s and then read the received values.
 # They should be the same as the ones sent.
 time.sleep(1)

 signals = input_session.signals.read()
 for timestamp, value in signals:
 date = convert_timestamp(timestamp)
 print('Received signal with timestamp {} and value {}'.format(date, value))

 i += 1
 if max(value_buffer) + i > sys.float_info.max:
 i = 0

 inp = six.moves.input('Hit enter to continue (q to quit): ')
 if inp.lower() == 'q':
 break

 print('Data acquisition stopped.')

 Signal/Frame Conversion Example

Signal/Frame Conversion Example

This example uses nixnet.convert.SignalConversionSinglePointSession to
take signal values from the user, converts them to frames, and converts them back.

	To adapt this example to LIN frames, reference signals in a database that use LIN:

	
	convert_frames_to_signals:

	Accepts any frame type.

	convert_signals_to_frames:

	Chooses the frame object to create based on the frame_type field in
the raw data. This can be overridden by passing a custom
nixnet.types.FrameFactory in the frame_type parameter.

def main():
 database_name = 'NIXNET_example'
 cluster_name = 'CAN_Cluster'
 signal_names = ['CANEventSignal1', 'CANEventSignal2']

 with convert.SignalConversionSinglePointSession(
 database_name,
 cluster_name,
 signal_names) as session:

 user_value = six.moves.input('Enter {} signal values [float, float]: '.format(len(signal_names)))
 try:
 expected_signals = [float(x.strip()) for x in user_value.split(",")]
 except ValueError:
 expected_signals = [24.5343, 77.0129]
 print('Unrecognized input ({}). Setting data buffer to {}'.format(user_value, expected_signals))

 if len(expected_signals) != len(signal_names):
 expected_signals = [24.5343, 77.0129]
 print('Invalid number of signal values entered. Setting data buffer to {}'.format(expected_signals))

 frames = session.convert_signals_to_frames(expected_signals)
 print('Frames:')
 for frame in frames:
 print(' {}'.format(frame))
 print(' payload={}'.format(list(six.iterbytes(frame.payload))))

 converted_signals = session.convert_frames_to_signals(frames)
 print('Signals: {}'.format([v for (_, v) in converted_signals]))

 Adapting CAN examples to LIN

Adapting CAN examples to LIN

	To adapt the examples from CAN to LIN, reference signals in a database that use LIN:

	
	write:

	Accepts any frame type.

	read:

	Chooses the frame object to create based on the frame_type field in
the raw data. This can be overridden by passing a custom
nixnet.types.FrameFactory in the frame_type parameter.

	change_lin_sched:

	Writes a request for the LIN interface to change
the running schedule.

This displays the diff of can_frame_stream_io.py and
lin_frame_stream_io.py to demonstrate the changes required to
update CAN example code for LIN.

--- /home/docs/checkouts/readthedocs.org/user_builds/nixnet/checkouts/stable/nixnet_examples/can_frame_stream_io.py
+++ /home/docs/checkouts/readthedocs.org/user_builds/nixnet/checkouts/stable/nixnet_examples/lin_frame_stream_io.py
@@ -12,29 +12,32 @@

 def main():
- interface1 = 'CAN1'
- interface2 = 'CAN2'
+ interface1 = 'LIN1'
+ interface2 = 'LIN2'
+ database = 'NIXNET_exampleLDF'

- with nixnet.FrameInStreamSession(interface1) as input_session:
- with nixnet.FrameOutStreamSession(interface2) as output_session:
+ with nixnet.FrameInStreamSession(interface1, database) as input_session:
+ with nixnet.FrameOutStreamSession(interface2, database) as output_session:
 terminated_cable = six.moves.input('Are you using a terminated cable (Y or N)? ')
 if terminated_cable.lower() == "y":
- input_session.intf.can_term = constants.CanTerm.ON
- output_session.intf.can_term = constants.CanTerm.OFF
+ input_session.intf.lin_term = constants.LinTerm.ON
+ output_session.intf.lin_term = constants.LinTerm.OFF
 elif terminated_cable.lower() == "n":
- input_session.intf.can_term = constants.CanTerm.ON
- output_session.intf.can_term = constants.CanTerm.ON
+ input_session.intf.lin_term = constants.LinTerm.ON
+ output_session.intf.lin_term = constants.LinTerm.ON
 else:
 print("Unrecognised input ({}), assuming 'n'".format(terminated_cable))
- input_session.intf.can_term = constants.CanTerm.ON
- output_session.intf.can_term = constants.CanTerm.ON
+ input_session.intf.lin_term = constants.LinTerm.ON
+ output_session.intf.lin_term = constants.LinTerm.ON

- input_session.intf.baud_rate = 125000
- output_session.intf.baud_rate = 125000
+ output_session.intf.lin_master = True

 # Start the input session manually to make sure that the first
 # frame value sent before the initial read will be received.
 input_session.start()
+
+ # Set the schedule. This will also automatically enable master mode.
+ output_session.change_lin_schedule(0)

 user_value = six.moves.input('Enter payload [int, int]: ')
 try:
@@ -43,9 +46,9 @@
 payload_list = [2, 4, 8, 16]
 print('Unrecognized input ({}). Setting data buffer to {}'.format(user_value, payload_list))

- id = types.CanIdentifier(0)
+ id = 0
 payload = bytearray(payload_list)
- frame = types.CanFrame(id, constants.FrameType.CAN_DATA, payload)
+ frame = types.LinFrame(id, constants.FrameType.LIN_DATA, payload)

 print('The same values should be received. Press q to quit')
 i = 0

 Programmatic Database Usage

Programmatic Database Usage

This example uses nixnet.system._databases.AliasCollection to demonstrate how
databases can be programmatically added and used in a system.

def main():
 with system.System() as my_system:
 database_alias = 'custom_database'
 database_filepath = os.path.join(os.path.dirname(__file__), 'databases\custom_database.dbc')
 default_baud_rate = 500000
 my_system.databases.add_alias(database_alias, database_filepath, default_baud_rate)

 database_name = 'custom_database'
 cluster_name = 'CAN_Cluster'
 output_frame = 'CANEventFrame1'
 interface = 'CAN1'

 with nixnet.FrameOutQueuedSession(
 interface,
 database_name,
 cluster_name,
 output_frame) as output_session:
 terminated_cable = six.moves.input('Are you using a terminated cable (Y or N)? ')
 if terminated_cable.lower() == "y":
 output_session.intf.can_term = constants.CanTerm.OFF
 elif terminated_cable.lower() == "n":
 output_session.intf.can_term = constants.CanTerm.ON
 else:
 print("Unrecognised input ({}), assuming 'n'".format(terminated_cable))
 output_session.intf.can_term = constants.CanTerm.ON

 user_value = six.moves.input('Enter payload [int, int]: ')
 try:
 payload_list = [int(x.strip()) for x in user_value.split(",")]
 except ValueError:
 payload_list = [2, 4, 8, 16]
 print('Unrecognized input ({}). Setting data buffer to {}'.format(user_value, payload_list))

 id = types.CanIdentifier(0)
 payload = bytearray(payload_list)
 frame = types.CanFrame(id, constants.FrameType.CAN_DATA, payload)

 print("Writing CAN frames using {} alias:".format(database_name))

 i = 0
 while i < 3:
 for index, byte in enumerate(payload):
 payload[index] = byte + i

 frame.payload = payload
 output_session.frames.write([frame])
 print('Sent frame with ID: {} payload: {}'.format(frame.identifier, list(frame.payload)))
 i += 1

 with system.System() as my_system:
 del my_system.databases[database_name]

 Dynamic Database Creation

Dynamic Database Creation

This example programmatically modifies the in-memory database to
contain a cluster, a frame, and two signals. The database is then
used in a nixnet.session.SignalOutSinglePointSession and
nixnet.session.SignalInSinglePointSession to write and then
read a pair of signals.

CAN Dynamic Database Creation

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from random import randint
import six
import time

import nixnet
from nixnet import constants
from nixnet import database

def main():
 database_name = ':memory:'
 cluster_name = 'CAN_Cluster'
 frame_name = 'CAN_Event_Frame'
 signal_1_name = 'CAN_Event_Signal_1'
 signal_2_name = 'CAN_Event_Signal_2'
 signal_list = [signal_1_name, signal_2_name]
 output_interface = 'CAN1'
 input_interface = 'CAN2'

 # Open the default in-memory database.
 # Database.close will be called by Database.__exit__ when exiting the 'with' block.
 with database.Database(database_name) as db:

 # Add a CAN cluster, a frame, and two signals to the database.
 cluster = db.clusters.add(cluster_name)
 cluster.protocol = constants.Protocol.CAN
 cluster.baud_rate = 125000
 frame = cluster.frames.add(frame_name)
 frame.id = 1
 frame.payload_len = 2
 signal_1 = frame.mux_static_signals.add(signal_1_name)
 signal_1.byte_ordr = constants.SigByteOrdr.BIG_ENDIAN
 signal_1.data_type = constants.SigDataType.UNSIGNED
 signal_1.start_bit = 0
 signal_1.num_bits = 8
 signal_2 = frame.mux_static_signals.add(signal_2_name)
 signal_2.byte_ordr = constants.SigByteOrdr.BIG_ENDIAN
 signal_2.data_type = constants.SigDataType.UNSIGNED
 signal_2.start_bit = 8
 signal_2.num_bits = 8

 # Using the database we just created, write and then read a pair of signals.
 with nixnet.SignalOutSinglePointSession(
 output_interface,
 database_name,
 cluster_name,
 signal_list) as output_session:
 with nixnet.SignalInSinglePointSession(
 input_interface,
 database_name,
 cluster_name,
 signal_list) as input_session:
 terminated_cable = six.moves.input('Are you using a terminated cable (Y or N)? ')
 if terminated_cable.lower() == "y":
 input_session.intf.can_term = constants.CanTerm.ON
 output_session.intf.can_term = constants.CanTerm.OFF
 elif terminated_cable.lower() == "n":
 input_session.intf.can_term = constants.CanTerm.ON
 output_session.intf.can_term = constants.CanTerm.ON
 else:
 print("Unrecognised input ({}), assuming 'n'".format(terminated_cable))
 input_session.intf.can_term = constants.CanTerm.ON
 output_session.intf.can_term = constants.CanTerm.ON

 # Start the input session manually to make sure that the first
 # signal values sent before the initial read will be received.
 input_session.start()

 # Generate a pair of random values and send out the signals.
 output_values = [randint(0, 255), randint(0, 255)]
 output_session.signals.write(output_values)
 print('Sent signal values: {}'.format(output_values))

 # Wait 1 s and then read the received values.
 # They should be the same as the ones sent.
 time.sleep(1)

 input_signals = input_session.signals.read()
 input_values = [int(value) for timestamp, value in input_signals]
 print('Received signal values: {}'.format(input_values))

if __name__ == '__main__':
 main()

LIN Dynamic Database Creation

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from random import randint
import six
import time

import nixnet
from nixnet import constants
from nixnet import database

def main():
 database_name = ':memory:'
 cluster_name = 'LIN_Cluster'
 ecu_1_name = 'LIN_ECU_1'
 ecu_2_name = 'LIN_ECU_2'
 schedule_name = 'LIN_Schedule_1'
 schedule_entry_name = 'LIN_Schedule_Entry'
 frame_name = 'LIN_Frame'
 signal_1_name = 'LIN_Signal_1'
 signal_2_name = 'LIN_Signal_2'
 signal_list = [signal_1_name, signal_2_name]
 output_interface = 'LIN1'
 input_interface = 'LIN2'

 # Open the default in-memory database.
 # Database.close will be called by Database.__exit__ when exiting the 'with' block.
 with database.Database(database_name) as db:

 # Add a LIN cluster, a frame, and two signals to the database.
 cluster = db.clusters.add(cluster_name)
 cluster.protocol = constants.Protocol.LIN
 cluster.baud_rate = 19200
 frame = cluster.frames.add(frame_name)
 frame.id = 1
 frame.payload_len = 2
 signal_1 = frame.mux_static_signals.add(signal_1_name)
 signal_1.byte_ordr = constants.SigByteOrdr.BIG_ENDIAN
 signal_1.data_type = constants.SigDataType.UNSIGNED
 signal_1.start_bit = 0
 signal_1.num_bits = 8
 signal_2 = frame.mux_static_signals.add(signal_2_name)
 signal_2.byte_ordr = constants.SigByteOrdr.BIG_ENDIAN
 signal_2.data_type = constants.SigDataType.UNSIGNED
 signal_2.start_bit = 8
 signal_2.num_bits = 8

 # Add a LIN ECU and LIN Schedule to the cluster.
 ecu_1 = cluster.ecus.add(ecu_1_name)
 ecu_1.lin_protocol_ver = constants.LinProtocolVer.VER_2_2
 ecu_1.lin_master = True
 ecu_2 = cluster.ecus.add(ecu_2_name)
 ecu_2.lin_protocol_ver = constants.LinProtocolVer.VER_2_2
 ecu_2.lin_master = False
 cluster.lin_tick = 0.01
 schedule = cluster.lin_schedules.add(schedule_name)
 schedule.priority = 0
 schedule.run_mode = constants.LinSchedRunMode.CONTINUOUS
 schedule_entry = schedule.entries.add(schedule_entry_name)
 schedule_entry.delay = 1000.0
 schedule_entry.type = constants.LinSchedEntryType.UNCONDITIONAL
 schedule_entry.frames = [frame]

 # Using the database we just created, write and then read a pair of signals.
 with nixnet.SignalOutSinglePointSession(
 output_interface,
 database_name,
 cluster_name,
 signal_list) as output_session:
 with nixnet.SignalInSinglePointSession(
 input_interface,
 database_name,
 cluster_name,
 signal_list) as input_session:
 terminated_cable = six.moves.input('Are you using a terminated cable (Y or N)? ')
 if terminated_cable.lower() == "y":
 input_session.intf.lin_term = constants.LinTerm.ON
 output_session.intf.lin_term = constants.LinTerm.OFF
 elif terminated_cable.lower() == "n":
 input_session.intf.lin_term = constants.LinTerm.ON
 output_session.intf.lin_term = constants.LinTerm.ON
 else:
 print("Unrecognised input ({}), assuming 'n'".format(terminated_cable))
 input_session.intf.lin_term = constants.LinTerm.ON
 output_session.intf.lin_term = constants.LinTerm.ON

 # Start the input session manually to make sure that the first
 # signal values sent before the initial read will be received.
 input_session.start()

 # Set the schedule. This will also automatically enable master mode.
 output_session.change_lin_schedule(0)

 # Generate a pair of random values and send out the signals.
 output_values = [randint(0, 255), randint(0, 255)]
 output_session.signals.write(output_values)
 print('Sent signal values: {}'.format(output_values))

 # Wait 1 s and then read the received values.
 # They should be the same as the ones sent.
 time.sleep(1)

 input_signals = input_session.signals.read()
 input_values = [int(value) for timestamp, value in input_signals]
 print('Received signal values: {}'.format(input_values))

if __name__ == '__main__':
 main()

 Contributing to nixnet

Contributing to nixnet

Contributions to nixnet are welcome from all!

nixnet is managed via git [https://git-scm.com], with the canonical
upstream repository hosted on GitHub [https://github.com/ni/nixnet-python].

nixnet follows a pull-request model for development. If you wish to
contribute, you will need to create a GitHub account, fork this project,
push a branch with your changes to your project, and then submit a pull
request.

See GitHub’s official documentation [https://help.github.com/articles/using-pull-requests/]
for more details.

Getting Started

To contribute to this project, it is recommended that you follow these steps:

	Fork the repository on GitHub.

	Run the unit tests on your system (see Testing section). At this point,
if any tests fail, do not begin development. Try to investigate these
failures. If you’re unable to do so, report an issue through our
GitHub issues page [http://github.com/ni/nixnet-python/issues].

	Write new tests that demonstrate your bug or feature. Ensure that these
new tests fail.

	Make your change.

	Run all the unit tests again (which include the tests you just added),
and confirm that they all pass.

	Send a GitHub Pull Request to the ni/nixnet-python main branch. GitHub
Pull Requests are the expected method of code collaboration on this project.

Testing

In order to be able to run the nixnet unit tests, your setup should meet
the following minimum requirements:

	Setup has a machine with NI-XNET or the NI-XNET Runtime installed.

	Machine has a supported version of CPython or PyPy installed.

	TODO Document required hardware and system setup.

nixnet relies on tox [http://tox.readthedocs.io] and pytest [https://docs.pytest.org/en/latest/usage.html] for testing

$ pip install tox

To run the tests:

$ # Unit tests:
$ tox
$ # Integration tests:
$ tox -c tox-integration.ini -- --can-in-interface CAN1 --can-out-interface CAN2 --lin-in-interface LIN1 --lin-out-interface LIN2
$ # Integration tests (no LIN board):
$ tox -c tox-integration.ini -- --can-in-interface CAN1 --can-out-interface CAN2

Examples for debugging failures:

$ # Only run python3 unit tests
$ tox -e py3-test
$ # Further filter those tests to all starting with test_frames
$ tox -e py3-test -- -k test_frames
$ # Drop into PDB on first failure and quit when done
$ tox -e py3-test -- -x --pdb

Developer Certificate of Origin (DCO)

Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

	The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

	The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

	The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

	I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

(taken from developercertificate.org [http://developercertificate.org/])

See LICENSE [https://github.com/ni/nixnet-python/blob/main/LICENSE]
for details about how nixnet is licensed.

 Python Module Index

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nixnet	

 	
 	
 nixnet._enums	

 	
 	
 nixnet._session.base	

 	
 	
 nixnet._session.frames	

 	
 	
 nixnet._session.intf	

 	
 	
 nixnet._session.j1939	

 	
 	
 nixnet._session.signals	

 	
 	
 nixnet.constants	

 	
 	
 nixnet.convert	

 	
 	
 nixnet.database._cluster	

 	
 	
 nixnet.database._collection	

 	
 	
 nixnet.database._dbc_attributes	

 	
 	
 nixnet.database._dbc_signal_value_table	

 	
 	
 nixnet.database._ecu	

 	
 	
 nixnet.database._frame	

 	
 	
 nixnet.database._lin_sched	

 	
 	
 nixnet.database._lin_sched_entry	

 	
 	
 nixnet.database._pdu	

 	
 	
 nixnet.database._signal	

 	
 	
 nixnet.database._subframe	

 	
 	
 nixnet.database.database	

 	
 	
 nixnet.errors	

 	
 	
 nixnet.session	

 	
 	
 nixnet.system._databases	

 	
 	
 nixnet.system._device	

 	
 	
 nixnet.system._interface	

 	
 	
 nixnet.system.system	

 	
 	
 nixnet.types	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	add() (nixnet.database._collection.DbCollection method)

 	add_alias() (nixnet.system._databases.AliasCollection method)

 	Alias (class in nixnet.system._databases)

 	AliasCollection (class in nixnet.system._databases)

 	application_protocol (nixnet._session.base.SessionBase attribute)

 	(nixnet.convert.SignalConversionSinglePointSession attribute)

 	(nixnet.database._cluster.Cluster attribute)

 	(nixnet.database._frame.Frame attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	
 	AppProtocol (class in nixnet._enums)

 	auto_start (nixnet._session.base.SessionBase attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

B

 	
 	baud_rate (nixnet._session.intf.Interface attribute)

 	(nixnet.database._cluster.Cluster attribute)

 	blink() (nixnet.system._interface.Interface method)

 	BlinkMode (class in nixnet._enums)

 	
 	build (nixnet.types.DriverVersion attribute)

 	bus_err (nixnet.types.CanBusErrorFrame attribute)

 	(nixnet.types.LinBusErrorFrame attribute)

 	bus_err_to_in_strm (nixnet._session.intf.Interface attribute)

 	byte_ordr (nixnet.database._signal.Signal attribute)

C

 	
 	can_comm (nixnet._session.base.SessionBase attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	can_disable_prot_exception_handling (nixnet._session.intf.Interface attribute)

 	can_edge_filter (nixnet._session.intf.Interface attribute)

 	can_ext_id (nixnet.database._frame.Frame attribute)

 	can_fd_baud_rate (nixnet._session.intf.Interface attribute)

 	(nixnet.database._cluster.Cluster attribute)

 	can_fd_iso_mode (nixnet._session.intf.Interface attribute)

 	(nixnet.database._cluster.Cluster attribute)

 	can_io_mode (nixnet._session.intf.Interface attribute)

 	(nixnet.database._cluster.Cluster attribute)

 	(nixnet.database._frame.Frame attribute)

 	can_lstn_only (nixnet._session.intf.Interface attribute)

 	can_pend_tx_order (nixnet._session.intf.Interface attribute)

 	can_sing_shot (nixnet._session.intf.Interface attribute)

 	can_tcvr_cap (nixnet.system._interface.Interface attribute)

 	can_tcvr_state (nixnet._session.intf.Interface attribute)

 	can_tcvr_type (nixnet._session.intf.Interface attribute)

 	can_term (nixnet._session.intf.Interface attribute)

 	can_term_cap (nixnet.system._interface.Interface attribute)

 	can_timing_type (nixnet.database._frame.Frame attribute)

 	can_transmit_pause (nixnet._session.intf.Interface attribute)

 	can_tx_io_mode (nixnet._session.intf.Interface attribute)

 	can_tx_time (nixnet.database._frame.Frame attribute)

 	CanBusErrorFrame (class in nixnet.types)

 	CanComm (class in nixnet.types)

 	CanCommState (class in nixnet._enums)

 	CanFdIsoMode (class in nixnet._enums)

 	CanFrame (class in nixnet.types)

 	CanIdentifier (class in nixnet.types)

 	CanIoMode (class in nixnet._enums)

 	CanLastErr (class in nixnet._enums)

 	CanPendTxOrder (class in nixnet._enums)

 	CanTcvrCap (class in nixnet._enums)

 	CanTcvrState (class in nixnet._enums)

 	CanTcvrType (class in nixnet._enums)

 	CanTerm (class in nixnet._enums)

 	CanTermCap (class in nixnet._enums)

 	change_lin_diagnostic_schedule() (nixnet._session.base.SessionBase method)

 	(nixnet.session.FrameInQueuedSession method)

 	(nixnet.session.FrameInSinglePointSession method)

 	(nixnet.session.FrameInStreamSession method)

 	(nixnet.session.FrameOutQueuedSession method)

 	(nixnet.session.FrameOutSinglePointSession method)

 	(nixnet.session.FrameOutStreamSession method)

 	(nixnet.session.SignalInSinglePointSession method)

 	(nixnet.session.SignalOutSinglePointSession method)

 	change_lin_schedule() (nixnet._session.base.SessionBase method)

 	(nixnet.session.FrameInQueuedSession method)

 	(nixnet.session.FrameInSinglePointSession method)

 	(nixnet.session.FrameInStreamSession method)

 	(nixnet.session.FrameOutQueuedSession method)

 	(nixnet.session.FrameOutSinglePointSession method)

 	(nixnet.session.FrameOutStreamSession method)

 	(nixnet.session.SignalInSinglePointSession method)

 	(nixnet.session.SignalOutSinglePointSession method)

 	check_config_status() (nixnet.database._cluster.Cluster method)

 	(nixnet.database._ecu.Ecu method)

 	(nixnet.database._frame.Frame method)

 	(nixnet.database._lin_sched.LinSched method)

 	(nixnet.database._pdu.Pdu method)

 	(nixnet.database._signal.Signal method)

 	(nixnet.database._subframe.SubFrame method)

 	
 	check_fault() (nixnet._session.base.SessionBase method)

 	(nixnet.session.FrameInQueuedSession method)

 	(nixnet.session.FrameInSinglePointSession method)

 	(nixnet.session.FrameInStreamSession method)

 	(nixnet.session.FrameOutQueuedSession method)

 	(nixnet.session.FrameOutSinglePointSession method)

 	(nixnet.session.FrameOutStreamSession method)

 	(nixnet.session.SignalInSinglePointSession method)

 	(nixnet.session.SignalOutSinglePointSession method)

 	close() (nixnet._session.base.SessionBase method)

 	(nixnet.convert.SignalConversionSinglePointSession method)

 	(nixnet.database.database.Database method)

 	(nixnet.session.FrameInQueuedSession method)

 	(nixnet.session.FrameInSinglePointSession method)

 	(nixnet.session.FrameInStreamSession method)

 	(nixnet.session.FrameOutQueuedSession method)

 	(nixnet.session.FrameOutSinglePointSession method)

 	(nixnet.session.FrameOutStreamSession method)

 	(nixnet.session.SignalInSinglePointSession method)

 	(nixnet.session.SignalOutSinglePointSession method)

 	clst (nixnet.database._ecu.Ecu attribute)

 	(nixnet.database._lin_sched.LinSched attribute)

 	ClstFlexRaySampClkPer (class in nixnet._enums)

 	Cluster (class in nixnet.database._cluster)

 	cluster (nixnet.database._frame.Frame attribute)

 	(nixnet.database._pdu.Pdu attribute)

 	cluster_name (nixnet._session.base.SessionBase attribute)

 	(nixnet.convert.SignalConversionSinglePointSession attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	clusters (nixnet.database.database.Database attribute)

 	collision_res_sched (nixnet.database._lin_sched_entry.LinSchedEntry attribute)

 	comment (nixnet.database._cluster.Cluster attribute)

 	(nixnet.database._ecu.Ecu attribute)

 	(nixnet.database._frame.Frame attribute)

 	(nixnet.database._lin_sched.LinSched attribute)

 	(nixnet.database._pdu.Pdu attribute)

 	(nixnet.database._signal.Signal attribute)

 	Condition (class in nixnet._enums)

 	connect_terminals() (nixnet._session.base.SessionBase method)

 	(nixnet.session.FrameInQueuedSession method)

 	(nixnet.session.FrameInSinglePointSession method)

 	(nixnet.session.FrameInStreamSession method)

 	(nixnet.session.FrameOutQueuedSession method)

 	(nixnet.session.FrameOutSinglePointSession method)

 	(nixnet.session.FrameOutStreamSession method)

 	(nixnet.session.SignalInSinglePointSession method)

 	(nixnet.session.SignalOutSinglePointSession method)

 	convert_frames_to_signals() (nixnet.convert.SignalConversionSinglePointSession method)

 	convert_signals_to_frames() (nixnet.convert.SignalConversionSinglePointSession method)

 	count() (nixnet._session.frames.Frames method)

 	(nixnet._session.frames.InFrames method)

 	(nixnet._session.frames.OutFrames method)

 	(nixnet._session.frames.SinglePointInFrames method)

 	(nixnet._session.frames.SinglePointOutFrames method)

 	(nixnet._session.signals.Signals method)

 	(nixnet._session.signals.SinglePointInSignals method)

 	(nixnet._session.signals.SinglePointOutSignals method)

 	CreateSessionMode (class in nixnet._enums)

D

 	
 	data_type (nixnet.database._signal.Signal attribute)

 	Database (class in nixnet.database.database)

 	database_name (nixnet._session.base.SessionBase attribute)

 	(nixnet.convert.SignalConversionSinglePointSession attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	databases (nixnet.system.system.System attribute)

 	dbc_attributes (nixnet.database._cluster.Cluster attribute)

 	(nixnet.database._ecu.Ecu attribute)

 	(nixnet.database._frame.Frame attribute)

 	(nixnet.database._signal.Signal attribute)

 	dbc_signal_value_table (nixnet.database._signal.Signal attribute)

 	DbcAttributeCollection (class in nixnet.database._dbc_attributes)

 	DbCollection (class in nixnet.database._collection)

 	DbcSignalValueTable (class in nixnet.database._dbc_signal_value_table)

 	default (nixnet.database._signal.Signal attribute)

 	default_payload (nixnet.database._frame.Frame attribute)

 	
 	delay (nixnet.database._lin_sched_entry.LinSchedEntry attribute)

 	DelayFrame (class in nixnet.types)

 	dev_refs (nixnet.system.system.System attribute)

 	DevForm (class in nixnet._enums)

 	Device (class in nixnet.system._device)

 	disconnect_terminals() (nixnet._session.base.SessionBase method)

 	(nixnet.session.FrameInQueuedSession method)

 	(nixnet.session.FrameInSinglePointSession method)

 	(nixnet.session.FrameInStreamSession method)

 	(nixnet.session.FrameOutQueuedSession method)

 	(nixnet.session.FrameOutSinglePointSession method)

 	(nixnet.session.FrameOutStreamSession method)

 	(nixnet.session.SignalInSinglePointSession method)

 	(nixnet.session.SignalOutSinglePointSession method)

 	dongle_compatible_firmware_version (nixnet.system._interface.Interface attribute)

 	dongle_compatible_revision (nixnet.system._interface.Interface attribute)

 	dongle_firmware_version (nixnet.system._interface.Interface attribute)

 	dongle_id (nixnet.system._interface.Interface attribute)

 	dongle_revision (nixnet.system._interface.Interface attribute)

 	dongle_state (nixnet.system._interface.Interface attribute)

 	DongleId (class in nixnet._enums)

 	DongleState (class in nixnet._enums)

 	DriverVersion (class in nixnet.types)

 	dyn_signals (nixnet.database._subframe.SubFrame attribute)

E

 	
 	echo (nixnet.types.CanFrame attribute)

 	(nixnet.types.LinFrame attribute)

 	echo_tx (nixnet._session.intf.Interface attribute)

 	Ecu (class in nixnet.database._ecu)

 	ecus (nixnet.database._cluster.Cluster attribute)

 	entries (nixnet.database._lin_sched.LinSched attribute)

 	Err (class in nixnet._enums)

 	err_expected (nixnet.types.LinBusErrorFrame attribute)

 	(nixnet.types.LinComm attribute)

 	err_id (nixnet.types.LinBusErrorFrame attribute)

 	(nixnet.types.LinComm attribute)

 	
 	err_received (nixnet.types.LinBusErrorFrame attribute)

 	(nixnet.types.LinComm attribute)

 	error_code (nixnet.errors.XnetError attribute)

 	error_type (nixnet.errors.XnetError attribute)

 	event_id (nixnet.database._lin_sched_entry.LinSchedEntry attribute)

 	eventid (nixnet.types.LinFrame attribute)

 	eventslot (nixnet.types.LinFrame attribute)

 	export() (nixnet.database._cluster.Cluster method)

 	extended (nixnet.types.CanIdentifier attribute)

F

 	
 	filepath (nixnet.system._databases.Alias attribute)

 	find() (nixnet.database._cluster.Cluster method)

 	(nixnet.database._frame.Frame method)

 	(nixnet.database._lin_sched.LinSched method)

 	(nixnet.database._pdu.Pdu method)

 	(nixnet.database._subframe.SubFrame method)

 	(nixnet.database.database.Database method)

 	flags (nixnet.types.RawFrame attribute)

 	FlexRayPocState (class in nixnet._enums)

 	FlexRaySleep (class in nixnet._enums)

 	FlexRayTerm (class in nixnet._enums)

 	flush() (nixnet._session.base.SessionBase method)

 	(nixnet.session.FrameInQueuedSession method)

 	(nixnet.session.FrameInSinglePointSession method)

 	(nixnet.session.FrameInStreamSession method)

 	(nixnet.session.FrameOutQueuedSession method)

 	(nixnet.session.FrameOutSinglePointSession method)

 	(nixnet.session.FrameOutStreamSession method)

 	(nixnet.session.SignalInSinglePointSession method)

 	(nixnet.session.SignalOutSinglePointSession method)

 	form_fac (nixnet.system._device.Device attribute)

 	Frame (class in nixnet._session.frames)

 	(class in nixnet.database._frame)

 	(class in nixnet.types)

 	frame (nixnet.database._signal.Signal attribute)

 	FrameFactory (class in nixnet.types)

 	FrameInQueuedSession (class in nixnet.session)

 	FrameInSinglePointSession (class in nixnet.session)

 	FrameInStreamSession (class in nixnet.session)

 	
 	FrameOutQueuedSession (class in nixnet.session)

 	FrameOutSinglePointSession (class in nixnet.session)

 	FrameOutStreamSession (class in nixnet.session)

 	Frames (class in nixnet._session.frames)

 	frames (nixnet.database._cluster.Cluster attribute)

 	(nixnet.database._lin_sched_entry.LinSchedEntry attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	FrameType (class in nixnet._enums)

 	frm (nixnet.database._subframe.SubFrame attribute)

 	FrmCanTiming (class in nixnet._enums)

 	FrmFlexRayChAssign (class in nixnet._enums)

 	FrmFlexRayTiming (class in nixnet._enums)

 	FrmLinChecksum (class in nixnet._enums)

 	frms (nixnet.database._pdu.Pdu attribute)

 	from_raw() (nixnet.types.CanBusErrorFrame class method)

 	(nixnet.types.CanFrame class method)

 	(nixnet.types.CanIdentifier class method)

 	(nixnet.types.DelayFrame class method)

 	(nixnet.types.FrameFactory class method)

 	(nixnet.types.LinBusErrorFrame class method)

 	(nixnet.types.LinFrame class method)

 	(nixnet.types.LogTriggerFrame class method)

 	(nixnet.types.RawFrame class method)

 	(nixnet.types.StartTriggerFrame class method)

 	(nixnet.types.XnetFrame class method)

G

 	
 	get() (nixnet._session.frames.Frames method)

 	(nixnet._session.frames.InFrames method)

 	(nixnet._session.frames.OutFrames method)

 	(nixnet._session.frames.SinglePointInFrames method)

 	(nixnet._session.frames.SinglePointOutFrames method)

 	(nixnet._session.signals.Signals method)

 	(nixnet._session.signals.SinglePointInSignals method)

 	(nixnet._session.signals.SinglePointOutSignals method)

 	(nixnet.database._collection.DbCollection method)

 	(nixnet.database._dbc_attributes.DbcAttributeCollection method)

 	(nixnet.database._dbc_signal_value_table.DbcSignalValueTable method)

 	(nixnet.system._databases.AliasCollection method)

 	
 	GetDbcAttributeMode (class in nixnet._enums)

I

 	
 	id (nixnet.database._frame.Frame attribute)

 	identifier (nixnet.types.CanFrame attribute)

 	(nixnet.types.CanIdentifier attribute)

 	(nixnet.types.LinFrame attribute)

 	(nixnet.types.RawFrame attribute)

 	include_dest_addr_in_pgn (nixnet._session.j1939.J1939 attribute)

 	index() (nixnet._session.frames.Frames method)

 	(nixnet._session.frames.InFrames method)

 	(nixnet._session.frames.OutFrames method)

 	(nixnet._session.frames.SinglePointInFrames method)

 	(nixnet._session.frames.SinglePointOutFrames method)

 	(nixnet._session.signals.Signals method)

 	(nixnet._session.signals.SinglePointInSignals method)

 	(nixnet._session.signals.SinglePointOutSignals method)

 	info (nixnet.types.RawFrame attribute)

 	InFrames (class in nixnet._session.frames)

 	Interface (class in nixnet._session.intf)

 	(class in nixnet.system._interface)

 	
 	intf (nixnet._session.base.SessionBase attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	intf_refs (nixnet.system._device.Device attribute)

 	(nixnet.system.system.System attribute)

 	intf_refs_all (nixnet.system._device.Device attribute)

 	(nixnet.system.system.System attribute)

 	intf_refs_can (nixnet.system.system.System attribute)

 	intf_refs_lin (nixnet.system.system.System attribute)

 	items() (nixnet.database._collection.DbCollection method)

 	(nixnet.database._dbc_attributes.DbcAttributeCollection method)

 	(nixnet.database._dbc_signal_value_table.DbcSignalValueTable method)

 	(nixnet.system._databases.AliasCollection method)

J

 	
 	J1939 (class in nixnet._session.j1939)

 	j1939 (nixnet._session.base.SessionBase attribute)

 	(nixnet.convert.SignalConversionSinglePointSession attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	
 	j1939_node_name (nixnet.database._ecu.Ecu attribute)

 	j1939_preferred_address (nixnet.database._ecu.Ecu attribute)

K

 	
 	keys() (nixnet.database._collection.DbCollection method)

 	(nixnet.database._dbc_attributes.DbcAttributeCollection method)

 	(nixnet.database._dbc_signal_value_table.DbcSignalValueTable method)

 	(nixnet.system._databases.AliasCollection method)

L

 	
 	last_err (nixnet.types.CanComm attribute)

 	(nixnet.types.LinComm attribute)

 	lin_alw_start_wo_bus_pwr (nixnet._session.intf.Interface attribute)

 	lin_break_length (nixnet._session.intf.Interface attribute)

 	lin_checksum (nixnet.database._frame.Frame attribute)

 	lin_checksum_to_in_strm (nixnet._session.intf.Interface attribute)

 	lin_comm (nixnet._session.base.SessionBase attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	lin_config_nad (nixnet.database._ecu.Ecu attribute)

 	lin_diag_p2min (nixnet._session.intf.Interface attribute)

 	lin_diag_stmin (nixnet._session.intf.Interface attribute)

 	lin_function_id (nixnet.database._ecu.Ecu attribute)

 	lin_initial_nad (nixnet.database._ecu.Ecu attribute)

 	lin_master (nixnet._session.intf.Interface attribute)

 	(nixnet.database._ecu.Ecu attribute)

 	lin_no_response_to_in_strm (nixnet._session.intf.Interface attribute)

 	
 	lin_ostr_slv_rsp_lst_by_nad (nixnet._session.intf.Interface attribute)

 	lin_p2_min (nixnet.database._ecu.Ecu attribute)

 	lin_protocol_ver (nixnet.database._ecu.Ecu attribute)

 	lin_sched_names (nixnet._session.intf.Interface attribute)

 	lin_schedules (nixnet.database._cluster.Cluster attribute)

 	lin_st_min (nixnet.database._ecu.Ecu attribute)

 	lin_supplier_id (nixnet.database._ecu.Ecu attribute)

 	lin_term (nixnet._session.intf.Interface attribute)

 	lin_tick (nixnet.database._cluster.Cluster attribute)

 	LinBusErrorFrame (class in nixnet.types)

 	LinComm (class in nixnet.types)

 	LinCommState (class in nixnet._enums)

 	LinDiagnosticSchedule (class in nixnet._enums)

 	LinFrame (class in nixnet.types)

 	LinLastErr (class in nixnet._enums)

 	LinProtocolVer (class in nixnet._enums)

 	LinSched (class in nixnet.database._lin_sched)

 	LinSchedEntry (class in nixnet.database._lin_sched_entry)

 	LinSchedEntryType (class in nixnet._enums)

 	LinSchedRunMode (class in nixnet._enums)

 	LinSleep (class in nixnet._enums)

 	LinTerm (class in nixnet._enums)

 	LogTriggerFrame (class in nixnet.types)

M

 	
 	major (nixnet.types.DriverVersion attribute)

 	max (nixnet.database._signal.Signal attribute)

 	Merge (class in nixnet._enums)

 	merge() (nixnet.database._cluster.Cluster method)

 	min (nixnet.database._signal.Signal attribute)

 	minor (nixnet.types.DriverVersion attribute)

 	mode (nixnet._session.base.SessionBase attribute)

 	(nixnet.convert.SignalConversionSinglePointSession attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	
 	mux_data_mux_sig (nixnet.database._frame.Frame attribute)

 	(nixnet.database._pdu.Pdu attribute)

 	mux_is_data_mux (nixnet.database._signal.Signal attribute)

 	mux_is_dynamic (nixnet.database._signal.Signal attribute)

 	mux_is_muxed (nixnet.database._frame.Frame attribute)

 	(nixnet.database._pdu.Pdu attribute)

 	mux_static_signals (nixnet.database._frame.Frame attribute)

 	mux_static_sigs (nixnet.database._pdu.Pdu attribute)

 	mux_subframes (nixnet.database._frame.Frame attribute)

 	(nixnet.database._pdu.Pdu attribute)

 	mux_subfrm (nixnet.database._signal.Signal attribute)

 	mux_value (nixnet.database._signal.Signal attribute)

 	(nixnet.database._subframe.SubFrame attribute)

N

 	
 	name (nixnet.database._cluster.Cluster attribute)

 	(nixnet.database._ecu.Ecu attribute)

 	(nixnet.database._frame.Frame attribute)

 	(nixnet.database._lin_sched.LinSched attribute)

 	(nixnet.database._lin_sched_entry.LinSchedEntry attribute)

 	(nixnet.database._pdu.Pdu attribute)

 	(nixnet.database._signal.Signal attribute)

 	(nixnet.database._subframe.SubFrame attribute)

 	name_unique_to_cluster (nixnet.database._lin_sched_entry.LinSchedEntry attribute)

 	(nixnet.database._signal.Signal attribute)

 	(nixnet.database._subframe.SubFrame attribute)

 	nc_ff_data_bytes (nixnet.database._lin_sched_entry.LinSchedEntry attribute)

 	nixnet._enums (module)

 	nixnet._session.base (module)

 	nixnet._session.frames (module)

 	nixnet._session.intf (module)

 	nixnet._session.j1939 (module)

 	nixnet._session.signals (module)

 	nixnet.constants (module)

 	nixnet.convert (module)

 	nixnet.database._cluster (module)

 	nixnet.database._collection (module)

 	nixnet.database._dbc_attributes (module)

 	nixnet.database._dbc_signal_value_table (module)

 	nixnet.database._ecu (module)

 	nixnet.database._frame (module)

 	nixnet.database._lin_sched (module)

 	nixnet.database._lin_sched_entry (module)

 	nixnet.database._pdu (module)

 	nixnet.database._signal (module)

 	
 	nixnet.database._subframe (module)

 	nixnet.database.database (module)

 	nixnet.errors (module)

 	nixnet.session (module)

 	nixnet.system._databases (module)

 	nixnet.system._device (module)

 	nixnet.system._interface (module)

 	nixnet.system.system (module)

 	nixnet.types (module)

 	num (nixnet.system._interface.Interface attribute)

 	num_bits (nixnet.database._signal.Signal attribute)

 	num_pend (nixnet._session.base.SessionBase attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	num_ports (nixnet.system._device.Device attribute)

 	num_ports_all (nixnet.system._device.Device attribute)

 	num_unused (nixnet._session.base.SessionBase attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

O

 	
 	ObjectClass (class in nixnet._enums)

 	offset (nixnet.types.DelayFrame attribute)

 	out_strm_list (nixnet._session.intf.Interface attribute)

 	
 	out_strm_list_by_id (nixnet._session.intf.Interface attribute)

 	out_strm_timng (nixnet._session.intf.Interface attribute)

 	OutFrames (class in nixnet._session.frames)

 	OutStrmTimng (class in nixnet._enums)

P

 	
 	payld_len_max (nixnet._session.frames.Frames attribute)

 	(nixnet._session.frames.InFrames attribute)

 	(nixnet._session.frames.OutFrames attribute)

 	(nixnet._session.frames.SinglePointInFrames attribute)

 	(nixnet._session.frames.SinglePointOutFrames attribute)

 	payload (nixnet.types.CanFrame attribute)

 	(nixnet.types.LinFrame attribute)

 	(nixnet.types.RawFrame attribute)

 	payload_len (nixnet.database._frame.Frame attribute)

 	(nixnet.database._pdu.Pdu attribute)

 	Pdu (class in nixnet.database._pdu)

 	pdu (nixnet.database._signal.Signal attribute)

 	(nixnet.database._subframe.SubFrame attribute)

 	(nixnet.types.PduProperties attribute)

 	pdu_properties (nixnet.database._frame.Frame attribute)

 	PduProperties (class in nixnet.types)

 	pdus (nixnet.database._cluster.Cluster attribute)

 	pdus_reqd (nixnet.database._cluster.Cluster attribute)

 	
 	Phase (class in nixnet._enums)

 	phase (nixnet.types.DriverVersion attribute)

 	port_num (nixnet.system._interface.Interface attribute)

 	priority (nixnet.database._lin_sched.LinSched attribute)

 	product_name (nixnet.system._device.Device attribute)

 	product_num (nixnet.system._device.Device attribute)

 	Protocol (class in nixnet._enums)

 	protocol (nixnet._session.base.SessionBase attribute)

 	(nixnet.convert.SignalConversionSinglePointSession attribute)

 	(nixnet.database._cluster.Cluster attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	(nixnet.system._interface.Interface attribute)

Q

 	
 	queue_size (nixnet._session.base.SessionBase attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

R

 	
 	RawFrame (class in nixnet.types)

 	read() (nixnet._session.frames.InFrames method)

 	(nixnet._session.frames.SinglePointInFrames method)

 	(nixnet._session.signals.SinglePointInSignals method)

 	read_bytes() (nixnet._session.frames.InFrames method)

 	(nixnet._session.frames.SinglePointInFrames method)

 	
 	ReadState (class in nixnet._enums)

 	run_mode (nixnet.database._lin_sched.LinSched attribute)

 	rx_err_count (nixnet.types.CanBusErrorFrame attribute)

 	(nixnet.types.CanComm attribute)

 	rx_frms (nixnet.database._ecu.Ecu attribute)

S

 	
 	save() (nixnet.database.database.Database method)

 	scale_fac (nixnet.database._signal.Signal attribute)

 	scale_off (nixnet.database._signal.Signal attribute)

 	sched (nixnet.database._lin_sched_entry.LinSchedEntry attribute)

 	sched_index (nixnet.types.LinComm attribute)

 	ser_num (nixnet.system._device.Device attribute)

 	SessionBase (class in nixnet._session.base)

 	SessionInfoState (class in nixnet._enums)

 	set_can_ext_tcvr_config() (nixnet._session.intf.Interface method)

 	set_can_start_time_off() (nixnet._session.frames.Frame method)

 	set_can_tx_time() (nixnet._session.frames.Frame method)

 	set_j1939_addr_filter() (nixnet._session.frames.Frame method)

 	set_lin_sleep() (nixnet._session.intf.Interface method)

 	set_lin_tx_n_corrupted_chksums() (nixnet._session.frames.Frame method)

 	set_skip_n_cyclic_frames() (nixnet._session.frames.Frame method)

 	show_invalid_from_open (nixnet.database.database.Database attribute)

 	SigByteOrdr (class in nixnet._enums)

 	SigDataType (class in nixnet._enums)

 	Signal (class in nixnet._session.signals)

 	(class in nixnet.database._signal)

 	SignalConversionSinglePointSession (class in nixnet.convert)

 	SignalInSinglePointSession (class in nixnet.session)

 	SignalOutSinglePointSession (class in nixnet.session)

 	Signals (class in nixnet._session.signals)

 	signals (nixnet.convert.SignalConversionSinglePointSession attribute)

 	(nixnet.database._pdu.Pdu attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	sigs (nixnet.database._cluster.Cluster attribute)

 	(nixnet.database._frame.Frame attribute)

 	SinglePointInFrames (class in nixnet._session.frames)

 	SinglePointInSignals (class in nixnet._session.signals)

 	SinglePointOutFrames (class in nixnet._session.frames)

 	SinglePointOutSignals (class in nixnet._session.signals)

 	sleep (nixnet.types.CanComm attribute)

 	(nixnet.types.LinComm attribute)

 	slot_num (nixnet.system._device.Device attribute)

 	src_term_start_trigger (nixnet._session.intf.Interface attribute)

 	
 	start() (nixnet._session.base.SessionBase method)

 	(nixnet.session.FrameInQueuedSession method)

 	(nixnet.session.FrameInSinglePointSession method)

 	(nixnet.session.FrameInStreamSession method)

 	(nixnet.session.FrameOutQueuedSession method)

 	(nixnet.session.FrameOutSinglePointSession method)

 	(nixnet.session.FrameOutStreamSession method)

 	(nixnet.session.SignalInSinglePointSession method)

 	(nixnet.session.SignalOutSinglePointSession method)

 	start_bit (nixnet.database._signal.Signal attribute)

 	(nixnet.types.PduProperties attribute)

 	start_trig_to_in_strm (nixnet._session.intf.Interface attribute)

 	StartStopScope (class in nixnet._enums)

 	StartTriggerFrame (class in nixnet.types)

 	state (nixnet._session.base.SessionBase attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	(nixnet.types.CanBusErrorFrame attribute)

 	(nixnet.types.CanComm attribute)

 	(nixnet.types.LinBusErrorFrame attribute)

 	(nixnet.types.LinComm attribute)

 	stop() (nixnet._session.base.SessionBase method)

 	(nixnet.session.FrameInQueuedSession method)

 	(nixnet.session.FrameInSinglePointSession method)

 	(nixnet.session.FrameInStreamSession method)

 	(nixnet.session.FrameOutQueuedSession method)

 	(nixnet.session.FrameOutSinglePointSession method)

 	(nixnet.session.FrameOutStreamSession method)

 	(nixnet.session.SignalInSinglePointSession method)

 	(nixnet.session.SignalOutSinglePointSession method)

 	SubFrame (class in nixnet.database._subframe)

 	System (class in nixnet.system.system)

T

 	
 	tcvr_err (nixnet.types.CanBusErrorFrame attribute)

 	(nixnet.types.CanComm attribute)

 	tcvr_rdy (nixnet.types.LinComm attribute)

 	time_communicating (nixnet._session.base.SessionBase attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	time_current (nixnet._session.base.SessionBase attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	time_start (nixnet._session.base.SessionBase attribute)

 	(nixnet.session.FrameInQueuedSession attribute)

 	(nixnet.session.FrameInSinglePointSession attribute)

 	(nixnet.session.FrameInStreamSession attribute)

 	(nixnet.session.FrameOutQueuedSession attribute)

 	(nixnet.session.FrameOutSinglePointSession attribute)

 	(nixnet.session.FrameOutStreamSession attribute)

 	(nixnet.session.SignalInSinglePointSession attribute)

 	(nixnet.session.SignalOutSinglePointSession attribute)

 	
 	timestamp (nixnet.types.CanBusErrorFrame attribute)

 	(nixnet.types.CanFrame attribute)

 	(nixnet.types.LinBusErrorFrame attribute)

 	(nixnet.types.LinFrame attribute)

 	(nixnet.types.LogTriggerFrame attribute)

 	(nixnet.types.RawFrame attribute)

 	(nixnet.types.StartTriggerFrame attribute)

 	to_raw() (nixnet.types.CanBusErrorFrame method)

 	(nixnet.types.CanFrame method)

 	(nixnet.types.DelayFrame method)

 	(nixnet.types.Frame method)

 	(nixnet.types.LinBusErrorFrame method)

 	(nixnet.types.LinFrame method)

 	(nixnet.types.LogTriggerFrame method)

 	(nixnet.types.RawFrame method)

 	(nixnet.types.StartTriggerFrame method)

 	tx_err_count (nixnet.types.CanBusErrorFrame attribute)

 	(nixnet.types.CanComm attribute)

 	tx_frms (nixnet.database._ecu.Ecu attribute)

 	type (nixnet.database._lin_sched_entry.LinSchedEntry attribute)

 	(nixnet.types.CanBusErrorFrame attribute)

 	(nixnet.types.CanFrame attribute), [1]

 	(nixnet.types.DelayFrame attribute)

 	(nixnet.types.Frame attribute)

 	(nixnet.types.LinBusErrorFrame attribute)

 	(nixnet.types.LinFrame attribute)

 	(nixnet.types.LogTriggerFrame attribute)

 	(nixnet.types.RawFrame attribute), [1]

 	(nixnet.types.StartTriggerFrame attribute)

U

 	
 	unit (nixnet.database._signal.Signal attribute)

 	
 	update (nixnet.types.DriverVersion attribute)

 	update_bit (nixnet.types.PduProperties attribute)

V

 	
 	values() (nixnet.database._collection.DbCollection method)

 	(nixnet.database._dbc_attributes.DbcAttributeCollection method)

 	(nixnet.database._dbc_signal_value_table.DbcSignalValueTable method)

 	(nixnet.system._databases.AliasCollection method)

 	
 	ver (nixnet.system.system.System attribute)

W

 	
 	wait_for_intf_communicating() (nixnet._session.base.SessionBase method)

 	(nixnet.session.FrameInQueuedSession method)

 	(nixnet.session.FrameInSinglePointSession method)

 	(nixnet.session.FrameInStreamSession method)

 	(nixnet.session.FrameOutQueuedSession method)

 	(nixnet.session.FrameOutSinglePointSession method)

 	(nixnet.session.FrameOutStreamSession method)

 	(nixnet.session.SignalInSinglePointSession method)

 	(nixnet.session.SignalOutSinglePointSession method)

 	wait_for_intf_remote_wakeup() (nixnet._session.base.SessionBase method)

 	(nixnet.session.FrameInQueuedSession method)

 	(nixnet.session.FrameInSinglePointSession method)

 	(nixnet.session.FrameInStreamSession method)

 	(nixnet.session.FrameOutQueuedSession method)

 	(nixnet.session.FrameOutSinglePointSession method)

 	(nixnet.session.FrameOutStreamSession method)

 	(nixnet.session.SignalInSinglePointSession method)

 	(nixnet.session.SignalOutSinglePointSession method)

 	
 	wait_for_transmit_complete() (nixnet._session.base.SessionBase method)

 	(nixnet.session.FrameInQueuedSession method)

 	(nixnet.session.FrameInSinglePointSession method)

 	(nixnet.session.FrameInStreamSession method)

 	(nixnet.session.FrameOutQueuedSession method)

 	(nixnet.session.FrameOutSinglePointSession method)

 	(nixnet.session.FrameOutStreamSession method)

 	(nixnet.session.SignalInSinglePointSession method)

 	(nixnet.session.SignalOutSinglePointSession method)

 	Warn (class in nixnet._enums)

 	warning_code (nixnet.errors.XnetWarning attribute)

 	warning_type (nixnet.errors.XnetWarning attribute)

 	write() (nixnet._session.frames.OutFrames method)

 	(nixnet._session.frames.SinglePointOutFrames method)

 	(nixnet._session.signals.SinglePointOutSignals method)

 	write_bytes() (nixnet._session.frames.OutFrames method)

 	(nixnet._session.frames.SinglePointOutFrames method)

 	WriteState (class in nixnet._enums)

X

 	
 	XnetError

 	XnetFrame (class in nixnet.types)

 	
 	XnetResourceWarning (in module nixnet.errors)

 	XnetWarning

 abc

 Source code for abc

Copyright 2007 Google, Inc. All Rights Reserved.
Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) according to PEP 3119."""

def abstractmethod(funcobj):
 """A decorator indicating abstract methods.

 Requires that the metaclass is ABCMeta or derived from it. A
 class that has a metaclass derived from ABCMeta cannot be
 instantiated unless all of its abstract methods are overridden.
 The abstract methods can be called using any of the normal
 'super' call mechanisms.

 Usage:

 class C(metaclass=ABCMeta):
 @abstractmethod
 def my_abstract_method(self, ...):
 ...
 """
 funcobj.__isabstractmethod__ = True
 return funcobj

class abstractclassmethod(classmethod):
 """A decorator indicating abstract classmethods.

 Similar to abstractmethod.

 Usage:

 class C(metaclass=ABCMeta):
 @abstractclassmethod
 def my_abstract_classmethod(cls, ...):
 ...

 'abstractclassmethod' is deprecated. Use 'classmethod' with
 'abstractmethod' instead.
 """

 __isabstractmethod__ = True

 def __init__(self, callable):
 callable.__isabstractmethod__ = True
 super().__init__(callable)

class abstractstaticmethod(staticmethod):
 """A decorator indicating abstract staticmethods.

 Similar to abstractmethod.

 Usage:

 class C(metaclass=ABCMeta):
 @abstractstaticmethod
 def my_abstract_staticmethod(...):
 ...

 'abstractstaticmethod' is deprecated. Use 'staticmethod' with
 'abstractmethod' instead.
 """

 __isabstractmethod__ = True

 def __init__(self, callable):
 callable.__isabstractmethod__ = True
 super().__init__(callable)

class abstractproperty(property):
 """A decorator indicating abstract properties.

 Requires that the metaclass is ABCMeta or derived from it. A
 class that has a metaclass derived from ABCMeta cannot be
 instantiated unless all of its abstract properties are overridden.
 The abstract properties can be called using any of the normal
 'super' call mechanisms.

 Usage:

 class C(metaclass=ABCMeta):
 @abstractproperty
 def my_abstract_property(self):
 ...

 This defines a read-only property; you can also define a read-write
 abstract property using the 'long' form of property declaration:

 class C(metaclass=ABCMeta):
 def getx(self): ...
 def setx(self, value): ...
 x = abstractproperty(getx, setx)

 'abstractproperty' is deprecated. Use 'property' with 'abstractmethod'
 instead.
 """

 __isabstractmethod__ = True

try:
 from _abc import (get_cache_token, _abc_init, _abc_register,
 _abc_instancecheck, _abc_subclasscheck, _get_dump,
 _reset_registry, _reset_caches)
except ImportError:
 from _py_abc import ABCMeta, get_cache_token
 ABCMeta.__module__ = 'abc'
else:
 class ABCMeta(type):
 """Metaclass for defining Abstract Base Classes (ABCs).

 Use this metaclass to create an ABC. An ABC can be subclassed
 directly, and then acts as a mix-in class. You can also register
 unrelated concrete classes (even built-in classes) and unrelated
 ABCs as 'virtual subclasses' -- these and their descendants will
 be considered subclasses of the registering ABC by the built-in
 issubclass() function, but the registering ABC won't show up in
 their MRO (Method Resolution Order) nor will method
 implementations defined by the registering ABC be callable (not
 even via super()).
 """
 def __new__(mcls, name, bases, namespace, **kwargs):
 cls = super().__new__(mcls, name, bases, namespace, **kwargs)
 _abc_init(cls)
 return cls

 def register(cls, subclass):
 """Register a virtual subclass of an ABC.

 Returns the subclass, to allow usage as a class decorator.
 """
 return _abc_register(cls, subclass)

 def __instancecheck__(cls, instance):
 """Override for isinstance(instance, cls)."""
 return _abc_instancecheck(cls, instance)

 def __subclasscheck__(cls, subclass):
 """Override for issubclass(subclass, cls)."""
 return _abc_subclasscheck(cls, subclass)

 def _dump_registry(cls, file=None):
 """Debug helper to print the ABC registry."""
 print(f"Class: {cls.__module__}.{cls.__qualname__}", file=file)
 print(f"Inv. counter: {get_cache_token()}", file=file)
 (_abc_registry, _abc_cache, _abc_negative_cache,
 _abc_negative_cache_version) = _get_dump(cls)
 print(f"_abc_registry: {_abc_registry!r}", file=file)
 print(f"_abc_cache: {_abc_cache!r}", file=file)
 print(f"_abc_negative_cache: {_abc_negative_cache!r}", file=file)
 print(f"_abc_negative_cache_version: {_abc_negative_cache_version!r}",
 file=file)

 def _abc_registry_clear(cls):
 """Clear the registry (for debugging or testing)."""
 _reset_registry(cls)

 def _abc_caches_clear(cls):
 """Clear the caches (for debugging or testing)."""
 _reset_caches(cls)

class ABC(metaclass=ABCMeta):
 """Helper class that provides a standard way to create an ABC using
 inheritance.
 """
 __slots__ = ()

 Overview: module code

 All modules for which code is available

	abc

	builtins

	collections.abc

	nixnet._enums

	nixnet._session.base

	nixnet._session.collection

	nixnet._session.frames

	nixnet._session.intf

	nixnet._session.j1939

	nixnet._session.signals

	nixnet.convert

	nixnet.database._cluster

	nixnet.database._collection

	nixnet.database._dbc_attributes

	nixnet.database._dbc_signal_value_table

	nixnet.database._ecu

	nixnet.database._frame

	nixnet.database._lin_sched

	nixnet.database._lin_sched_entry

	nixnet.database._pdu

	nixnet.database._signal

	nixnet.database._subframe

	nixnet.database.database

	nixnet.errors

	nixnet.session

	nixnet.system._databases

	nixnet.system._device

	nixnet.system._interface

	nixnet.system.system

	nixnet.types

 collections.abc

 Source code for collections.abc

from _collections_abc import *
from _collections_abc import __all__

 nixnet._enums

 Source code for nixnet._enums

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import enum

from nixnet import _cconsts

[docs]class Err(enum.Enum):
 """Error codes returned by NI-XNET."""
 # An internal error occurred in the NI-XNET driver. Please contact National
 # Instruments and provide the information from the file
 # %LOCALAPPDATA%\\National Instruments\\NI-XNET\\log\\niXntErr.log. On Windows XP,
 # the file can be found at %USERPROFILE%\\Local Settings\\Application
 # Data\\National Instruments\\NI-XNET\\log\\niXntErr.log. Please note that this
 # location may be hidden on your computer.
 INTERNAL_ERROR = _cconsts.NX_ERR_INTERNAL_ERROR
 # Board self test failed(code 2). Solution: try reinstalling the driver or
 # switching the slot(s) of the board(s). If the error persists,contact
 # National Instruments.
 SELF_TEST_ERROR1 = _cconsts.NX_ERR_SELF_TEST_ERROR1
 # Board self test failed(code 3). Solution: try reinstalling the driver or
 # switching the slot(s) of the board(s). If the error persists,contact
 # National Instruments.
 SELF_TEST_ERROR2 = _cconsts.NX_ERR_SELF_TEST_ERROR2
 # Board self test failed(code 4). Solution: try reinstalling the driver or
 # switching the slot(s) of the board(s). If the error persists,contact
 # National Instruments.
 SELF_TEST_ERROR3 = _cconsts.NX_ERR_SELF_TEST_ERROR3
 # Board self test failed(code 5). Solution: try reinstalling the driver or
 # switching the slot(s) of the board(s). If the error persists,contact
 # National Instruments.
 SELF_TEST_ERROR4 = _cconsts.NX_ERR_SELF_TEST_ERROR4
 # Board self test failed(code 6). Solution: try reinstalling the driver or
 # switching the slot(s) of the board(s). If the error persists,contact
 # National Instruments.
 SELF_TEST_ERROR5 = _cconsts.NX_ERR_SELF_TEST_ERROR5
 # Computer went to hibernation mode and the board lost power. Solution:
 # prevent the computer from going to hibernation mode in the control panel.
 POWER_SUSPENDED = _cconsts.NX_ERR_POWER_SUSPENDED
 # A write queue overflowed. Solution: wait until queue space becomes available
 # and retry.
 OUTPUT_QUEUE_OVERFLOW = _cconsts.NX_ERR_OUTPUT_QUEUE_OVERFLOW
 # The board's firmware did not answer a command. Solution: Stop your
 # application and execute a self test. Try deactivating/reactivating the
 # driver in the Device Manager. If the problem persists, contact National
 # Instruments.
 FIRMWARE_NO_RESPONSE = _cconsts.NX_ERR_FIRMWARE_NO_RESPONSE
 # The operation timed out. Solution: specify a timeout long enough to complete
 # the operation, or change the operation in a way that it can get completed in
 # less time (e.g. read less data).
 EVENT_TIMEOUT = _cconsts.NX_ERR_EVENT_TIMEOUT
 # A read queue overflowed. Solution: reduce your data rate or call Read more
 # frequently.
 INPUT_QUEUE_OVERFLOW = _cconsts.NX_ERR_INPUT_QUEUE_OVERFLOW
 # The Read buffer is too small to hold a single frame. Solution: provide a
 # buffer large enough.
 INPUT_QUEUE_READ_SIZE = _cconsts.NX_ERR_INPUT_QUEUE_READ_SIZE
 # You tried to open the same frame twice. This is not permitted. Solution:
 # open each frame only once.
 DUPLICATE_FRAME_OBJECT = _cconsts.NX_ERR_DUPLICATE_FRAME_OBJECT
 # You tried to open the same stream object twice. This is not permitted.
 # Solution: open each stream object only once.
 DUPLICATE_STREAM_OBJECT = _cconsts.NX_ERR_DUPLICATE_STREAM_OBJECT
 # Self test is not possible since the board is in use by an application.
 # Solution: stop all NI-XNET applications before executing a self test.
 SELF_TEST_NOT_POSSIBLE = _cconsts.NX_ERR_SELF_TEST_NOT_POSSIBLE
 # Allocation of memory failed. You do not have sufficient memory in the
 # LabVIEW target. Solution: add more RAM or try to use fewer resources in your
 # applications (arrays, XNET sessions, etc).
 MEMORY_FULL = _cconsts.NX_ERR_MEMORY_FULL
 # The maximum number of sessions was exceeded. Solution: use fewer sessions.
 MAX_SESSIONS = _cconsts.NX_ERR_MAX_SESSIONS
 # The maximum number of frames has been exceeded. Solution: Use fewer frames
 # in your sessions.
 MAX_FRAMES = _cconsts.NX_ERR_MAX_FRAMES
 # The maximum number of devices has been detected. Solution: use fewer
 # devices.
 MAX_DEVICES = _cconsts.NX_ERR_MAX_DEVICES
 # A driver support file is missing. Solution: try reinstalling the driver. If
 # the error persists, contact National Instruments.
 MISSING_FILE = _cconsts.NX_ERR_MISSING_FILE
 # This indicates that a NULL pointer or an empty string was passed to a
 # function. The user should verify that the parameters passed in make sense
 # for the given function.
 PARAMETER_NULL_OR_EMPTY = _cconsts.NX_ERR_PARAMETER_NULL_OR_EMPTY
 # The maximum number of schedules has been detected. Solution: Use fewer
 # schedules.
 MAX_SCHEDULES = _cconsts.NX_ERR_MAX_SCHEDULES
 # Board self test failed (code 17). Solution: Try reinstalling the driver or
 # switching the slot(s) of the board(s). If the error persists, contact
 # National Instruments.
 SELF_TEST_ERROR6 = _cconsts.NX_ERR_SELF_TEST_ERROR6
 # You cannot start an NI-XNET application while a self test is in progress.
 # Solution: Complete the self test before starting any NI-XNET applications.
 SELF_TEST_IN_PROGRESS = _cconsts.NX_ERR_SELF_TEST_IN_PROGRESS
 # An invalid reference has been passed to a NI-XNET session function.
 # Solution: Only pass reference retrieved from Create Session, or from an IO
 # name of a session in LabVIEW project.
 INVALID_SESSION_HANDLE = _cconsts.NX_ERR_INVALID_SESSION_HANDLE
 # An invalid reference has been passed to a NI-XNET system function. Solution:
 # Only pass a valid system reference.
 INVALID_SYSTEM_HANDLE = _cconsts.NX_ERR_INVALID_SYSTEM_HANDLE
 # A device reference was expected for a NI-XNET session function. Solution:
 # Only pass a device reference.
 DEVICE_HANDLE_EXPECTED = _cconsts.NX_ERR_DEVICE_HANDLE_EXPECTED
 # An interface reference was expected for a NI-XNET session function.
 # Solution: Only pass an interface reference.
 INTF_HANDLE_EXPECTED = _cconsts.NX_ERR_INTF_HANDLE_EXPECTED
 # You have configured a property that conflicts with the current mode of the
 # session. For example, you have created a CAN output session with a frame
 # configured with a Timing Type = Cyclic and a Transmit Time of 0.
 PROPERTY_MODE_CONFLICTING = _cconsts.NX_ERR_PROPERTY_MODE_CONFLICTING
 # XNET Create Timing Source VI is not supported on Windows. This VI is
 # supported on LabVIEW Real-Time targets only.
 TIMING_SOURCE_NOT_SUPPORTED = _cconsts.NX_ERR_TIMING_SOURCE_NOT_SUPPORTED
 # You tried to create more than one LabVIEW timing source for a single
 # interface. Only one timing source per interface is supported. The timing
 # source remains until the top-level VI is idle (no longer running). Solution:
 # Call the XNET Create Timing Source VI only once per interface. You can use
 # the timing source with multiple timed structures (e.g. timed loops).
 MULTIPLE_TIMING_SOURCE = _cconsts.NX_ERR_MULTIPLE_TIMING_SOURCE
 # You invoked two or more VIs simultaneously for the same session, and those
 # VIs do not support overlap. For example, you attempted to invoke two Read
 # VIs at the same time for the same session. Solution: Wire the error cluster
 # from one VI to another, to enforce sequential execution for the session.
 OVERLAPPING_IO = _cconsts.NX_ERR_OVERLAPPING_IO
 # You are trying to start an interface that is missing bus power for the
 # transceiver. Some physical layers on NI-XNET hardware are internally
 # powered, but others require external power for the port to operate. This
 # error occurs when starting an interface on hardware that requires external
 # power when no power is detected. Solution: Supply proper voltage to your
 # transceiver. Refer to the NI-XNET Hardware Overview in the NI-XNET Hardware
 # and Software Manual for more information.
 MISSING_BUS_POWER = _cconsts.NX_ERR_MISSING_BUS_POWER
 # The connection with a CompactDAQ chassis was lost, and the host software and
 # modules are out of sync. There is no direct recovery for this problem until
 # the chassis is reset. Solutions: Call DAQmx Reset Device as the first VI or
 # function in your application, prior to creating XNET sessions. Alternately,
 # you could reset the CompactDAQ chassis in Measurement and Automation
 # Explorer (MAX).
 CDAQ_CONNECTION_LOST = _cconsts.NX_ERR_CDAQ_CONNECTION_LOST
 # The transceiver value set is invalid (for this port, e.g. LS on a HS port)
 # or you are trying to perform an operation that requires a different
 # transceiver (e.g., trying to change the state of a disconnected
 # transceiver). Solution: set a valid value.
 INVALID_TRANSCEIVER = _cconsts.NX_ERR_INVALID_TRANSCEIVER
 # The baud rate value set is invalid. Solution: set a valid value.
 INVALID_BAUD_RATE = _cconsts.NX_ERR_INVALID_BAUD_RATE
 # No baud rate value has been set. Solution: set a valid value.
 BAUD_RATE_NOT_CONFIGURED = _cconsts.NX_ERR_BAUD_RATE_NOT_CONFIGURED
 # The bit timing values set are invalid. Solution: set valid values.
 INVALID_BIT_TIMINGS = _cconsts.NX_ERR_INVALID_BIT_TIMINGS
 # The baud rate set does not match the transceiver's allowed range. Solution:
 # change either the baud rate or the transceiver.
 BAUD_RATE_XCVR_MISMATCH = _cconsts.NX_ERR_BAUD_RATE_XCVR_MISMATCH
 # The configured terminal is not known for this interface. Solution: Make sure
 # that that you pass in a valid value to Connect Terminals or Disconnect
 # Terminals.
 UNKNOWN_TIMING_SOURCE = _cconsts.NX_ERR_UNKNOWN_TIMING_SOURCE
 # The configured terminal is inappropriate for the hardware. For example,
 # setting a source to FrontPanel0 on XNET hardware that doesn't have
 # front-panel trigger inputs, or selecting PXI_Clk10 for a non-PXI device.
 # Solution: Pick an appropriate terminal for the hardware.
 UNKNOWN_SYNCHRONIZATION_SOURCE = _cconsts.NX_ERR_UNKNOWN_SYNCHRONIZATION_SOURCE
 # The source that you connected to the Master Timebase destination is missing.
 # When the start trigger is received, the interface verifies that a signal is
 # present on the configured source. This check has determined that this signal
 # is missing. Solution: Verify that your cables are configured correctly and
 # that your timebase source is generating an appropriate waveform.
 MISSING_TIMEBASE_SOURCE = _cconsts.NX_ERR_MISSING_TIMEBASE_SOURCE
 # The source that you connected to the Master Timebase destination is not
 # generating an appropriate signal. When the start trigger is received, the
 # interface verifies that a signal of a known frequency is present on the
 # configured source. This check has determined that this source is generating
 # a signal, but that the signal is not one of the supported frequencies for
 # this hardware. Solution: Verify that your source is generating a signal at a
 # supported frequency.
 UNKNOWN_TIMEBASE_FREQUENCY = _cconsts.NX_ERR_UNKNOWN_TIMEBASE_FREQUENCY
 # You are trying to disconnect a synchronization terminal that is not
 # currently connected. Solution: Only disconnect synchronization terminals
 # that have previously been connected.
 UNCONNECTED_SYNCHRONIZATION_SOURCE = _cconsts.NX_ERR_UNCONNECTED_SYNCHRONIZATION_SOURCE
 # You are trying to connect a synchronization terminal that is already in use.
 # For example, you are trying to connect a trigger line to the Master Timebase
 # when a different trigger line is already connected to the Master Timebase.
 # Solution: Only connect to synchronization terminals that are not currently
 # in use.
 CONNECTED_SYNCHRONIZATION_TERMINAL = _cconsts.NX_ERR_CONNECTED_SYNCHRONIZATION_TERMINAL
 # You are trying to connect an XNET terminal as a source terminal, but the
 # desired XNET terminal is not valid as a source terminal. Solution: Only
 # connect valid source terminals to the source terminal in XNET Connect
 # Terminals.
 INVALID_SYNCHRONIZATION_SOURCE = _cconsts.NX_ERR_INVALID_SYNCHRONIZATION_SOURCE
 # You are trying to connect an XNET terminal as a destination terminal, but
 # the desired XNET terminal is not valid as a destination terminal. Solution:
 # Only connect valid destination terminals to the destination terminal in XNET
 # Connect Terminals.
 INVALID_SYNCHRONIZATION_DESTINATION = _cconsts.NX_ERR_INVALID_SYNCHRONIZATION_DESTINATION
 # You are trying to connect two XNET terminals that are incompatible.
 # Solution: Only connect a source and destination terminals that are
 # compatible with each other.
 INVALID_SYNCHRONIZATION_COMBINATION = _cconsts.NX_ERR_INVALID_SYNCHRONIZATION_COMBINATION
 # The source that you connected to the Master Timebase destination has
 # disappeared. When the start trigger is received, the interface verifies that
 # a signal is present on the configured source. This check has determined that
 # this signal was present, but while the interface was running, the signal
 # disappeared, so all timebase configuration has reverted to using the onboard
 # (unsynchronized) oscillator. Solution: Verify that your cables are
 # configured correctly and that your timebase source is generating an
 # appropriate waveform the entire time your application is running.
 TIMEBASE_DISAPPEARED = _cconsts.NX_ERR_TIMEBASE_DISAPPEARED
 # You called Read (State : FlexRay : Cycle Macrotick), and the FlexRay
 # Macrotick is not connected as the master timebase of the interface.
 # Solution: Call Connect Terminals to connect source of FlexRay Macrotick to
 # destination of Master Timebase.
 MACROTICK_DISCONNECTED = _cconsts.NX_ERR_MACROTICK_DISCONNECTED
 # The database specified could not be opened. Solution: Check that the alias
 # and/or the file exist and that it is a valid database.
 CANNOT_OPEN_DATABASE_FILE = _cconsts.NX_ERR_CANNOT_OPEN_DATABASE_FILE
 # The cluster was not found in the database. Solution: Make sure you only
 # initialize a cluster in a session that is defined in the database.
 CLUSTER_NOT_FOUND = _cconsts.NX_ERR_CLUSTER_NOT_FOUND
 # The frame was not found in the database. Solution: Make sure you only
 # initialize frames in a session that are defined in the database.
 FRAME_NOT_FOUND = _cconsts.NX_ERR_FRAME_NOT_FOUND
 # The signal was not found in the database. Solution: Make sure you only
 # initialize signals in a session that are defined in the database.
 SIGNAL_NOT_FOUND = _cconsts.NX_ERR_SIGNAL_NOT_FOUND
 # A necessary property for a cluster was not found in the database. Solution:
 # Make sure you only initialize a cluster in a session that is completely
 # defined in the database.
 UNCONFIGURED_CLUSTER = _cconsts.NX_ERR_UNCONFIGURED_CLUSTER
 # A necessary property for a frame was not found in the database. Solution:
 # Make sure you only initialize frames in a session that are completely
 # defined in the database.
 UNCONFIGURED_FRAME = _cconsts.NX_ERR_UNCONFIGURED_FRAME
 # A necessary property for a signal was not found in the database. Solution:
 # Make sure you only initialize signals in a session that are completely
 # defined in the database.
 UNCONFIGURED_SIGNAL = _cconsts.NX_ERR_UNCONFIGURED_SIGNAL
 # Multiple clusters have been specified in one session, either directly
 # (Stream I/O), or through the signals or frames specified. Solution: Make
 # sure that in one session, you open only one cluster, including frames or
 # signals that belong to the same cluster.
 MULTIPLE_CLUSTERS = _cconsts.NX_ERR_MULTIPLE_CLUSTERS
 # You specified a database of ':subordinate:' for a session mode other than
 # mode of Frame Input Stream. Solution: either open a Frame Input Stream
 # session, or use a real or in-memory database.
 SUBORDINATE_NOT_ALLOWED = _cconsts.NX_ERR_SUBORDINATE_NOT_ALLOWED
 # The interface name given does not specify a valid and existing interface.
 # Solution: Use a valid and existing interface. These can be obtained using
 # MAX, XNET system properties, or the LabVIEW XNET Interface IO name. If you
 # are using CompactRIO, refer to the topic "Getting Started with CompactRIO"
 # in the NI-XNET Hardware and Software Help.
 INVALID_INTERFACE = _cconsts.NX_ERR_INVALID_INTERFACE
 # The operation is invalid for this interface (e.g. you tried to open a set of
 # FlexRay frames on a CAN interface, or tried to request a CAN property from a
 # FlexRay interface). Solution: run this operation on a suitable interface.
 INVALID_PROTOCOL = _cconsts.NX_ERR_INVALID_PROTOCOL
 # You tried to set the AutoStart property to FALSE for an Input session. This
 # is not allowed. Solution: don't set the AutoStart property (TRUE is
 # default).
 INPUT_SESSION_MUST_AUTO_START = _cconsts.NX_ERR_INPUT_SESSION_MUST_AUTO_START
 # The property ID you specified is not valid (or not valid for the current
 # session mode or form factor).
 INVALID_PROPERTY_ID = _cconsts.NX_ERR_INVALID_PROPERTY_ID
 # The contents of the property is bigger than the size specified. Use the
 # nxGetPropertySize function to determine the size of the buffer needed.
 INVALID_PROPERTY_SIZE = _cconsts.NX_ERR_INVALID_PROPERTY_SIZE
 # The function you called is not defined for the session mode (e.g. you called
 # a frame I/O function on a signal I/O session).
 INCORRECT_MODE = _cconsts.NX_ERR_INCORRECT_MODE
 # The data that you passed to the XNET Write is too small to hold all the data
 # specified for the session. Solution: determine the number of elements
 # (frames or signals) that you configured for the session, and pass that
 # number of elements to XNET Write.
 BUFFER_TOO_SMALL = _cconsts.NX_ERR_BUFFER_TOO_SMALL
 # For Signal Output sessions, the multiplexer signals used in the session must
 # be specified explicitly in the signal list.
 MUST_SPECIFY_MULTIPLEXERS = _cconsts.NX_ERR_MUST_SPECIFY_MULTIPLEXERS
 # You used an XNET Session IO name, and that session was not found in your
 # LabVIEW project. Solution: Within LabVIEW project, right-click the target
 # (RT or My Computer), and select New > NI-XNET Session. Add the VI that uses
 # the session under the target. If you are using the session with a built
 # application (.EXE), ensure that you copy the built configuration file
 # nixnetSession.txt such that it resides in the same folder as the executable.
 SESSION_NOT_FOUND = _cconsts.NX_ERR_SESSION_NOT_FOUND
 # You used the same XNET session name in multiple top-level VIs, which is not
 # supported. Solution: Use each session in only one top-level VI (application)
 # at a time.
 MULTIPLE_USE_OF_SESSION = _cconsts.NX_ERR_MULTIPLE_USE_OF_SESSION
 # To execute this function properly, the session's list must contain only one
 # frame. Solution: break your session up into multiple, each of which contains
 # only one frame.
 ONLY_ONE_FRAME = _cconsts.NX_ERR_ONLY_ONE_FRAME
 # You used the same alias for different database files which is not allowed.
 # Solution: Use each alias only for a single database file.
 DUPLICATE_ALIAS = _cconsts.NX_ERR_DUPLICATE_ALIAS
 # You try to deploy a database file while another deployment is in progress.
 # Solution: wait until the other deployment has finished and try again.
 DEPLOYMENT_IN_PROGRESS = _cconsts.NX_ERR_DEPLOYMENT_IN_PROGRESS
 # A signal or frame session has been opened, but it doesn't contain signals or
 # frames. Solution: specify at least one signal or frame.
 NO_FRAMES_OR_SIGNALS = _cconsts.NX_ERR_NO_FRAMES_OR_SIGNALS
 # An invalid value has been specified for the 'mode' parameter. Solution:
 # specify a valid value.
 INVALID_MODE = _cconsts.NX_ERR_INVALID_MODE
 # A session was created by references, but no database references have been
 # specified. Solution: specify at least one appropriate database reference
 # (i.e. signal or frame or cluster ref depending on the session mode).
 NEED_REFERENCE = _cconsts.NX_ERR_NEED_REFERENCE
 # The interface has already been opened with different cluster settings than
 # the ones specified for this session. Solution: make sure that the cluster
 # settings agree for the interface, or use a different interface.
 DIFFERENT_CLUSTER_OPEN = _cconsts.NX_ERR_DIFFERENT_CLUSTER_OPEN
 # The cycle repetition of a frame in the database for the FlexRay protocol is
 # invalid. Solution: Make sure that the cycle repetition is a power of 2
 # between 1 and 64.
 FLEX_RAY_INVALID_CYCLE_REP = _cconsts.NX_ERR_FLEX_RAY_INVALID_CYCLE_REP
 # You called XNET Clear for the session, then tried to perform another
 # operation. Solution: Defer clear (session close) until you are done using
 # it. This error can also occur if you branch a wire after creating the
 # session. Solution: Do not branch a session to multiple flows in the diagram.
 SESSION_CLEARED = _cconsts.NX_ERR_SESSION_CLEARED
 # You called Create Session VI with a list of items that does not match the
 # mode. This includes using: 1) signal items for a Frame I/O mode 2) frame
 # items for a Signal I/O mode 3) cluster item for a mode other than Frame
 # Input Stream or Frame Output Stream
 WRONG_MODE_FOR_CREATE_SELECTION = _cconsts.NX_ERR_WRONG_MODE_FOR_CREATE_SELECTION
 # You tried to create a new session while the interface is already running.
 # Solution: Create all sessions before starting any of them.
 INTERFACE_RUNNING = _cconsts.NX_ERR_INTERFACE_RUNNING
 # You wrote a frame whose payload length is larger than the maximum payload
 # allowed by the database (e.g. wrote 10 bytes for CAN frame, max 8 bytes).
 # Solution: Never write more payload bytes than the Payload Length Maximum
 # property of the session.
 FRAME_WRITE_TOO_LARGE = _cconsts.NX_ERR_FRAME_WRITE_TOO_LARGE
 # You called a Read function with a nonzero timeout, and you used a negative
 # numberToRead. Negative value for numberToRead requests all available data
 # from the Read, which is ambiguous when used with a timeout. Solutions: 1)
 # Pass timeout of and numberToRead of -1, to request all available data. 2)
 # Pass timeout > 0, and numberToRead > 0, to wait for a specific number of
 # data elements.
 TIMEOUT_WITHOUT_NUM_TO_READ = _cconsts.NX_ERR_TIMEOUT_WITHOUT_NUM_TO_READ
 # Timestamps are not (yet) supported for Write Signal XY. Solution: Do not
 # provide a timestamp array for Write Signal XY.
 TIMESTAMPS_NOT_SUPPORTED = _cconsts.NX_ERR_TIMESTAMPS_NOT_SUPPORTED
 # The condition parameter passed to Wait is not known. Solution: Pass a valid
 # parameter.
 UNKNOWN_CONDITION = _cconsts.NX_ERR_UNKNOWN_CONDITION
 # You attempted an I/O operation, but the session is not yet started (and the
 # AutoStart property is set to FALSE). Solution: call Start before you use
 # this IO operation.
 SESSION_NOT_STARTED = _cconsts.NX_ERR_SESSION_NOT_STARTED
 # The maximum number of Wait operations has been exceeded. Solution: If you
 # are waiting for multiple events on the interface, use fewer Wait operations
 # on this interface (even for multiple sessions). If you are waiting for
 # multiple events for a frame (e.g. transmit complete), use only one Wait at a
 # time for that frame.
 MAX_WAITS_EXCEEDED = _cconsts.NX_ERR_MAX_WAITS_EXCEEDED
 # You used an invalid name for an XNET Device. Solution: Get valid XNET Device
 # names from the XNET System properties (only).
 INVALID_DEVICE = _cconsts.NX_ERR_INVALID_DEVICE
 # A terminal name passed to ConnectTerminals or DisconnectTerminals is
 # unknown. Solution: only pass valid names.
 INVALID_TERMINAL_NAME = _cconsts.NX_ERR_INVALID_TERMINAL_NAME
 # You tried to blink the port LEDs but these are currently busy. Solution:
 # stop all applications running on that port; do not access it from MAX or LV
 # Project.
 PORT_LEDS_BUSY = _cconsts.NX_ERR_PORT_LE_DS_BUSY
 # You tried to set a FlexRay keyslot ID that is not listed as valid in the
 # database. Solution: only pass slot IDs of frames that have the startup or
 # sync property set in the database.
 INVALID_KEYSLOT = _cconsts.NX_ERR_INVALID_KEYSLOT
 # You tried to set a queue size that is bigger than the maximum allowed.
 # Solution: Specify an in-range queue size.
 MAX_QUEUE_SIZE_EXCEEDED = _cconsts.NX_ERR_MAX_QUEUE_SIZE_EXCEEDED
 # You wrote a frame whose payload length is different than the payload length
 # configured by the database. Solution: Never write a different payload length
 # for a frame that is different than the configured payload length.
 FRAME_SIZE_MISMATCH = _cconsts.NX_ERR_FRAME_SIZE_MISMATCH
 # The index to indicate an session list element is too large. Solution:
 # Specify an index in the range ... NumInList-1.
 INDEX_TOO_BIG = _cconsts.NX_ERR_INDEX_TOO_BIG
 # You have tried to create a session that is invalid for the mode of the
 # driver/firmware. For example, you are using the Replay Exclusive mode for
 # Stream Output and you have an output session open.
 SESSION_MODE_INCOMPATIBILITY = _cconsts.NX_ERR_SESSION_MODE_INCOMPATIBILITY
 # You have tried to create a session using a frame that is incompatible with
 # the selected session type. For example, you are using a LIN diagnostic frame
 # with a single point output session.
 SESSION_TYPE_FRAME_INCOMPATIBILITY = _cconsts.NX_ERR_SESSION_TYPE_FRAME_INCOMPATIBILITY
 # The trigger signal for a frame is allowed only in Single Point Signal
 # sessions (Input or Output). For Output Single Point Signal sessions, only
 # one trigger signal is allowed per frame. Solution: Do not use the trigger
 # signal, or change to a single point I/O session.
 TRIGGER_SIGNAL_NOT_ALLOWED = _cconsts.NX_ERR_TRIGGER_SIGNAL_NOT_ALLOWED
 # To execute this function properly, the session's list must contain only one
 # cluster. Solution: Use only one cluster in the session.
 ONLY_ONE_CLUSTER = _cconsts.NX_ERR_ONLY_ONE_CLUSTER
 # You attempted to convert a CAN or LIN frame with a payload length greater
 # than 8. For example, you may be converting a frame that uses a higher layer
 # transport protocol, such as SAE-J1939. NI-XNET currently supports conversion
 # of CAN/LIN frames only (layer 2). Solutions: 1) Implement higher layer
 # protocols (including signal conversion) within your code. 2) Contact
 # National Instruments to request this feature in a future version.
 CONVERT_INVALID_PAYLOAD = _cconsts.NX_ERR_CONVERT_INVALID_PAYLOAD
 # Allocation of memory failed for the data returned from LabVIEW XNET Read.
 # Solutions: 1) Wire a smaller "number to read" to XNET Read (default -1 uses
 # queue size). 2) For Signal Input Waveform, use a smaller resample rate. 3)
 # Set smaller value for session's queue size property (default is large to
 # avoid loss of data).
 MEMORY_FULL_READ_DATA = _cconsts.NX_ERR_MEMORY_FULL_READ_DATA
 # Allocation of memory failed in the firmware. Solutions: 1) Create less
 # firmware objects 2) Set smaller value for output session's queue size
 # property (default is large to avoid loss of data).
 MEMORY_FULL_FIRMWARE = _cconsts.NX_ERR_MEMORY_FULL_FIRMWARE
 # The NI-XNET driver no longer can communicate with the device. Solution: Make
 # sure the device has not been removed from the computer.
 COMMUNICATION_LOST = _cconsts.NX_ERR_COMMUNICATION_LOST
 # A LIN schedule has an invalid priority. Solution: Use a valid priority (0 =
 # NULL schedule, 1..254 = Run once schedule, 255 = Continuous schedule).
 INVALID_PRIORITY = _cconsts.NX_ERR_INVALID_PRIORITY
 # (Dis)ConnectTerminals is not allowed for XNET C Series modules. Solution: To
 # connect the module start trigger, use the Session property Interface Source
 # Terminal Start Trigger.
 SYNCHRONIZATION_NOT_ALLOWED = _cconsts.NX_ERR_SYNCHRONIZATION_NOT_ALLOWED
 # You requested a time (like Start or Communication Time) before the event has
 # happened. Solution: Request the time only after it occurred.
 TIME_NOT_REACHED = _cconsts.NX_ERR_TIME_NOT_REACHED
 # An internal input queue overflowed. Solution: Attempt to pull data from the
 # hardware faster. If you are connected by an external bus (for example, USB
 # or Ethernet), you can try to use a faster connection.
 INTERNAL_INPUT_QUEUE_OVERFLOW = _cconsts.NX_ERR_INTERNAL_INPUT_QUEUE_OVERFLOW
 # A bad firmware image file can not be loaded to the hardware. Solution:
 # Uninstall and reinstall the NI-XNET software as the default firmware file
 # may be corrupt. If you are using a custom firmware file, try rebuilding it.
 BAD_IMAGE_FILE = _cconsts.NX_ERR_BAD_IMAGE_FILE
 # The encoding of embedded network data (CAN, FlexRay, LIN, etc.) within the
 # TDMS file is invalid. Solutions: 1) In the application that wrote (created)
 # the logfile, and the application in which you are reading it, confirm that
 # both use the same major version for frame data encoding
 # (NI_network_frame_version property of the TDMS channel). 2) Ensure that your
 # file was not corrupted.
 INVALID_LOGFILE = _cconsts.NX_ERR_INVALID_LOGFILE
 # The NI-XNET hardware no longer can communicate with the transceiver cable.
 # This may be due to the cable being removed, a power loss event, an over
 # voltage condition on the power input, or a general communication error.
 # Solution: Make sure the dongle is properly latched and, for some hardware,
 # external power is properly applied. To detect other errors, stop your
 # application and execute a self test.
 DONGLE_COMMUNICATION_LOST = _cconsts.NX_ERR_DONGLE_COMMUNICATION_LOST
 # A property value was out of range or incorrect. Solution: specify a correct
 # value.
 INVALID_PROPERTY_VALUE = _cconsts.NX_ERR_INVALID_PROPERTY_VALUE
 # Integration of the interface into the FlexRay cluster failed, so
 # communication did not start for the interface. Solution: check the cluster
 # and/or interface parameters and verify that there are startup frames
 # defined.
 FLEX_RAY_INTEGRATION_FAILED = _cconsts.NX_ERR_FLEX_RAY_INTEGRATION_FAILED
 # The PDU was not found in the database. Solution: Make sure you initialize
 # only PDUs in a session that are defined in the database.
 PDU_NOT_FOUND = _cconsts.NX_ERR_PDU_NOT_FOUND
 # A necessary property for a PDU was not found in the database. Solution: Make
 # sure you initialize only PDUs in a session that are completely defined in
 # the database.
 UNCONFIGURED_PDU = _cconsts.NX_ERR_UNCONFIGURED_PDU
 # You tried to open the same PDU twice. This is not permitted. Solution: Open
 # each PDU only once.
 DUPLICATE_PDU_OBJECT = _cconsts.NX_ERR_DUPLICATE_PDU_OBJECT
 # You can access this database object only by PDU, not by frame. Solution: For
 # CAN and LIN, this is not supported by the current version of NI-XNET; for
 # FlexRay, make sure the database is set to use PDUs.
 NEED_PDU = _cconsts.NX_ERR_NEED_PDU
 # Remote communication with the LabVIEW RT target failed. Solution: check if
 # NI-XNET has been installed on the RT target and check if the NI-XNET RPC
 # server has been started.
 RPC_COMMUNICATION = _cconsts.NX_ERR_RPC_COMMUNICATION
 # File transfer communication with the LabVIEW Real-Time (RT) target failed.
 # Solution: check if the RT target has been powered on, the RT target has been
 # connected to the network, and if the IP address settings are correct.
 FILE_TRANSFER_COMMUNICATION = _cconsts.NX_ERR_FILE_TRANSFER_COMMUNICATION
 # File transfer communication with the LabVIEW Real-Time (RT) target failed.
 # Solution: check if the RT target has been powered on, the RT target has been
 # connected to the network, and if the IP address settings are correct.
 FTP_COMMUNICATION = _cconsts.NX_ERR_FTP_COMMUNICATION
 # File transfer to the LabVIEW Real-Time (RT) target failed, because the
 # required files could not be accessed. Solution: You may have executed a VI
 # that opened the database, but did not close. If that is the case, you should
 # change the VI to call Database Close, then reboot the RT controller to
 # continue.
 FILE_TRANSFER_ACCESS = _cconsts.NX_ERR_FILE_TRANSFER_ACCESS
 # File transfer to the LabVIEW Real-Time (RT) target failed, because the
 # required files could not be accessed. Solution: You may have executed a VI
 # that opened the database, but did not close. If that is the case, you should
 # change the VI to call Database Close, then reboot the RT controller to
 # continue.
 FTP_FILE_ACCESS = _cconsts.NX_ERR_FTP_FILE_ACCESS
 # The database file you want to use is already assigned to another alias.
 # Solution: Each database file can only be assigned to a single alias. Use the
 # alias that is already assigned to the database instead.
 DATABASE_ALREADY_IN_USE = _cconsts.NX_ERR_DATABASE_ALREADY_IN_USE
 # An internal file used by NI-XNET could not be accessed. Solution: Make sure
 # that the internal NI-XNET files are not write protected and that the
 # directories for these files exist.
 INTERNAL_FILE_ACCESS = _cconsts.NX_ERR_INTERNAL_FILE_ACCESS
 # The file cannot be deployed because another file deployment is already
 # active. Solution: wait until the other file deployment has finished and try
 # again.
 FILE_TRANSFER_ACTIVE = _cconsts.NX_ERR_FILE_TRANSFER_ACTIVE
 # The nixnet.dll or one of its components could not be loaded. Solution: try
 # reinstalling NI-XNET. If the error persists,contact National Instruments.
 DLL_LOAD = _cconsts.NX_ERR_DLL_LOAD
 # You attempted to perform an action on a session or interface that is
 # started, and the action that requires the session/interface to be stopped.
 # Solution: Stop the object before performing this action.
 OBJECT_STARTED = _cconsts.NX_ERR_OBJECT_STARTED
 # You have passed a default payload to the firmware where the number of bytes
 # in the payload is larger than the number of bytes that this frame can
 # transmit. Solution: Decrease the number of bytes in your default payload.
 DEFAULT_PAYLOAD_NUM_BYTES = _cconsts.NX_ERR_DEFAULT_PAYLOAD_NUM_BYTES
 # You attempted to set a CAN arbitration ID with an invalid value. For
 # example, a CAN standard arbitration ID supports only 11 bits. If you attempt
 # to set a standard arbitration ID that uses more than 11 bits, this error is
 # returned. Solution: Use a valid arbitration ID.
 INVALID_ARBITRATION_ID = _cconsts.NX_ERR_INVALID_ARBITRATION_ID
 # You attempted to set a LIN ID with an invalid value. For example, a LIN ID
 # supports only 6 bits. If you attempt to set an ID that uses more than 6
 # bits, this error is returned. Solution: Use a valid LIN ID.
 INVALID_LIN_ID = _cconsts.NX_ERR_INVALID_LIN_ID
 # Too many open files. NI-XNET allows up to 7 database files to be opened
 # simultaneously. Solution: Open fewer files.
 TOO_MANY_OPEN_FILES = _cconsts.NX_ERR_TOO_MANY_OPEN_FILES
 # Bad reference has been passed to a database function, e.g. a session
 # reference, or frame reference to retrieve properties from a signal.
 DATABASE_BAD_REFERENCE = _cconsts.NX_ERR_DATABASE_BAD_REFERENCE
 # Creating a database file failed. Solution: Verify access rights to the
 # destination directory or check if overwritten file has read only permission.
 CREATE_DATABASE_FILE = _cconsts.NX_ERR_CREATE_DATABASE_FILE
 # A cluster with the same name already exists in the database. Solution: Use
 # another name for this cluster.
 DUPLICATE_CLUSTER_NAME = _cconsts.NX_ERR_DUPLICATE_CLUSTER_NAME
 # A frame with the same name already exists in the cluster. Solution: Use
 # another name for this frame.
 DUPLICATE_FRAME_NAME = _cconsts.NX_ERR_DUPLICATE_FRAME_NAME
 # A signal with the same name already exists in the frame. Solution: Use
 # another name for this signal.
 DUPLICATE_SIGNAL_NAME = _cconsts.NX_ERR_DUPLICATE_SIGNAL_NAME
 # An ECU with the same name already exists in the cluster. Solution: Use
 # another name for this ECU.
 DUPLICATE_ECU_NAME = _cconsts.NX_ERR_DUPLICATE_ECU_NAME
 # A subframe with the same name already exists in the frame. Solution: Use
 # another name for this subframe.
 DUPLICATE_SUBFRAME_NAME = _cconsts.NX_ERR_DUPLICATE_SUBFRAME_NAME
 # The operation is improper for the protocol in use, e.g. you cannot assign
 # FlexRay channels to a CAN frame.
 IMPROPER_PROTOCOL = _cconsts.NX_ERR_IMPROPER_PROTOCOL
 # Wrong parent relationship for a child that you are creating with XNET
 # Database Create.
 OBJECT_RELATION = _cconsts.NX_ERR_OBJECT_RELATION
 # The retrieved required property is not defined on the specified object.
 # Solution: Make sure that your database file has this property defined or
 # that you set it in the objects created in memory.
 UNCONFIGURED_REQUIRED_PROPERTY = _cconsts.NX_ERR_UNCONFIGURED_REQUIRED_PROPERTY
 # The feature is not supported under LabVIEW RT, e.g.Save Database
 NOT_SUPPORTED_ON_RT = _cconsts.NX_ERR_NOT_SUPPORTED_ON_RT
 # The object name contains unsupported characters. The name must contain just
 # alphanumeric characters and the underscore, but cannot begin with a digit.
 # The maximum size is 128.
 NAME_SYNTAX = _cconsts.NX_ERR_NAME_SYNTAX
 # Unsupported database format. For reading a database, the extension must be
 # .xml, .dbc, .ncd, or .ldf. For saving, the extension must be .xml or .ldf
 FILE_EXTENSION = _cconsts.NX_ERR_FILE_EXTENSION
 # Database object not found, e.g. an object with given name doesn't exist.
 DATABASE_OBJECT_NOT_FOUND = _cconsts.NX_ERR_DATABASE_OBJECT_NOT_FOUND
 # Database cache file cannot be removed or replaced on the disc, e.g. it is
 # write-protected.
 REMOVE_DATABASE_CACHE_FILE = _cconsts.NX_ERR_REMOVE_DATABASE_CACHE_FILE
 # You are trying to write a read-only property, e.g. the mux value on a signal
 # is a read only property (can be changed on the subframe).
 READ_ONLY_PROPERTY = _cconsts.NX_ERR_READ_ONLY_PROPERTY
 # You are trying to change a signal to be a mux signal, but a mux is already
 # defined in this frame
 FRAME_MUX_EXISTS = _cconsts.NX_ERR_FRAME_MUX_EXISTS
 # You are trying to define FlexRay in-cycle-repetition slots before defining
 # the first slot. Define the first slot (frame ID) before defining
 # in-cycle-repetition slots.
 UNDEFINED_FIRST_SLOT = _cconsts.NX_ERR_UNDEFINED_FIRST_SLOT
 # You are trying to define FlexRay in-cycle-repetition channels before
 # defining the first channels. Define the Channel Assignment on a frame before
 # defining in-cycle-repetition channels.
 UNDEFINED_FIRST_CHANNELS = _cconsts.NX_ERR_UNDEFINED_FIRST_CHANNELS
 # You must define the protocol before setting this property, e.g. the frame ID
 # has a different meaning in a CAN or FlexRay cluster.
 UNDEFINED_PROTOCOL = _cconsts.NX_ERR_UNDEFINED_PROTOCOL
 # The database information on the real-time system has been created with an
 # older NI-XNET version. This version is no longer supported. To correct this
 # error, re-deploy your database to the real-time system.
 OLD_DATABASE_CACHE_FILE = _cconsts.NX_ERR_OLD_DATABASE_CACHE_FILE
 # Frame ConfigStatus: A signal within the frame exceeds the frame boundaries
 # (Payload Length).
 DB_CONFIG_SIG_OUT_OF_FRAME = _cconsts.NX_ERR_DB_CONFIG_SIG_OUT_OF_FRAME
 # Frame ConfigStatus: A signal within the frame overlaps another signal.
 DB_CONFIG_SIG_OVERLAPPED = _cconsts.NX_ERR_DB_CONFIG_SIG_OVERLAPPED
 # Frame ConfigStatus: A integer signal within the frame is defined with more
 # than 52 bits. Not supported.
 DB_CONFIG_SIG52_BIT_INTEGER = _cconsts.NX_ERR_DB_CONFIG_SIG52_BIT_INTEGER
 # Frame ConfigStatus: Frame is defined with wrong number of bytes Allowed
 # values: - CAN: 0-8, - Flexray: 0-254 and even number.
 DB_CONFIG_FRAME_NUM_BYTES = _cconsts.NX_ERR_DB_CONFIG_FRAME_NUM_BYTES
 # You are trying to add transmitted FlexRay frames to an ECU, with at least
 # two of them having Startup or Sync property on. Only one Sync or Startup
 # frame is allowed to be sent by an ECU.
 MULT_SYNC_STARTUP = _cconsts.NX_ERR_MULT_SYNC_STARTUP
 # You are trying to add TX/RX frames to an ECU which are defined in a
 # different cluster than the ECU.
 INVALID_CLUSTER = _cconsts.NX_ERR_INVALID_CLUSTER
 # Database name parameter is incorrect. Solution: Use a valid name for the
 # database, e.g. ":memory:" for in-memory database.
 DATABASE_NAME = _cconsts.NX_ERR_DATABASE_NAME
 # Database object is locked because it is used in a session. Solution:
 # Configure the database before using it in a session.
 DATABASE_OBJECT_LOCKED = _cconsts.NX_ERR_DATABASE_OBJECT_LOCKED
 # Alias name passed to a function is not defined. Solution: Define the alias
 # before calling the function.
 ALIAS_NOT_FOUND = _cconsts.NX_ERR_ALIAS_NOT_FOUND
 # Database file cannot be saved because frames are assigned to FlexRay
 # channels not defined in the cluster. Solution: Verify that all frames in the
 # FlexRay cluster are assigned to an existing cluster channel.
 CLUSTER_FRAME_CHANNEL_RELATION = _cconsts.NX_ERR_CLUSTER_FRAME_CHANNEL_RELATION
 # Frame ConfigStatus: This FlexRay frame transmitted in a dynamic segment uses
 # both channels A and B. This is not allowed. Solution: Use either channel A
 # or B.
 DYN_FLEX_RAY_FRAME_CHAN_AAND_B = _cconsts.NX_ERR_DYN_FLEX_RAY_FRAME_CHAN_AAND_B
 # Database is locked because it is being modified by an another instance of
 # the same application. Solution: Close the database in the other application
 # instance.
 DATABASE_LOCKED_IN_USE = _cconsts.NX_ERR_DATABASE_LOCKED_IN_USE
 # A frame name is ambiguous, e.g. a frame with the same name exists in another
 # cluster. Solution: Specify the cluster name for the frame using the required
 # syntax.
 AMBIGUOUS_FRAME_NAME = _cconsts.NX_ERR_AMBIGUOUS_FRAME_NAME
 # A signal name is ambiguous, e.g. a signal with the same name exists in
 # another frame. Solution: Use [frame].[signal] syntax for the signal.
 AMBIGUOUS_SIGNAL_NAME = _cconsts.NX_ERR_AMBIGUOUS_SIGNAL_NAME
 # An ECU name is ambiguous, e.g. an ECU with the same name exists in another
 # cluster. Solution: Specify the cluster name for the ECU using the required
 # syntax.
 AMBIGUOUS_ECU_NAME = _cconsts.NX_ERR_AMBIGUOUS_ECU_NAME
 # A subframe name is ambiguous, e.g. a subframe with the same name exists in
 # another cluster. Solution: Specify the cluster name for the subframe using
 # the required syntax.
 AMBIGUOUS_SUBFRAME_NAME = _cconsts.NX_ERR_AMBIGUOUS_SUBFRAME_NAME
 # A LIN schedule name is ambiguous, e.g. a schedule with the same name exists
 # in another cluster. Solution: Specify the cluster name for the schedule
 # using the required syntax.
 AMBIGUOUS_SCHEDULE_NAME = _cconsts.NX_ERR_AMBIGUOUS_SCHEDULE_NAME
 # A LIN schedule with the same name already exists in the database. Solution:
 # Use another name for this schedule.
 DUPLICATE_SCHEDULE_NAME = _cconsts.NX_ERR_DUPLICATE_SCHEDULE_NAME
 # A LIN diagnostic schedule change requires the diagnostic schedule to be
 # defined in the database. Solution: Define the diagnostic schedule in the
 # database.
 DIAGNOSTIC_SCHEDULE_NOT_DEFINED = _cconsts.NX_ERR_DIAGNOSTIC_SCHEDULE_NOT_DEFINED
 # Multiplexers (mode-dependent signals) are not supported when the given
 # protocol is used. Solution: Contact National Instruments to see whether
 # there is a newer NI-XNET version that supports multiplexers for the given
 # protocol.
 PROTOCOL_MUX_NOT_SUPPORTED = _cconsts.NX_ERR_PROTOCOL_MUX_NOT_SUPPORTED
 # Saving a FIBEX file containing a LIN cluster is not supported in this
 # NI-XNET version. Solution: Contact National Instruments to see whether there
 # is a newer NI-XNET version that supports saving a FIBEX file that contains a
 # LIN cluster.
 SAVE_LI_NNOT_SUPPORTED = _cconsts.NX_ERR_SAVE_LI_NNOT_SUPPORTED
 # This property requires an ECU configured as LIN master to be present in this
 # cluster. Solution: Create a LIN master ECU in this cluster.
 LI_NMASTER_NOT_DEFINED = _cconsts.NX_ERR_LI_NMASTER_NOT_DEFINED
 # You cannot mix open of NI-XNET database objects as both manual and
 # automatic. You open manually by calling the Database Open VI. You open
 # automatically when you 1) wire the IO name directly to a property node or
 # VI, 2) branch a wire to multiple data flows on the diagram, 3) use the IO
 # name with a VI or property node after closing it with the Database Close VI.
 # Solution: Change your diagram to use the manual technique in all locations
 # (always call Open and Close VIs), or to use the automatic technique in all
 # locations (never call Open or Close VIs).
 MIX_AUTO_MANUAL_OPEN = _cconsts.NX_ERR_MIX_AUTO_MANUAL_OPEN
 # Due to problems in LabVIEW versions 8.5 through 8.6.1, automatic open of
 # NI-XNET database objects is not supported. You open automatically when you
 # 1) wire the IO name directly to a property node or VI, 2) branch a wire to
 # multiple data flows on the diagram, 3) use the IO name with a VI or property
 # node after closing it with the Database Close VI. Solution: Change your
 # diagram to call the Database Open VI prior to any use (VI or property node)
 # in a data flow (including a new wire branch). Change your diagram to call
 # the Database Close VI when you are finished using the database in your
 # application.
 AUTO_OPEN_NOT_SUPPORTED = _cconsts.NX_ERR_AUTO_OPEN_NOT_SUPPORTED
 # You called a Write function with the number of array elements (frames or
 # signals) different than the number of elements configured in the session
 # (such as the "list" parameter of the Create Session function). Solution:
 # Write the same number of elements as configured in the session.
 WRONG_NUM_SIGNALS_WRITTEN = _cconsts.NX_ERR_WRONG_NUM_SIGNALS_WRITTEN
 # You used XNET session from multiple LabVIEW projects (or multiple
 # executables), which NI-XNET does not support. Solution: Run XNET sessions in
 # only one LabVIEW project at a time.
 MULTIPLE_LV_PROJECT = _cconsts.NX_ERR_MULTIPLE_LV_PROJECT
 # When an XNET session is used at runtime, all sessions in the same scope are
 # created on the interface. The same scope is defined as all sessions within
 # the same LabVIEW project which use the same cluster and interface (same
 # physical cable configuration). If you attempt to use a session in the same
 # scope after running the VI, this error occurs. The most likely cause is that
 # you added a new session, and tried to use that new session in a running VI.
 # Solution: Configure all session in LabVIEW project, then run the VI(s) that
 # use those sessions.
 SESSION_CONFLICT_LV_PROJECT = _cconsts.NX_ERR_SESSION_CONFLICT_LV_PROJECT
 # You used an empty name for an XNET database object (database, cluster, ECU,
 # frame, or signal). Empty name is not supported. Solution: Refer to NI-XNET
 # help for IO names to review the required syntax for the name, and change
 # your code to use that syntax.
 DB_OBJECT_NAME_EMPTY = _cconsts.NX_ERR_DB_OBJECT_NAME_EMPTY
 # You used a name for an XNET database object (such as frame or signal) that
 # did not include a valid cluster selection. Solution: Refer to the NI-XNET
 # help for the IO name that you are using, and use the syntax specified for
 # that class, which includes the cluster selection.
 MISSING_ALIAS_IN_DB_OBJECT_NAME = _cconsts.NX_ERR_MISSING_ALIAS_IN_DB_OBJECT_NAME
 # Unsupported FIBEX file version. Solution: Use only FIBEX versions that are
 # supported by this version of NI-XNET. Please see the NI-XNET documentation
 # for information on which FIBEX versions are currently supported.
 FIBEX_IMPORT_VERSION = _cconsts.NX_ERR_FIBEX_IMPORT_VERSION
 # You used an empty name for the XNET Session. Empty name is not supported.
 # Solution: Use a valid XNET session name from your LabVIEW project.
 EMPTY_SESSION_NAME = _cconsts.NX_ERR_EMPTY_SESSION_NAME
 # There is not enough message RAM on the FlexRay hardware to configure the
 # data partition for the object(s). Solution: Please refer to the manual for
 # limitations on the number of objects that can be created at any given time
 # based on the payload length.
 NOT_ENOUGH_MESSAGE_RAM_FOR_OBJECT = _cconsts.NX_ERR_NOT_ENOUGH_MESSAGE_RAM_FOR_OBJECT
 # The FlexRay keyslot ID has been configured and a startup session has been
 # created. Either the keyslot ID needs to be configured OR the startup session
 # needs to be created. Both cannot exist at the same time. Solution: Choose a
 # single method to configure startup sessions in your application.
 KEY_SLOT_ID_CONFIG = _cconsts.NX_ERR_KEY_SLOT_ID_CONFIG
 # An unsupported session was created. For example, stream output is not
 # supported on FlexRay hardware. Solution: Only use supported sessions in your
 # application.
 UNSUPPORTED_SESSION = _cconsts.NX_ERR_UNSUPPORTED_SESSION
 # An XNET session was created after starting the Interface. Only the Stream
 # Input session in the subordinate mode can be created after the Interface has
 # started. Solution: Create sessions prior to starting the XNET Interface in
 # your application.
 OBJECT_CREATED_AFTER_START = _cconsts.NX_ERR_OBJECT_CREATED_AFTER_START
 # The Single Slot property was enabled on the XNET FlexRay Interface after the
 # interface had started. Solution: Enable the Single Slot property prior to
 # starting the XNET FlexRay Interface.
 SINGLE_SLOT_ENABLED_AFTER_START = _cconsts.NX_ERR_SINGLE_SLOT_ENABLED_AFTER_START
 # The FlexRay macrotick offset specified for XNET Create Timing Source is
 # unsupported. Example: Specifying a macrotick offset greater than
 # MacroPerCycle will result in this error. Solution: Specify a macrotick
 # offset within the supported range for the cluster.
 UNSUPPORTED_NUM_MACROTICKS = _cconsts.NX_ERR_UNSUPPORTED_NUM_MACROTICKS
 # You used invalid syntax in the name of a database object (signal, frame, or
 # ECU). For example, you may have specified a frame's name as
 # [cluster].[frame], which is allowed in NI-XNET for C/C++, but not NI-XNET
 # for LabVIEW. Solution: Use the string syntax specified in the help topic for
 # the XNET I/O name class you are using.
 BAD_SYNTAX_IN_DATABASE_OBJECT_NAME = _cconsts.NX_ERR_BAD_SYNTAX_IN_DATABASE_OBJECT_NAME
 # A LIN schedule entry name is ambiguous, e.g. a schedule entry with the same
 # name exists in another schedule. Solution: Specify the schedule name for the
 # schedule entry using the required syntax.
 AMBIGUOUS_SCHEDULE_ENTRY_NAME = _cconsts.NX_ERR_AMBIGUOUS_SCHEDULE_ENTRY_NAME
 # A LIN schedule entry with the same name already exists in the schedule.
 # Solution: Use another name for this schedule entry.
 DUPLICATE_SCHEDULE_ENTRY_NAME = _cconsts.NX_ERR_DUPLICATE_SCHEDULE_ENTRY_NAME
 # At least one of the frames in the session has an undefined identifier.
 # Solution: Set the frame's "Identifier (Slot)" property before creating the
 # session.
 UNDEFINED_FRAME_ID = _cconsts.NX_ERR_UNDEFINED_FRAME_ID
 # At least one of the frames in the session has an undefined payload length.
 # Solution: Set the frame's "Payload Length (in bytes)" property before
 # creating the session.
 UNDEFINED_FRAME_PAYLOAD_LENGTH = _cconsts.NX_ERR_UNDEFINED_FRAME_PAYLOAD_LENGTH
 # At least one of the signals in the session has an undefined start bit.
 # Solution: Set the "Start Bit" property of the signal before creating the
 # session.
 UNDEFINED_SIGNAL_START_BIT = _cconsts.NX_ERR_UNDEFINED_SIGNAL_START_BIT
 # At least one of the signals in the session has an undefined number of bits.
 # Solution: Set the "Number of Bits" property of the signal before creating
 # the session.
 UNDEFINED_SIGNAL_NUM_BITS = _cconsts.NX_ERR_UNDEFINED_SIGNAL_NUM_BITS
 # At least one of the signals in the session has an undefined byte order.
 # Solution: Set the "Byte Order" property of the signal before creating the
 # session.
 UNDEFINED_SIGNAL_BYTE_ORDER = _cconsts.NX_ERR_UNDEFINED_SIGNAL_BYTE_ORDER
 # At least one of the signals in the session has an undefined data type.
 # Solution: Set the "Data Type" property of the signal before creating the
 # session.
 UNDEFINED_SIGNAL_DATA_TYPE = _cconsts.NX_ERR_UNDEFINED_SIGNAL_DATA_TYPE
 # At least one of the subframes in the session has an undefined multiplexer
 # value. Solution: Set the "Multiplexer Value" property of the subframe before
 # creating the session.
 UNDEFINED_SUBF_MUX_VALUE = _cconsts.NX_ERR_UNDEFINED_SUBF_MUX_VALUE
 # You provided an invalid index to Write (State LIN Schedule Change).
 # Solution: Use a number from to N-1, where N is the number of LIN schedules
 # returned from the cluster property LIN Schedules. If you are using LabVIEW,
 # the string for the number must be decimal (not hexadecimal).
 INVALID_LIN_SCHED_INDEX = _cconsts.NX_ERR_INVALID_LIN_SCHED_INDEX
 # You provided an invalid name to Write (State LIN Schedule Change). Solution:
 # Use a valid LIN schedule name returned from the cluster property LIN
 # Schedules, or the session property Interface LIN Schedules. You can use the
 # short name (schedule only) or long name (schedule plus database and
 # cluster).
 INVALID_LIN_SCHED_NAME = _cconsts.NX_ERR_INVALID_LIN_SCHED_NAME
 # You provided an invalid active index for the session property.
 INVALID_ACTIVE_FRAME_INDEX = _cconsts.NX_ERR_INVALID_ACTIVE_FRAME_INDEX
 # You provided an invalid name for Frame:Active of the session property node.
 # Solution: Use a valid item name from the session's List property. You can
 # use the short name (frame or signal only) or long name (frame/signal plus
 # database and cluster).
 INVALID_ACTIVE_FRAME_NAME = _cconsts.NX_ERR_INVALID_ACTIVE_FRAME_NAME
 # The database you are using requires using PDUs, and the operation is
 # ambiguous with respect to PDUs. Example: You are trying to get the frame
 # parent of the signal, but the PDU in which the signal is contained is
 # referenced in multiple frames.
 AMBIGUOUS_PDU = _cconsts.NX_ERR_AMBIGUOUS_PDU
 # A PDU with the same name already exists in the cluster. Solution: Use
 # another name for this PDU.
 DUPLICATE_PDU = _cconsts.NX_ERR_DUPLICATE_PDU
 # You are trying to assign start bits or update bits to PDUs referenced in a
 # frame, but the number of elements in this array is different than the number
 # of referenced PDUs. Solution: Use the same number of elements in the array
 # as in the PDU references array.
 NUMBER_OF_PD_US = _cconsts.NX_ERR_NUMBER_OF_PD_US
 # The configuration of this object requires using advanced PDUs, which the
 # given protocol does not support. Solution: You cannot use this object in the
 # given protocol.
 PD_US_REQUIRED = _cconsts.NX_ERR_PD_US_REQUIRED
 # The maximum number of PDUs has been exceeded. Solution: Use fewer PDUs in
 # your sessions.
 MAX_PD_US = _cconsts.NX_ERR_MAX_PD_US
 # This mode value is not currently supported. Solution: Use a valid value.
 UNSUPPORTED_MODE = _cconsts.NX_ERR_UNSUPPORTED_MODE
 # The firmware image on your XNET hardware is corrupted. Solution: Update the
 # firmware of this XNET hardware in MAX.
 BAD_FPGA_SIGNATURE = _cconsts.NX_ERR_BAD_FPGA_SIGNATURE
 BADC_SERIES_FPGA_SIGNATURE = _cconsts.NX_ERR_BADC_SERIES_FPGA_SIGNATURE
 # The firmware version of your XNET hardware is not in sync with your host
 # computer. Solution: Update the firmware of this XNET hardware in MAX.
 BAD_FPGA_REVISION = _cconsts.NX_ERR_BAD_FPGA_REVISION
 BADC_SERIES_FPGA_REVISION = _cconsts.NX_ERR_BADC_SERIES_FPGA_REVISION
 # The firmware version of your XNET C Series module is not in sync with the
 # NI-XNET software on your remote target. Solution: Update the NI-XNET
 # software on the remote target.
 BAD_FPGA_REVISION_ON_TARGET = _cconsts.NX_ERR_BAD_FPGA_REVISION_ON_TARGET
 # The terminal you are trying to use is already in use. Only one connection
 # per terminal is allowed. Solution: disconnect the terminal that is already
 # in use.
 ROUTE_IN_USE = _cconsts.NX_ERR_ROUTE_IN_USE
 # You need to install a supported version of NI-DAQmx for your XNET C Series
 # module to work correctly with your Compact DAQ system. Solution: Check the
 # NI-XNET readme file for supported versions of the NI-DAQmx driver software.
 DA_QMX_INCORRECT_VERSION = _cconsts.NX_ERR_DA_QMX_INCORRECT_VERSION
 # Unable to create the requested route. This may be caused by a routing
 # conflict or an invalid terminal name. Solution: Fix invalid terminal names,
 # such as a blank string. Since NI-XNET relies on the NI-DAQmx driver software
 # to create routes on Compact DAQ chassis, use DAQmx to resolve routing
 # conflicts.
 ADD_ROUTE = _cconsts.NX_ERR_ADD_ROUTE
 # You attempted to transmit a go to sleep frame (by setting the LIN Sleep mode
 # to Remote Sleep) on a LIN interface configured as slave. In conformance with
 # the LIN protocol standard, only an interface configured as master may
 # transmit a go to sleep frame.
 REMOTE_SLEEP_ON_LIN_SLAVE = _cconsts.NX_ERR_REMOTE_SLEEP_ON_LIN_SLAVE
 # You attempted to set properties related to Sleep and Wakeup when the FlexRay
 # cluster defined in the Fibex file does not support it. Solution: Edit the
 # Fibex file used in your application to include all relevant cluster wakeup
 # attributes.
 SLEEP_WAKEUP_NOT_SUPPORTED = _cconsts.NX_ERR_SLEEP_WAKEUP_NOT_SUPPORTED
 # The data payload written for a diagnostic frame for transmit does not
 # conform to the LIN transport layer specification. Solution: Ensure the data
 # payload for a diagnostic frame conforms to the transport layer
 # specification.
 LIN_TRANSPORT_LAYER = _cconsts.NX_ERR_LIN_TRANSPORT_LAYER
 # An error occurred within the NI-XNET example code for logfile access (TDMS).
 # Solution: For LabVIEW, the subVI with the error is shown as the source, and
 # you can open that subVI to determine the cause of the problem. For other
 # programming languages, review the source code for the logfile example to
 # determine the cause of the problem.
 LOGFILE = _cconsts.NX_ERR_LOGFILE
 # You attempted to write a LIN schedule and use a stream output replay timing
 # mode concurrently. You can only use the stream output immediate timing mode
 # cuncurrently with the LIN scheduler.
 STRM_OUT_TMG_LIN_SCHEDULER_CONFLICT = _cconsts.NX_ERR_STRM_OUT_TMG_LIN_SCHEDULER_CONFLICT
 # You attempted to create a session that is incompatible with the LIN
 # interface personality (master or slave), or set the LIN interface
 # personality to one that is incompatible with a session already created for
 # it. For example, setting the LIN interface to slave after creating a stream
 # output session will report this error, because only LIN interface as master
 # supports stream output.
 SESSN_TYPE_LIN_INTF_PRS_INCOMPATIBLE = _cconsts.NX_ERR_SESSN_TYPE_LIN_INTF_PRS_INCOMPATIBLE
 # You attempted to save an LDF or DBC database, but the passed reference is
 # not a database cluster. Solution: A cluster reference must be used to
 # specify the cluster you want to export.
 SAVE_CLUSTER_ONLY = _cconsts.NX_ERR_SAVE_CLUSTER_ONLY
 # Need to define for compatibility with older versions
 SAVE_LDF_CLUSTER_ONLY = _cconsts.NX_ERR_SAVE_LDF_CLUSTER_ONLY
 # You tried to assign the same interface name twice. This is not permitted.
 # Solution: Assign a unique name to an interface.
 DUPLICATE_INTERFACE_NAME = _cconsts.NX_ERR_DUPLICATE_INTERFACE_NAME
 # Transceiver cable hardware revision is too new. The current driver does not
 # support this transceiver cable. Solution: Upgrade the NI-XNET driver.
 INCOMPATIABLE_TRANSCEIVER_REVISION = _cconsts.NX_ERR_INCOMPATIABLE_TRANSCEIVER_REVISION
 # Transceiver cable image revision is too new. The current driver does not
 # support this transceiver cable. Solution: Upgrade the NI-XNET driver or
 # downgrade the image on the transceiver cable.
 INCOMPATIABLE_TRANSCEIVER_IMAGE = _cconsts.NX_ERR_INCOMPATIABLE_TRANSCEIVER_IMAGE
 # The property does not apply to this type of hardware. Solution: Do not apply
 # the property to this type of hardware.
 PROPERTY_NOTSUPPORTED = _cconsts.NX_ERR_PROPERTY_NOTSUPPORTED
 # Exporting cluster into the specified database type failed. Solution: Ensure
 # the database configuration is complete. Refer to the standard documentation
 # for the related file format.
 SEMANTIC = _cconsts.NX_ERR_EXPORT_SEMANTIC
 # A J1939 input queue overflowed. Reading large J1939 frames can make the
 # queue overflow, and the Read function delivers fewer frames then specified.
 # Solution: Call the Read function again to read the remaining frames.
 J1939_QUEUE_OVERFLOW = _cconsts.NX_ERR_J1939_QUEUE_OVERFLOW
 # You are trying to transmit a non-J1939 frame with more than 8 bytes. Only
 # J1939 frames can use the J1939 transport protocol. Solution: Verify the
 # transport protocol property on the frame in the database.
 NON_J1939_FRAME_SIZE = _cconsts.NX_ERR_NON_J1939_FRAME_SIZE
 # You are trying to transmit a J1939 frame, but no J1939 address is assigned
 # to the session. Solution: Set the address using the J1939 address property.
 J1939_MISSING_ADDRESS = _cconsts.NX_ERR_J1939_MISSING_ADDRESS
 # The received J1939 TP.CM_CTS message has the wrong total size.
 J1939_ADDRESS_LOST = _cconsts.NX_ERR_J1939_ADDRESS_LOST
 # The next packet value of the received J1939 TP.CM_CTS message is larger than
 # the total number of packets.
 J1939_CTS_NEXT_PCK_LARGER_TOTAL_PCK_NUM = _cconsts.NX_ERR_J1939_CTS_NEXT_PCK_LARGER_TOTAL_PCK_NUM
 # The received J1939 TP.CM_CTS message has a number of packets of 0, but the
 # next packet number is not 255.
 J1939_CTS_NEXT_PCK = _cconsts.NX_ERR_J1939_CTS_NEXT_PCK
 # The received J1939 TP.CM_CTS message has not does not have the same PGN as
 # in the TP.CM_RTS message.
 J1939_CTS_NEXT_PCK_NULL = _cconsts.NX_ERR_J1939_CTS_NEXT_PCK_NULL
 # The received J1939 TP.CM_CTS message does not have the same PGN as in the
 # TP.CM_RTS message.
 J1939_CTS_PGN = _cconsts.NX_ERR_J1939_CTS_PGN
 # Received unexpected sequence number in the J1939 TP.DT message.
 J1939_UNEXPECTED_SEQ_NUM = _cconsts.NX_ERR_J1939_UNEXPECTED_SEQ_NUM
 # More Packets are requested than allowed in the J1939 TP.CM_CTS message.
 J1939_MORE_PCK_REQ_THAN_ALLOWED = _cconsts.NX_ERR_J1939_MORE_PCK_REQ_THAN_ALLOWED
 # J1939 Timeout T1 while waiting for data.
 J1939_TIMEOUT_T1 = _cconsts.NX_ERR_J1939_TIMEOUT_T1
 # J1939 Timeout T2 while waiting for data.
 J1939_TIMEOUT_T2 = _cconsts.NX_ERR_J1939_TIMEOUT_T2
 # J1939 Timeout T3 while waiting for TP.CM_CTS or TP.CM_EndOfMsgAck.
 J1939_TIMEOUT_T3 = _cconsts.NX_ERR_J1939_TIMEOUT_T3
 # J1939 Timeout T4 while waiting for next CTS MSG.
 J1939_TIMEOUT_T4 = _cconsts.NX_ERR_J1939_TIMEOUT_T4
 # Received wrong DLC in the J1939 TP.CM_RTS message. DLC must be 8.
 J1939_RTS_DLC = _cconsts.NX_ERR_J1939_RTS_DLC
 # Received wrong DLC in the J1939 TP.CM_CTS message. DLC must be 8.
 J1939_CTS_DLC = _cconsts.NX_ERR_J1939_CTS_DLC
 # Received wrong DLC in the J1939 TP.CM_BAM message. DLC must be 8.
 J1939_BAM_DLC = _cconsts.NX_ERR_J1939_BAM_DLC
 # Received wrong DLC in the J1939 TP.DT message. DLC must be 8.
 J1939_DT_DLC = _cconsts.NX_ERR_J1939_DT_DLC
 # Received wrong DLC in the J1939 TP.CM_Abort message. DLC must be 8.
 J1939_ABORT_DLC = _cconsts.NX_ERR_J1939_ABORT_DLC
 # Received wrong DLC in the J1939 TP.CM_EndOfMsgAck message. DLC must be 8.
 J1939_EOMA_DLC = _cconsts.NX_ERR_J1939_EOMA_DLC
 # Received wrong PGN in the J1939 TP.CM_Abort message.
 J1939_ABORT_PGN = _cconsts.NX_ERR_J1939_ABORT_PGN
 # Internal error occurred for send TP.CM_CTS Hold Message.
 J1939_CTS_HOLD_MSG = _cconsts.NX_ERR_J1939_CTS_HOLD_MSG
 # Invalid total message size in J1939 TP.CM_RTS message. Expect 9..1785.
 J1939_INVALID_TOTAL_SIZE = _cconsts.NX_ERR_J1939_INVALID_TOTAL_SIZE
 # Total number of packets in received J1939 TP.CM_RTS message must be greater
 # than 1.
 J1939_TOTAL_PCK_NUM = _cconsts.NX_ERR_J1939_TOTAL_PCK_NUM
 # Reserved data bytes in J1939 received message are not BFF63FF.
 J1939_RESERVED_DATA = _cconsts.NX_ERR_J1939_RESERVED_DATA
 # Not enough system resources for the J1939 Transport Protocol.
 J1939_NOT_ENOUGH_SYS_RES = _cconsts.NX_ERR_J1939_NOT_ENOUGH_SYS_RES
 # Received J1939 TP.CM_Abort message with reason ActiveConnection: Already in
 # one or more connection managed sessions and cannot support another.
 J1939_ABORT_MSG_ACTIVE_CONNECTION = _cconsts.NX_ERR_J1939_ABORT_MSG_ACTIVE_CONNECTION
 # Received J1939 TP.CM_Abort message with reason NotEnoughSystemResources:
 # System resources were needed for another task, so this connection managed
 # session was terminated.
 J1939_ABORT_MSG_NOT_ENOUGH_SYS_RES = _cconsts.NX_ERR_J1939_ABORT_MSG_NOT_ENOUGH_SYS_RES
 # Received J1939 TP.CM_Abort message with reason Timeout: A timeout occurred,
 # and this is the connection abort to close the session.
 J1939_ABORT_MSG_TIMEOUT = _cconsts.NX_ERR_J1939_ABORT_MSG_TIMEOUT
 # Received J1939 TP.CM_Abort message with reason CtsReceived: CTS messages
 # received when data transfer is in progress.
 J1939_ABORT_MSG_CTS_REC = _cconsts.NX_ERR_J1939_ABORT_MSG_CTS_REC
 # Received J1939 TP.CM_Abort message with reason MaxRetransmit: Maximum
 # retransmit request limit reached.
 J1939_ABORT_MSG_MAX_RETRANSMIT = _cconsts.NX_ERR_J1939_ABORT_MSG_MAX_RETRANSMIT
 # Remote communication with the LabVIEW RT target failed because the host and
 # target versions of NI-XNET are different. Solution: On the target, install
 # the same NI-XNET version that is installed on the host.
 RPC_VERSION = _cconsts.NX_ERR_RPC_VERSION
 # The CAN frame I/O mode is higher than the CAN cluster I/O mode. This frame
 # cannot be transmitted on the network. Solution: Change the frame or cluster
 # I/O mode.
 FRAME_CAN_IO_MODE = _cconsts.NX_ERR_FRAME_CAN_IO_MODE
 # The current driver cannot update the firmware on your hardware. Solution:
 # Ask National Instruments for compatible driver software.
 INCOMPATIBLE_FLASH = _cconsts.NX_ERR_INCOMPATIBLE_FLASH
 # You are trying to use the CAN Transmit I/O Mode (TxIoMode) property in an
 # unsupported interface mode. Solution: You can use this property in only
 # non-ISO or ISO Legacy mode.
 TX_IO_MODE = _cconsts.NX_ERR_TX_IO_MODE
 # You are trying to use the XS Transceiver Cable on unsupported hardware. This
 # currently requires a PXIe-8510 board.
 XS_DONGLE_UNSUPPORTED_BOARD = _cconsts.NX_ERR_XS_DONGLE_UNSUPPORTED_BOARD
 # You are trying to use a database alias name that contains an invalid
 # character (for example, a comma).
 INVALID_CHAR_IN_DATABASE_ALIAS = _cconsts.NX_ERR_INVALID_CHAR_IN_DATABASE_ALIAS
 # You are trying to use a database filepath that contains an invalid character
 # (for example, a comma).
 INVALID_CHAR_IN_DATABASE_FILEPATH = _cconsts.NX_ERR_INVALID_CHAR_IN_DATABASE_FILEPATH
 # You are trying to use CAN FD with a non-HS/FD port. CAN FD is supported with
 # High Speed CAN only.
 INVALID_CAN_FD_PORT_TYPE = _cconsts.NX_ERR_INVALID_CAN_FD_PORT_TYPE
 # An unconditional LIN schedule entry is wrongly configured.
 # Solution: Reference exactly one frame in the entry.
 INV_UNCONDITIONAL_ENTRY = _cconsts.NX_ERR_INV_UNCONDITIONAL_ENTRY
 # An event LIN schedule entry has no collision resolving schedule assigned.
 # Solution: Assign a schedule to the schedule entry.
 EVENT_ENTRY_NO_SCHEDULE = _cconsts.NX_ERR_EVENT_ENTRY_NO_SCHEDULE
 # You have connected your USB device to a port that only supports Full Speed
 # (USB 1.1). NI-XNET USB devices require at least High Speed (USB 2.0+)
 # support for correct operation.
 UNSUPPORTED_USB_SPEED = _cconsts.NX_ERR_UNSUPPORTED_USB_SPEED

[docs]class Warn(enum.Enum):
 """Warning codes returned by NI-XNET."""
 # The CAN FD baud rate you supplied exceeds the capabilities the transceiver
 # manufacturer specified. In our internal testing, we have found this baud
 # rate to run, but bus errors may be detected or generated during
 # communication. Refer to the NI-XNET CAN Hardware Overview section in the
 # NI-XNET Hardware and Software Manual for more information.
 FD_BAUD_EXCEEDS_CAPABILITY = _cconsts.NX_WARN_FD_BAUD_EXCEEDS_CAPABILITY
 # There is a warning from importing the database file. For details, refer to
 # the import log file nixnetfx-log.txt or nixnetldf-log.txt under
 # %LOCALAPPDATA%\\National Instruments\\NI-XNET\\log. On Windows XP, the files
 # can be found under %USERPROFILE%\\Local Settings\\Application Data\\National
 # Instruments\\NI-XNET\\log. Please note that this location may be hidden on
 # your computer.
 DATABASE_IMPORT = _cconsts.NX_WARN_DATABASE_IMPORT
 # The database file has been imported, but it was not created by the XNET
 # Editor or using the XNET API. Saving the database file with the XNET API or
 # XNET Editor may lose information from the original file.
 DATABASE_IMPORT_FIBEX_NO_XNET_FILE = _cconsts.NX_WARN_DATABASE_IMPORT_FIBEX_NO_XNET_FILE
 # The database file was not created by the XNET Editor or using the XNET API.
 # Additionally, there is another warning. For details, refer to the import log
 # file nixnetfx-log.txt under %LOCALAPPDATA%\\National Instruments\\NI-XNET\\log.
 # On Windows XP, the file can be found under %USERPROFILE%\\Local
 # Settings\\Application Data\\National Instruments\\NI-XNET\\log. Please note that
 # this location may be hidden on your computer.
 DATABASE_IMPORT_FIBEX_NO_XNET_FILE_PLUS_WARNING = _cconsts.NX_WARN_DATABASE_IMPORT_FIBEX_NO_XNET_FILE_PLUS_WARNING
 # Close Database returns a warning instead of an error when an invalid
 # reference is passed to the function.
 DATABASE_BAD_REFERENCE = _cconsts.NX_WARN_DATABASE_BAD_REFERENCE
 # Your are retrieving signals from a frame that uses advanced PDU
 # configuration. The signal start bit is given relative to the PDU, and it may
 # be different than the start bit relative to the frame.
 ADVANCED_PDU = _cconsts.NX_WARN_ADVANCED_PDU
 # The multiplexer size exceeds 16 bit. This is not supported for Single Point
 # sessions.
 MUX_EXCEEDS16_BIT = _cconsts.NX_WARN_MUX_EXCEEDS16_BIT

[docs]class ObjectClass(enum.Enum):
 DATABASE = _cconsts.NX_CLASS_DATABASE
 CLUSTER = _cconsts.NX_CLASS_CLUSTER
 FRAME = _cconsts.NX_CLASS_FRAME
 SIGNAL = _cconsts.NX_CLASS_SIGNAL
 SUBFRAME = _cconsts.NX_CLASS_SUBFRAME
 ECU = _cconsts.NX_CLASS_ECU
 LIN_SCHED = _cconsts.NX_CLASS_LIN_SCHED
 LIN_SCHED_ENTRY = _cconsts.NX_CLASS_LIN_SCHED_ENTRY
 PDU = _cconsts.NX_CLASS_PDU
 SESSION = _cconsts.NX_CLASS_SESSION
 SYSTEM = _cconsts.NX_CLASS_SYSTEM
 DEVICE = _cconsts.NX_CLASS_DEVICE
 INTERFACE = _cconsts.NX_CLASS_INTERFACE
 ALIAS = _cconsts.NX_CLASS_ALIAS

[docs]class CreateSessionMode(enum.Enum):
 """Create Session Mode.

 The session mode specifies the data type (signals or frames), direction
 (input or output), and how data is transferred between your application and
 the network.

 Values:
 SIGNAL_IN_SINGLE_POINT:
 Reads the most recent value received for each signal. This mode
 typically is used for control or simulation applications, such as
 Hardware In the Loop (HIL).
 SIGNAL_IN_WAVEFORM:
 Using the time when the signal frame is received, resamples the
 signal data to a waveform with a fixed sample rate. This mode
 typically is used for synchronizing XNET data with DAQmx
 analog/digital input channels.
 SIGNAL_IN_XY:
 For each frame received, provides its signals as a value/timestamp
 pair. This is the recommended mode for reading a sequence of all
 signal values.
 SIGNAL_OUT_SINGLE_POINT:
 Writes signal values for the next frame transmit. This mode
 typically is used for control or simulation applications, such as
 Hardware In the Loop (HIL).
 SIGNAL_OUT_WAVEFORM:
 Using the time when the signal frame is transmitted according to the
 database, resamples the signal data from a waveform with a fixed
 sample rate. This mode typically is used for synchronizing XNET data
 with DAQmx analog/digital output channels.
 SIGNAL_OUT_XY:
 Provides a sequence of signal values for transmit using each frame's
 timing as the database specifies. This is the recommended mode for
 writing a sequence of all signal values.
 FRAME_IN_STREAM:
 Reads all frames received from the network using a single stream.
 This mode typically is used for analyzing and/or logging all frame
 traffic in the network.
 FRAME_IN_QUEUED:
 Reads data from a dedicated queue per frame. This mode enables your
 application to read a sequence of data specific to a frame (for
 example, CAN identifier).
 FRAME_IN_SINGLE_POINT:
 Reads the most recent value received for each frame. This mode
 typically is used for control or simulation applications that
 require lower level access to frames (not signals).
 FRAME_OUT_STREAM:
 Transmits an arbitrary sequence of frame values using a single
 stream. The values are not limited to a single frame in the
 database, but can transmit any frame.
 FRAME_OUT_QUEUED:
 Provides a sequence of values for a single frame, for transmit using
 that frame's timing as the database specifies.
 FRAME_OUT_SINGLE_POINT:
 Writes frame values for the next transmit. This mode typically is
 used for control or simulation applications that require lower level
 access to frames (not signals).
 SIGNAL_CONVERSION_SINGLE_POINT:
 This mode does not use any hardware. It is used to convert data
 between the signal representation and frame representation.
 """
 SIGNAL_IN_SINGLE_POINT = _cconsts.NX_MODE_SIGNAL_IN_SINGLE_POINT
 SIGNAL_IN_WAVEFORM = _cconsts.NX_MODE_SIGNAL_IN_WAVEFORM
 SIGNAL_IN_XY = _cconsts.NX_MODE_SIGNAL_IN_XY
 SIGNAL_OUT_SINGLE_POINT = _cconsts.NX_MODE_SIGNAL_OUT_SINGLE_POINT
 SIGNAL_OUT_WAVEFORM = _cconsts.NX_MODE_SIGNAL_OUT_WAVEFORM
 SIGNAL_OUT_XY = _cconsts.NX_MODE_SIGNAL_OUT_XY
 FRAME_IN_STREAM = _cconsts.NX_MODE_FRAME_IN_STREAM
 FRAME_IN_QUEUED = _cconsts.NX_MODE_FRAME_IN_QUEUED
 FRAME_IN_SINGLE_POINT = _cconsts.NX_MODE_FRAME_IN_SINGLE_POINT
 FRAME_OUT_STREAM = _cconsts.NX_MODE_FRAME_OUT_STREAM
 FRAME_OUT_QUEUED = _cconsts.NX_MODE_FRAME_OUT_QUEUED
 FRAME_OUT_SINGLE_POINT = _cconsts.NX_MODE_FRAME_OUT_SINGLE_POINT
 SIGNAL_CONVERSION_SINGLE_POINT = _cconsts.NX_MODE_SIGNAL_CONVERSION_SINGLE_POINT

[docs]class StartStopScope(enum.Enum):
 """Start/Stop Scope enum.

 Values:
 NORMAL:
 The session is started followed by starting the interface. This is
 equivalent to calling :any:`nixnet._session.base.SessionBase.start`
 with the Session Only Scope followed by calling
 :any:`nixnet._session.base.SessionBase.start` with the Interface Only Scope.
 SESSION_ONLY:
 The session is placed into the Started state (refer to State Models).
 If the interface is in the Stopped state before this function runs,
 the interface remains in the Stopped state, and no communication
 occurs with the bus. To have multiple sessions start at exactly the
 same time, start each session with the Session Only Scope. When you
 are ready for all sessions to start communicating on the associated
 interface, call :any:`nixnet._session.base.SessionBase.start` with
 the Interface Only scope. Starting a previously started session is
 considered a no-op. This operation sends the command to start the
 session, but does not wait for the session to be started. It is
 ideal for a real-time application where performance is critical.
 INTERFACE_ONLY:
 If the underlying interface is not previously started, the interface
 is placed into the Started state (refer to State Models). After the
 interface starts communicating, all previously started sessions can
 transfer data to and from the bus. Starting a previously started
 interface is considered a no-op.
 SESSION_ONLY_BLOCKING:
 The session is placed in the Started state (refer to State Models).
 If the interface is in the Stopped state before this function runs,
 the interface remains in the Stopped state, and no communication
 occurs with the bus. To have multiple sessions start at exactly the
 same time, start each session with the Session Only Scope. When you
 are ready for all sessions to start communicating on the associated
 interface, call nxStart with the Interface Only Scope. Starting a
 previously started session is considered a no-op. This operation
 waits for the session to start before completing.
 """
 NORMAL = _cconsts.NX_START_STOP_NORMAL
 SESSION_ONLY = _cconsts.NX_START_STOP_SESSION_ONLY
 INTERFACE_ONLY = _cconsts.NX_START_STOP_INTERFACE_ONLY
 SESSION_ONLY_BLOCKING = _cconsts.NX_START_STOP_SESSION_ONLY_BLOCKING

[docs]class BlinkMode(enum.Enum):
 '''Interface blink mode.

 Values:
 DISABLE:
 Disable blinking for identification. This option turns off both
 LEDs for the port.
 ENABLE:
 Enable blinking for identification. Both LEDs of the interface's
 physical port turn on and off. The hardware blinks the LEDs
 automatically until you disable.
 '''
 DISABLE = _cconsts.NX_BLINK_DISABLE
 ENABLE = _cconsts.NX_BLINK_ENABLE

[docs]class ReadState(enum.Enum):
 TIME_CURRENT = _cconsts.NX_STATE_TIME_CURRENT
 TIME_COMMUNICATING = _cconsts.NX_STATE_TIME_COMMUNICATING
 TIME_START = _cconsts.NX_STATE_TIME_START
 SESSION_INFO = _cconsts.NX_STATE_SESSION_INFO
 CAN_COMM = _cconsts.NX_STATE_CAN_COMM
 FLEX_RAY_COMM = _cconsts.NX_STATE_FLEX_RAY_COMM
 FLEX_RAY_STATS = _cconsts.NX_STATE_FLEX_RAY_STATS
 LIN_COMM = _cconsts.NX_STATE_LIN_COMM
 J1939_COMM = _cconsts.NX_STATE_J1939_COMM

[docs]class WriteState(enum.Enum):
 LIN_SCHEDULE_CHANGE = _cconsts.NX_STATE_LIN_SCHEDULE_CHANGE
 LIN_DIAGNOSTIC_SCHEDULE_CHANGE = _cconsts.NX_STATE_LIN_DIAGNOSTIC_SCHEDULE_CHANGE
 FLEX_RAY_SYMBOL = _cconsts.NX_STATE_FLEX_RAY_SYMBOL

[docs]class CanFdIsoMode(enum.Enum):
 """CAN FD ISO MODE.

 Values:
 ISO:
 ISO CAN FD standard (ISO standard 11898-1:2015)

 In ISO CAN FD mode, for every transmitted frame, you can specify in
 the database or frame header whether a frame must be sent in CAN
 2.0, CAN FD, or CAN FD+BRS mode. In the frame type field of the
 frame header, received frames indicate whether they have been sent
 with CAN 2.0, CAN FD, or CAN FD+BRS. You cannot use the
 Interface:CAN:Transmit I/O Mode property in ISO CAN FD mode, as the
 frame defines the transmit mode.
 NON_ISO:
 non-ISO CAN FD standard (Bosch CAN FD 1.0 specification)

 In Non-ISO CAN FD mode, CAN data frames are received at CAN
 data typed frames, which is either CAN 2.0, CAN FD, or CAN FD+BRS,
 but you cannot distinguish the standard in which the frame has been
 transmitted.
 ISO_LEGACY:
 You also can set the mode to Legacy ISO mode. In this mode,
 the behavior is the same as in Non-ISO CAN FD mode
 (Interface:CAN:Transmit I/O Mode is working, and received frames
 have the CAN data type). But the interface is working in ISO CAN FD
 mode, so you can communicate with other ISO CAN FD devices. Use this
 mode only for compatibility with existing applications.
 """
 ISO = _cconsts.NX_CAN_FD_MODE_ISO
 NON_ISO = _cconsts.NX_CAN_FD_MODE_NON_ISO
 ISO_LEGACY = _cconsts.NX_CAN_FD_MODE_ISO_LEGACY

[docs]class SessionInfoState(enum.Enum):
 """State of running session.

 Values:
 STOPPED:
 All frames in the session are stopped.
 STARTED:
 All frames in the session are started.
 MIX:
 Some frames in the session are started while other frames are
 stopped. This state may occur when using ``start`` or ``stop`` with
 ``StartStopScope.SESSION_ONLY``.
 """
 STOPPED = _cconsts.NX_SESSION_INFO_STATE_STOPPED
 STARTED = _cconsts.NX_SESSION_INFO_STATE_STARTED
 MIX = _cconsts.NX_SESSION_INFO_STATE_MIX

[docs]class CanCommState(enum.Enum):
 """CAN Comm State.

 Values:
 ERROR_ACTIVE:
 This state reflects normal communication, with few errors detected.
 The CAN interface remains in this state as long as receive error
 counter and transmit error counter are both below 128.
 ERROR_PASSIVE:
 If either the receive error counter or transmit error counter
 increment above 127, the CAN interface transitions into this state.
 Although communication proceeds, the CAN device generally is assumed
 to have problems with receiving frames.

 When a CAN interface is in error passive state, acknowledgement
 errors do not increment the transmit error counter. Therefore, if
 the CAN interface transmits a frame with no other device (ECU)
 connected, it eventually enters error passive state due to
 retransmissions, but does not enter bus off state.
 BUS_OFF:
 If the transmit error counter increments above 255, the CAN
 interface transitions into this state. Communication immediately
 stops under the assumption that the CAN interface must be isolated
 from other devices.

 When a CAN interface transitions to the bus off state, communication
 stops for the interface. All NI-XNET sessions for the interface no
 longer receive or transmit frame values. To restart the CAN
 interface and all its sessions, call
 :any:`nixnet._session.base.SessionBase.start`.
 INIT:
 This is the CAN interface initial state on power-up. The interface
 is essentially off, in that it is not attempting to communicate with
 other nodes (ECUs).

 When the start trigger occurs for the CAN interface, it transitions
 from the Init state to the Error Active state. When the interface
 stops due to a call to :any:`nixnet._session.base.SessionBase.stop`.,
 the CAN interface transitions from either Error Active or Error Passive
 to the Init state. When the interface stops due to the Bus Off state,
 it remains in that state until you restart.
 """
 ERROR_ACTIVE = _cconsts.NX_CAN_COMM_STATE_ERROR_ACTIVE
 ERROR_PASSIVE = _cconsts.NX_CAN_COMM_STATE_ERROR_PASSIVE
 BUS_OFF = _cconsts.NX_CAN_COMM_STATE_BUS_OFF
 INIT = _cconsts.NX_CAN_COMM_STATE_INIT

[docs]class CanLastErr(enum.Enum):
 """CAN Last Error

 Values:
 NONE:
 The last receive or transmit was successful.
 STUFF:
 More than 5 equal bits have occurred in sequence, which the CAN
 specification does not allow.
 FORM:
 A fixed format part of the received frame used the wrong format.
 ACK:
 Another node (ECU) did not acknowledge the frame transmit.

 If you call the appropriate ``write`` function and do not have a
 cable connected, or the cable is connected to a node that is not
 communicating, you see this error repeatedly. The CAN communication
 state eventually transitions to Error Passive, and the frame
 transmit retries indefinitely.
 BIT1:
 During a frame transmit (with the exception of the arbitration ID
 field), the interface wanted to send a recessive bit (logical 1),
 but the monitored bus value was dominant (logical 0).
 BIT0:
 During a frame transmit (with the exception of the arbitration ID
 field), the interface wanted to send a dominant bit (logical 0),
 but the monitored bus value was recessive (logical 1).
 CRC:
 The CRC contained within a received frame does not match the CRC
 calculated for the incoming bits.
 """
 NONE = _cconsts.NX_CAN_LAST_ERR_NONE
 STUFF = _cconsts.NX_CAN_LAST_ERR_STUFF
 FORM = _cconsts.NX_CAN_LAST_ERR_FORM
 ACK = _cconsts.NX_CAN_LAST_ERR_ACK
 BIT1 = _cconsts.NX_CAN_LAST_ERR_BIT1
 BIT0 = _cconsts.NX_CAN_LAST_ERR_BIT0
 CRC = _cconsts.NX_CAN_LAST_ERR_CRC

[docs]class CanIoMode(enum.Enum):
 """CAN I/O Mode.

 Values:
 CAN:
 This is the default CAN 2.0 A/B standard I/O mode as defined in ISO 11898-1:2003.
 A fixed baud rate is used for transfer,
 and the payload length is limited to 8 bytes.
 CAN_FD:
 This is the CAN FD mode as specified in the CAN with *Flexible Data-Rate specification*,
 version 1.0. Payload lengths up to 64 are allowed,
 but they are transmitted at a single fixed baud rate
 (defined by :any:`Cluster.can_fd_baud_rate` or :any:`Interface.can_fd_baud_rate`).
 CAN_FD_BRS:
 This is the CAN FD as specified in the *CAN with Flexible Data-Rate* specification,
 version 1.0, with the optional Baud Rate Switching enabled.
 The same payload lengths as CAN FD mode are allowed; additionally,
 the data portion of the CAN frame is transferred at a different (higher) baud rate
 (defined by :any:`Cluster.can_fd_baud_rate` or :any:`Interface.can_fd_baud_rate`).
 """
 CAN = _cconsts.NX_CAN_IO_MODE_CAN
 CAN_FD = _cconsts.NX_CAN_IO_MODE_CAN_FD
 CAN_FD_BRS = _cconsts.NX_CAN_IO_MODE_CAN_FD_BRS

[docs]class FlexRayPocState(enum.Enum):
 DEFAULT_CONFIG = _cconsts.NX_FLEX_RAY_POC_STATE_DEFAULT_CONFIG
 READY = _cconsts.NX_FLEX_RAY_POC_STATE_READY
 NORMAL_ACTIVE = _cconsts.NX_FLEX_RAY_POC_STATE_NORMAL_ACTIVE
 NORMAL_PASSIVE = _cconsts.NX_FLEX_RAY_POC_STATE_NORMAL_PASSIVE
 HALT = _cconsts.NX_FLEX_RAY_POC_STATE_HALT
 MONITOR = _cconsts.NX_FLEX_RAY_POC_STATE_MONITOR
 CONFIG = _cconsts.NX_FLEX_RAY_POC_STATE_CONFIG

[docs]class LinCommState(enum.Enum):
 '''LIN Comm State

 Values:
 IDLE:
 This is the LIN interface initial state on power-up. The
 interface is essentially off, in that it is not attempting to
 communicate with other nodes (ECUs). When the start trigger
 occurs for the LIN interface, it transitions from the Idle
 state to the Active state. When the interface stops due to a
 call to XNET Stop, the LIN interface transitions from either
 Active or Inactive to the Idle state.
 ACTIVE:
 This state reflects normal communication. The LIN interface remains
 in this state as long as bus activity is detected (frame headers
 received or transmitted).
 INACTIVE:
 This state indicates that no bus activity has been detected in the
 past four seconds.

 Regardless of whether the interface acts as a master or slave, it
 transitions to this state after four seconds of bus inactivity. As
 soon as bus activity is detected (break or frame header), the
 interface transitions to the Active state.

 The LIN interface does not go to sleep automatically when it
 transitions to Inactive. To place the interface into sleep mode,
 set the XNET Session Interface:LIN:Sleep property when you detect
 the Inactive state.
 '''
 IDLE = _cconsts.NX_LIN_COMM_STATE_IDLE
 ACTIVE = _cconsts.NX_LIN_COMM_STATE_ACTIVE
 INACTIVE = _cconsts.NX_LIN_COMM_STATE_INACTIVE

[docs]class LinDiagnosticSchedule(enum.Enum):
 """LIN Diagnostic Schedule

 Values:
 NULL:
 The master does not execute any diagnostic schedule. No master
 request or slave response headers are transmitted on the LIN.
 MASTER_REQ:
 The master executes a diagnostic master request schedule
 (transmits a master request header onto the LIN) if it can.
 First, a master request schedule must be defined for the LIN
 cluster in the imported or in-memory database. Otherwise, error
 'nixnet._enums.Err.DIAGNOSTIC_SCHEDULE_NOT_DEFINED' is returned
 when attempting to set this value. Second, the master must have
 a frame output queued session created for the master request frame,
 and there must be one or more new master request frames pending in
 the queue. If no new frames are pending in the output queue, no
 master request header is transmitted. This allows the timing of
 master request header transmission to be controlled by the timing
 of master request frame writes to the output queue.

 If there are no normal schedules pending, the master is effectively
 in diagnostics-only mode, and master request headers are transmitted
 at a rate determined by the slot delay defined for the master request
 frame slot in the master request schedule or the
 `nixnet._session.intf.Interface.lin_diag_s_tmin` property time, whichever
 is greater, and the state of the master request frame output queue
 as described above.

 If there are normal schedules pending, the master is effectively in
 diagnostics-interleaved mode, and a master request header transmission
 is inserted between each complete execution of a run-once or
 run-continuous schedule, as long as the
 `nixnet._session.intf.Interface.lin_diag_s_tmin` property time has
 been met, and there are one or more new master request frames pending
 in the master request frame output queue.
 SLAVE_RESP:
 The master executes a diagnostic slave response schedule
 (transmits a slave response header onto the LIN) if it is able to.
 A slave response schedule must be defined for the LIN cluster in the
 imported or in-memory database. Otherwise, error
 'nixnet._enums.Err.DIAGNOSTIC_SCHEDULE_NOT_DEFINED' is returned when
 attempting to set this value.

 If there are no normal schedules pending, the master is effectively
 in diagnostics-only mode, and slave response headers are transmitted
 at the rate of the slot delay defined for the slave response frame
 slot in the slave response schedule. The addressed slave may or
 may not respond to each header, depending on its specified
 P2min and STmin timings.

 If there are normal schedules pending, the master is effectively in
 diagnostics-interleaved mode, and a slave response header transmission
 is inserted between each complete execution of a run-once or run-continuous
 schedule. Here again, the addressed slave may or may not respond to each
 header, depending on its specified P2min and STmin timings.
 """
 NULL = _cconsts.NX_LIN_DIAGNOSTIC_SCHEDULE_NULL
 MASTER_REQ = _cconsts.NX_LIN_DIAGNOSTIC_SCHEDULE_MASTER_REQ
 SLAVE_RESP = _cconsts.NX_LIN_DIAGNOSTIC_SCHEDULE_SLAVE_RESP

[docs]class LinLastErr(enum.Enum):
 '''LIN Comm Last Error Code

 Values:
 NONE:
 No bus error has occurred since the previous communication state read.
 UNKNOWN_ID:
 Received a frame identifier that is not valid.
 FORM:
 The form of a received frame is incorrect. For example, the
 database specifies 8 bytes of payload, but you receive only 4
 bytes.
 FRAMING:
 The byte framing is incorrect (for example, a missing stop bit).
 READBACK:
 The interface transmitted a byte, but the value read back from the
 transceiver was different. This often is caused by a cabling
 problem, such as noise.
 TIMEOUT:
 Receiving the frame took longer than the LIN-specified timeout.
 CRC:
 The received checksum was different than the expected checksum.
 '''
 NONE = _cconsts.NX_LIN_LAST_ERR_CODE_NONE
 UNKNOWN_ID = _cconsts.NX_LIN_LAST_ERR_CODE_UNKNOWN_ID
 FORM = _cconsts.NX_LIN_LAST_ERR_CODE_FORM
 FRAMING = _cconsts.NX_LIN_LAST_ERR_CODE_FRAMING
 READBACK = _cconsts.NX_LIN_LAST_ERR_CODE_READBACK
 TIMEOUT = _cconsts.NX_LIN_LAST_ERR_CODE_TIMEOUT
 CRC = _cconsts.NX_LIN_LAST_ERR_CODE_CRC

[docs]class LinProtocolVer(enum.Enum):
 """LIN Protocol Version

 Values:
 VER_1_2:
 Version 1.2
 VER_1_3:
 Version 1.3
 VER_2_0:
 Version 2.0
 VER_2_1:
 Version 2.1
 VER_2_2:
 Version 2.2
 """
 VER_1_2 = _cconsts.NX_LIN_PROTOCOL_VER_1_2
 VER_1_3 = _cconsts.NX_LIN_PROTOCOL_VER_1_3
 VER_2_0 = _cconsts.NX_LIN_PROTOCOL_VER_2_0
 VER_2_1 = _cconsts.NX_LIN_PROTOCOL_VER_2_1
 VER_2_2 = _cconsts.NX_LIN_PROTOCOL_VER_2_2

[docs]class Condition(enum.Enum):
 TRANSMIT_COMPLETE = _cconsts.NX_CONDITION_TRANSMIT_COMPLETE
 INTF_COMMUNICATING = _cconsts.NX_CONDITION_INTF_COMMUNICATING
 INTF_REMOTE_WAKEUP = _cconsts.NX_CONDITION_INTF_REMOTE_WAKEUP

[docs]class GetDbcAttributeMode(enum.Enum):
 ATTRIBUTE = _cconsts.NX_GET_DBC_MODE_ATTRIBUTE
 ENUMERATION_LIST = _cconsts.NX_GET_DBC_MODE_ENUMERATION_LIST
 ATTRIBUTE_LIST = _cconsts.NX_GET_DBC_MODE_ATTRIBUTE_LIST
 VALUE_TABLE_LIST = _cconsts.NX_GET_DBC_MODE_VALUE_TABLE_LIST

[docs]class Merge(enum.Enum):
 """Cluster Merge Behavior

 Values:
 COPY_USE_SOURCE:
 The target object with all dependent child objects
 is removed from the target cluster and replaced by the source objects.
 COPY_USE_TARGET:
 The source object is ignored (the target cluster object with child objects remains unchanged).
 MERGE_USE_SOURCE:
 This adds child objects from the source object to child objects from the destination object.
 If target object contains a child object with the same name,
 the child object from the source frame replaces it.
 The source object properties (for example, payload length of the frame) replace the target properties.
 MERGE_USE_TARGET:
 This adds child objects from the source object to child objects from the destination object.
 If the target object contains a child object with the same name, it remains unchanged.
 The target object properties remain unchanged (for example, payload length).
 """
 COPY_USE_SOURCE = _cconsts.NXDB_MERGE_COPY_USE_SOURCE
 COPY_USE_TARGET = _cconsts.NXDB_MERGE_COPY_USE_TARGET
 MERGE_USE_SOURCE = _cconsts.NXDB_MERGE_MERGE_USE_SOURCE
 MERGE_USE_TARGET = _cconsts.NXDB_MERGE_MERGE_USE_TARGET

[docs]class DongleState(enum.Enum):
 '''Dongle State.

 Values:
 NO_DONGLE_NO_EXT_POWER:
 No dongle, no external power.
 NO_DONGLE_EXT_POWER:
 No dongle, has external power.
 DONGLE_NO_EXT_POWER:
 Has dongle, no external power.
 READY:
 Ready.
 BUSY:
 Busy.
 COMM_ERROR:
 Comm Error.
 OVERCURRENT:
 Overcurrent.
 '''
 NO_DONGLE_NO_EXT_POWER = _cconsts.NX_DONGLE_STATE_NO_DONGLE_NO_EXT_POWER
 NO_DONGLE_EXT_POWER = _cconsts.NX_DONGLE_STATE_NO_DONGLE_EXT_POWER
 DONGLE_NO_EXT_POWER = _cconsts.NX_DONGLE_STATE_DONGLE_NO_EXT_POWER
 READY = _cconsts.NX_DONGLE_STATE_READY
 BUSY = _cconsts.NX_DONGLE_STATE_BUSY
 COMM_ERROR = _cconsts.NX_DONGLE_STATE_COMM_ERROR
 OVERCURRENT = _cconsts.NX_DONGLE_STATE_OVER_CURRENT

[docs]class DongleId(enum.Enum):
 '''Dongle ID

 Values:
 HSCAN:
 CAN High Speed
 XSCAN:
 CAN Software-Selectable
 LIN:
 LIN
 DONGLE_LESS:
 Dongle-Less Design
 '''
 LSCAN = _cconsts.NX_DONGLE_ID_LS_CAN
 HSCAN = _cconsts.NX_DONGLE_ID_HS_CAN
 SWCAN = _cconsts.NX_DONGLE_ID_SW_CAN
 XSCAN = _cconsts.NX_DONGLE_ID_XS_CAN
 LIN = _cconsts.NX_DONGLE_ID_LIN
 DONGLE_LESS = _cconsts.NX_DONGLE_ID_DONGLE_LESS
 UNKNOWN = _cconsts.NX_DONGLE_ID_UNKNOWN

[docs]class Phase(enum.Enum):
 '''Version Phase.

 Values:
 RELEASE
 '''
 DEVELOPMENT = _cconsts.NX_PHASE_DEVELOPMENT
 ALPHA = _cconsts.NX_PHASE_ALPHA
 BETA = _cconsts.NX_PHASE_BETA
 RELEASE = _cconsts.NX_PHASE_RELEASE

[docs]class DevForm(enum.Enum):
 '''Device physical form factor.

 Values:
 C_SERIES
 PCI
 PCIE
 PXI
 PXIE
 USB
 '''
 C_SERIES = _cconsts.NX_DEV_FORM_C_SERIES
 PCI = _cconsts.NX_DEV_FORM_PCI
 PCIE = _cconsts.NX_DEV_FORM_PCIE
 PXI = _cconsts.NX_DEV_FORM_PXI
 PXIE = _cconsts.NX_DEV_FORM_PXIE
 USB = _cconsts.NX_DEV_FORM_USB

[docs]class CanTermCap(enum.Enum):
 '''CAN Termination Capability.

 Values:
 NO
 YES
 '''
 NO = _cconsts.NX_CAN_TERM_CAP_NO
 YES = _cconsts.NX_CAN_TERM_CAP_YES

[docs]class CanTerm(enum.Enum):
 '''CAN Termination.

 Different CAN hardware has different termination requirements, and the OFF
 and ON values have different meanings.

 High-Speed CAN

 High-Speed CAN networks are typically terminated on the bus itself instead
 of within a node. However, NI-XNET allows you to configure termination
 within the node to simplify testing. If your bus already has the correct
 amount of termination, leave this property in the default state of Off.
 However, if you require termination, set this property to On.

 Values:
 OFF:
 Termination is disabled.
 On:
 Termination (120 Ohms) is enabled.

 Low-Speed/Fault-Tolerant CAN

 Every node on a Low-Speed CAN network requires termination for each CAN
 data line (CAN_H and CAN_L). This configuration allows the
 Low-Speed/Fault-Tolerant CAN port to provide fault detection and recovery.
 Refer to Termination for more information about low-speed termination. In
 general, if the existing network has an overall network termination of 125 Ohms
 or less, turn on termination to enable the 4.99 kOhms option. Otherwise, you
 should select the default 1.11 kOhms option.

 Values:
 OFF:
 Termination is set to 1.11 kOhms.
 ON:
 Termination is set to 4.99 kOhms.

 Single-Wire CAN

 The ISO standard requires Single-Wire transceivers to have a 9.09 kOhms
 resistor, and no additional configuration is supported.
 '''
 OFF = _cconsts.NX_CAN_TERM_OFF
 ON = _cconsts.NX_CAN_TERM_ON

[docs]class CanTcvrCap(enum.Enum):
 '''CAN bus phusical transceivers support.

 Values:
 HS:
 High-Speed / Flexible Data-Rate (HS/FD).
 LS:
 Low-Speed / Fault-Tolerant (LS//FT)
 XS:
 XS (HS//FD, LS/FT, SW, or External)
 XSHSLS:
 XS (HS//FD, LS/FT)
 '''
 HS = _cconsts.NX_CAN_TCVR_CAP_HS
 LS = _cconsts.NX_CAN_TCVR_CAP_LS
 XS = _cconsts.NX_CAN_TCVR_CAP_XS
 XSHSLS = _cconsts.NX_CAN_TCVR_CAP_XS_HS_LS
 UNKNOWN = _cconsts.NX_CAN_TCVR_CAP_UNKNOWN

[docs]class Protocol(enum.Enum):
 """Protocol.

 Values:
 UNKNOWN:
 Unknown protocol,
 CAN:
 CAN protocol.
 FLEX_RAY:
 FlexRay protocol.
 LIN:
 LIN protocol.
 """
 UNKNOWN = _cconsts.NX_PROTOCOL_UNKNOWN
 CAN = _cconsts.NX_PROTOCOL_CAN
 FLEX_RAY = _cconsts.NX_PROTOCOL_FLEX_RAY
 LIN = _cconsts.NX_PROTOCOL_LIN

[docs]class AppProtocol(enum.Enum):
 """Application Protocol.

 Values:
 NONE:
 The default application protocol.
 J1939:
 Indicates J1939 clusters. The value enables the following features:

 * Sending/receiving long frames as the SAE J1939 specification specifies,
 using the J1939 transport protocol.
 * Using a special notation for J1939 identifiers.
 * Using J1939 address claiming.
 """
 NONE = _cconsts.NX_APP_PROTOCOL_NONE
 J1939 = _cconsts.NX_APP_PROTOCOL_J1939

[docs]class CanTcvrState(enum.Enum):
 '''CAN Transceiver State.

 Values:
 NORMAL:
 This state sets the transceiver to normal communication mode. If
 the transceiver is in the Sleep mode, this performs a local wakeup
 of the transceiver and CAN controller chip.
 SLEEP:
 This state sets the transceiver and CAN controller chip to Sleep
 (or standby) mode. You can set the interface to Sleep mode only
 while the interface is communicating. If the interface has not been
 started, setting the transceiver to Sleep mode returns an error.

 Before going to sleep, all pending transmissions are transmitted
 onto the CAN bus. Once all pending frames have been transmitted,
 the interface and transceiver go into Sleep (or standby) mode. Once
 the interface enters Sleep mode, further communication is not
 possible until a wakeup occurs. The transceiver and CAN controller
 wake from Sleep mode when either a local wakeup or remote wakeup
 occurs.

 A local wakeup occurs when the application sets the transceiver
 state to either Normal or Single Wire Wakeup.

 A remote wakeup occurs when a remote node transmits a CAN frame
 (referred to as the wakeup frame). The wakeup frame wakes up the
 NI-XNET interface transceiver and CAN controller chip. The CAN
 controller chip does not receive or acknowledge the wakeup frame.
 After detecting the wakeup frame and idle bus, the CAN interface
 enters Normal mode.

 When the local or remote wakeup occurs, frame transmissions resume
 from the point at which the original Sleep mode was set.
 SW_WAKEUP:
 For a remote wakeup to occur for Single Wire transceivers, the node
 that transmits the wakeup frame first must place the network into
 the Single Wire Wakeup Transmission mode by asserting a higher
 voltage.

 This state sets a Single Wire transceiver into the Single Wire
 Wakeup Transmission mode, which forces the Single Wire transceiver
 to drive a higher voltage level on the network to wake up all
 sleeping nodes. Other than this higher voltage, this mode is
 similar to Normal mode. CAN frames can be received and transmitted
 normally.

 If you are not using a Single Wire transceiver, setting this state
 returns an error. If your current mode is Single Wire High-Speed,
 setting this mode returns an error because you are not allowed to
 wake up the bus in high-speed mode.

 The application controls the timing of how long the wakeup voltage
 is driven. The application typically changes to Single Wire Wakeup
 mode, transmits a single wakeup frame, and then returns to Normal
 mode.
 SW_HIGH_SPEED:
 This state sets a Single Wire transceiver into Single Wire
 High-Speed Communication mode. If you are not using a Single Wire
 transceiver, setting this state returns an error.

 Single Wire High-Speed Communication mode disables the
 transceiver's internal waveshaping function, allowing the SAE J2411
 High-Speed baud rate of 83.333 kbytes/s to be used. The
 disadvantage versus Single Wire Normal Communication mode, which
 allows only the SAE J2411 baud rate of 33.333 kbytes/s, is degraded
 EMC performance. Other than the disabled waveshaping, this mode is
 similar to Normal mode. CAN frames can be received and transmitted
 normally.

 This mode has no relationship to High-Speed transceivers. It is
 merely a higher speed mode of the Single Wire transceiver,
 typically used to download data when the onboard network is
 attached to an offboard tester ECU.

 The Single Wire transceiver does not support use of this mode in
 conjunction with Sleep mode. For example, a remote wakeup cannot
 transition from sleep to this Single Wire High-Speed mode.
 Therefore, setting the mode to Sleep from Single Wire High-Speed
 mode returns an error.
 '''
 NORMAL = _cconsts.NX_CAN_TCVR_STATE_NORMAL
 SLEEP = _cconsts.NX_CAN_TCVR_STATE_SLEEP
 SW_WAKEUP = _cconsts.NX_CAN_TCVR_STATE_SW_WAKEUP
 SW_HIGH_SPEED = _cconsts.NX_CAN_TCVR_STATE_SW_HIGH_SPEED

[docs]class CanTcvrType(enum.Enum):
 '''CAN Transceiver Type

 Values:
 High-Speed (HS):
 This configuration enables the High-Speed transceiver. This transceiver
 supports baud rates of 40 kbaud to 1 Mbaud. When using a High-Speed
 transceiver, you also can communicate with a CAN FD bus. Refer to NI-XNET
 Hardware Overview to determine which CAN FD baud rates are supported.
 Low-Speed/Fault-Tolerant (LS):
 This configuration enables the Low-Speed/Fault-Tolerant
 transceiver. This transceiver supports baud rates of 40-125 kbaud.
 Single Wire (SW):
 This configuration enables the Single Wire transceiver. This
 transceiver supports baud rates of 33.333 kbaud and 83.333 kbaud.
 External (EXT):
 This configuration allows you to use an external transceiver to
 connect to your CAN bus. Refer to the XNET Session
 Interface:CAN:External Transceiver Config property for more
 information.
 Disconnect (DISC):
 This configuration allows you to disconnect the CAN controller chip
 from the connector. You can use this value when you physically
 change the external transceiver.
 '''
 HS = _cconsts.NX_CAN_TCVR_TYPE_HS
 LS = _cconsts.NX_CAN_TCVR_TYPE_LS
 SW = _cconsts.NX_CAN_TCVR_TYPE_SW
 EXT = _cconsts.NX_CAN_TCVR_TYPE_EXT
 DISC = _cconsts.NX_CAN_TCVR_TYPE_DISC

[docs]class FlexRayTerm(enum.Enum):
 OFF = _cconsts.NX_FLEX_RAY_TERM_OFF
 ON = _cconsts.NX_FLEX_RAY_TERM_ON

[docs]class LinSleep(enum.Enum):
 '''LIN interface sleep/awake state

 Values:
 REMOTE_SLEEP:
 Set interface to sleep locally and transmit sleep requests to
 remote node.
 REMOTE_WAKE:
 Set interface to awake locally and transmit wakeup requests to
 remote nodes.
 LOCAL_SLEEP:
 Set interface to sleep locally and not to interact with the network.
 LOCAL_WAKE:
 Set interface to awake locally and not to interact with the network.
 '''
 REMOTE_SLEEP = _cconsts.NX_LIN_SLEEP_REMOTE_SLEEP
 REMOTE_WAKE = _cconsts.NX_LIN_SLEEP_REMOTE_WAKE
 LOCAL_SLEEP = _cconsts.NX_LIN_SLEEP_LOCAL_SLEEP
 LOCAL_WAKE = _cconsts.NX_LIN_SLEEP_LOCAL_WAKE

[docs]class LinTerm(enum.Enum):
 '''LIN Termination'''
 OFF = _cconsts.NX_LIN_TERM_OFF
 ON = _cconsts.NX_LIN_TERM_ON

[docs]class OutStrmTimng(enum.Enum):
 '''Output Stream Timing

 Values:
 IMMEDIATE:
 Frames are dequeued from the queue and transmitted immediately to
 the bus. The hardware transmits all frames in the queue as fast as
 possible. There are no restrictions on frames that you use in other
 sessions.

 For replay modes, the hardware is placed into a Replay mode. In
 this mode, the hardware evaluates the frame timestamps and attempts
 to maintain the original transmission times as the timestamp stored
 in the frame indicates. The actual transmission time is based on
 the relative time difference between the first dequeued frame and
 the time contained in the dequeued frame.
 REPLAY_EXCLUSIVE:
 The hardware transmits only frames that do not appear in the list.
 You cannot create any other output sessions. Attempting to create
 an output session returns an error. Input sessions have no
 restrictions.

 This can be used to test an ECU when the output stream list
 contains the frames the ECU transmits. You can replay all frames
 in this mode if the output stream list is unset.

 REPLAY_INCLUSIVE:
 The hardware transmits only frames that appear in the list. You
 can create output sessions that use frames that do not appear in
 the Interface:Output Stream List property. Attempting to create an
 output session that uses a frame from the Interface:Output Stream
 List property results in an error. Input sessions have no
 restrictions.

 This can be used to emulate an ECU when the output stream list
 contains the frames the ECU transmits.
 '''
 IMMEDIATE = _cconsts.NX_OUT_STRM_TIMNG_IMMEDIATE
 REPLAY_EXCLUSIVE = _cconsts.NX_OUT_STRM_TIMNG_REPLAY_EXCLUSIVE
 REPLAY_INCLUSIVE = _cconsts.NX_OUT_STRM_TIMNG_REPLAY_INCLUSIVE

[docs]class CanPendTxOrder(enum.Enum):
 '''Can Pending Transmit Order.

 Values:
 AS_SUBMITTED:
 Frames are transmitted in the order that they were submitted into
 the queue. There is no reordering of any frames, and a higher
 priority frame may be delayed due to the transmission or
 retransmission of a previously submitted frame. However, this mode
 has the highest performance.
 BY_IDENTIFIER:
 Frames with the highest priority identifier (lower CAN ID value)
 transmit first. The frames are stored in a priority queue sorted by
 ID. If a frame currently being transmitted requires retransmission
 (for example, it lost arbitration or failed with a bus error), and
 a higher priority frame is queued in the meantime, the lower
 priority frame is not immediately retried, but the higher priority
 frame is transmitted instead. In this mode, you can emulate
 multiple ECUs and still see a behavior similar to a real bus in
 that the highest priority message is transmitted on the bus. This
 mode may be slower in performance (possible delays between
 transmissions as the queue is re-evaluated), and lower priority
 messages may be delayed indefinitely due to frequent high-priority
 messages.
 '''
 AS_SUBMITTED = _cconsts.NX_CAN_PEND_TX_ORDER_AS_SUBMITTED
 BY_IDENTIFIER = _cconsts.NX_CAN_PEND_TX_ORDER_BY_IDENTIFIER

[docs]class FlexRaySleep(enum.Enum):
 LOCAL_SLEEP = _cconsts.NX_FLEX_RAY_SLEEP_LOCAL_SLEEP
 LOCAL_WAKE = _cconsts.NX_FLEX_RAY_SLEEP_LOCAL_WAKE
 REMOTE_WAKE = _cconsts.NX_FLEX_RAY_SLEEP_REMOTE_WAKE

[docs]class FrmFlexRayChAssign(enum.Enum):
 A = _cconsts.NX_FRM_FLEX_RAY_CH_ASSIGN_A
 B = _cconsts.NX_FRM_FLEX_RAY_CH_ASSIGN_B
 AAND_B = _cconsts.NX_FRM_FLEX_RAY_CH_ASSIGN_AAND_B
 NONE = _cconsts.NX_FRM_FLEX_RAY_CH_ASSIGN_NONE

[docs]class ClstFlexRaySampClkPer(enum.Enum):
 P0125US = _cconsts.NX_CLST_FLEX_RAY_SAMP_CLK_PER_P0125US
 P025US = _cconsts.NX_CLST_FLEX_RAY_SAMP_CLK_PER_P025US
 P05US = _cconsts.NX_CLST_FLEX_RAY_SAMP_CLK_PER_P05US

[docs]class FrmFlexRayTiming(enum.Enum):
 CYCLIC = _cconsts.NX_FRM_FLEX_RAY_TIMING_CYCLIC
 EVENT = _cconsts.NX_FRM_FLEX_RAY_TIMING_EVENT

[docs]class FrmCanTiming(enum.Enum):
 """CAN Frame Timing

 Values:
 CYCLIC_DATA:
 The transmitting ECU transmits the CAN data frame in a cyclic (periodic) manner.
 The :any:`Frame.can_tx_time` property defines the time between cycles.
 The transmitting ECU ignores CAN remote frames received for this frame.
 EVENT_DATA:
 The transmitting ECU transmits the CAN data frame in an event-driven manner.
 The :any:`Frame.can_tx_time` property defines the minimum interval.
 For NI-XNET, the event occurs when you write data to a session.
 The transmitting ECU ignores CAN remote frames received for this frame.
 CYCLIC_REMOTE:
 The receiving ECU transmits the CAN remote frame in a cyclic (periodic) manner.
 The :any:`Frame.can_tx_time` property defines the time between cycles.
 The transmitting ECU responds to each CAN remote frame by transmitting the associated CAN data frame.
 EVENT_REMOTE:
 The receiving ECU transmits the CAN remote frame in an event-driven manner.
 The :any:`Frame.can_tx_time` property defines the minimum interval.
 For NI-XNET, the event occurs when you write a frame to a session.
 The transmitting ECU responds to each CAN remote frame by transmitting the associated CAN data frame.
 CYCLIC_EVENT:
 This timing type is a combination of the cyclic and event timing.
 The frame is transmitted when you write to a session,
 but also periodically sending the last recent values written.
 The :any:`Frame.can_tx_time` property defines the cycle period.
 There is no minimum interval time defined in this mode,
 so be careful not to write too frequently to avoid creating a high busload.
 """
 CYCLIC_DATA = _cconsts.NX_FRM_CAN_TIMING_CYCLIC_DATA
 EVENT_DATA = _cconsts.NX_FRM_CAN_TIMING_EVENT_DATA
 CYCLIC_REMOTE = _cconsts.NX_FRM_CAN_TIMING_CYCLIC_REMOTE
 EVENT_REMOTE = _cconsts.NX_FRM_CAN_TIMING_EVENT_REMOTE
 CYCLIC_EVENT = _cconsts.NX_FRM_CAN_TIMING_CYCLIC_EVENT

[docs]class SigByteOrdr(enum.Enum):
 """Signal Byte Order

 Values:
 Little Endian:
 Higher significant signal bits are placed on higher byte addresses.
 In NI-CAN, this was called Intel Byte Order.

 .. image:: littleendianstartbit12.gif

 Little Endian Signal with Start Bit 12

 Big Endian:
 Higher significant signal bits are placed on lower byte addresses.
 In NI-CAN, this was called Motorola Byte Order.

 .. image:: bigendianstartbit12.gif

 Big Endian Signal with Start Bit 12
 """
 LITTLE_ENDIAN = _cconsts.NX_SIG_BYTE_ORDR_LITTLE_ENDIAN
 BIG_ENDIAN = _cconsts.NX_SIG_BYTE_ORDR_BIG_ENDIAN

[docs]class SigDataType(enum.Enum):
 """Signal Data Type

 Values:
 SIGNED:
 Signed integer with positive and negative values.
 UNSIGNED:
 Unsigned integer with no negative values.
 IEEE_FLOAT:
 Float value with 7 or 15 significant decimal digits (32 bit or 64 bit).
 """
 SIGNED = _cconsts.NX_SIG_DATA_TYPE_SIGNED
 UNSIGNED = _cconsts.NX_SIG_DATA_TYPE_UNSIGNED
 IEEE_FLOAT = _cconsts.NX_SIG_DATA_TYPE_IEEE_FLOAT

[docs]class LinSchedRunMode(enum.Enum):
 """LIN Schedule Run Mode.

 Values:
 CONTINUOUS:
 The master runs the schedule continuously.
 When the last entry executes,
 the schedule starts again with the first entry.
 ONCE:
 The master runs the schedule once (all entries),
 then returns to the previously running continuous schedule (or NULL).
 If requests are submitted for multiple run-once schedules,
 each run-once executes in succession based on its :any:`LinSched.priority`,
 then the master returns to the continuous schedule (or NULL).
 NULL:
 All communication stops immediately.
 A schedule with this run mode is called a *null schedule*.
 """
 CONTINUOUS = _cconsts.NX_LIN_SCHED_RUN_MODE_CONTINUOUS
 ONCE = _cconsts.NX_LIN_SCHED_RUN_MODE_ONCE
 NULL = _cconsts.NX_LIN_SCHED_RUN_MODE_NULL

[docs]class LinSchedEntryType(enum.Enum):
 """LIN Schedule Entry Type.

 Values:
 UNCONDITIONAL:
 A single frame transfers in this slot.
 SPORADIC:
 The master transmits in this slot.
 The master can select from multiple frames to transmit.
 Only updated frames are transmitted.
 When more than one frame is updated,
 the master decides by priority which frame to send.
 The other updated frame remains pending
 and can be sent when this schedule entry is processed the following time.
 The order of unconditional frames in :any:`LinSchedEntry.frames`
 (the first frame has the highest priority) determines the frame priority.
 EVENT_TRIGGERED:
 Multiple slaves can transmit an unconditional frame in this slot.
 The slave transmits the frame only if at least one frame signal has been updated.
 When a collision occurs (multiple slaves try to transmit in the same slot),
 this is detected and resolved using a different schedule
 specified in the :any:`LinSchedEntry.collision_res_sched` property.
 The resolving schedule runs once,
 starting in the subsequent slot after the collision,
 and automatically returns to the previous schedule
 at the subsequent position where the collision occurred.
 NODE_CONFIG_SERVICE:
 The schedule entry contains a node configuration service.
 The node configuration service is defined as raw data bytes
 in :any:`LinSchedEntry.nc_ff_data_bytes`.
 """
 UNCONDITIONAL = _cconsts.NX_LIN_SCHED_ENTRY_TYPE_UNCONDITIONAL
 SPORADIC = _cconsts.NX_LIN_SCHED_ENTRY_TYPE_SPORADIC
 EVENT_TRIGGERED = _cconsts.NX_LIN_SCHED_ENTRY_TYPE_EVENT_TRIGGERED
 NODE_CONFIG_SERVICE = _cconsts.NX_LIN_SCHED_ENTRY_TYPE_NODE_CONFIG_SERVICE

[docs]class FrmLinChecksum(enum.Enum):
 """LIN Frame Transmitted Checksum

 Values:
 CLASSIC:
 Classic checksum.
 ENHANCED:
 Enhanced checksum.
 """
 CLASSIC = _cconsts.NX_FRM_LIN_CHECKSUM_CLASSIC
 ENHANCED = _cconsts.NX_FRM_LIN_CHECKSUM_ENHANCED

[docs]class FrameType(enum.Enum):
 """Frame format type."""
 CAN_DATA = _cconsts.NX_FRAME_TYPE_CAN_DATA
 CAN_REMOTE = _cconsts.NX_FRAME_TYPE_CAN_REMOTE
 CAN_BUS_ERROR = _cconsts.NX_FRAME_TYPE_CAN_BUS_ERROR
 CAN20_DATA = _cconsts.NX_FRAME_TYPE_CAN20_DATA
 CANFD_DATA = _cconsts.NX_FRAME_TYPE_CANFD_DATA
 CANFDBRS_DATA = _cconsts.NX_FRAME_TYPE_CANFDBRS_DATA
 FLEX_RAY_DATA = _cconsts.NX_FRAME_TYPE_FLEX_RAY_DATA
 FLEX_RAY_NULL = _cconsts.NX_FRAME_TYPE_FLEX_RAY_NULL
 FLEX_RAY_SYMBOL = _cconsts.NX_FRAME_TYPE_FLEX_RAY_SYMBOL
 LIN_DATA = _cconsts.NX_FRAME_TYPE_LIN_DATA
 LIN_BUS_ERROR = _cconsts.NX_FRAME_TYPE_LIN_BUS_ERROR
 LIN_NO_RESPONSE = _cconsts.NX_FRAME_TYPE_LIN_NO_RESPONSE
 J1939_DATA = _cconsts.NX_FRAME_TYPE_J1939_DATA
 SPECIAL_DELAY = _cconsts.NX_FRAME_TYPE_SPECIAL_DELAY
 SPECIAL_LOG_TRIGGER = _cconsts.NX_FRAME_TYPE_SPECIAL_LOG_TRIGGER
 SPECIAL_START_TRIGGER = _cconsts.NX_FRAME_TYPE_SPECIAL_START_TRIGGER

 nixnet.convert

 Source code for nixnet.convert

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import itertools
import typing # NOQA: F401
import warnings

from nixnet import _frames
from nixnet import _funcs
from nixnet import _props
from nixnet import _utils
from nixnet import constants
from nixnet import errors
from nixnet import types

from nixnet._session import j1939 as session_j1939
from nixnet._session import signals as session_signals

__all__ = [
 "SignalConversionSinglePointSession"]

[docs]class SignalConversionSinglePointSession(object):
 """Convert NI-XNET signal data to frame data or vice versa.

 Conversion works similar to Single-Point mode. You specify a set of signals
 that can span multiple frames. Signal to frame conversion reads a set of
 values for the signals specified and writes them to the respective
 frame(s). Frame to signal conversion parses a set of frames and returns the
 latest signal value read from a corresponding frame.
 """

 def __init__(
 self,
 database_name, # type: typing.Text
 cluster_name, # type: typing.Text
 signals, # type: typing.Union[typing.Text, typing.List[typing.Text]]
):
 # type: (...) -> None
 """Create an XNET session at run time using named references to database objects.

 Args:
 database_name(str): XNET database name to use for
 interface configuration. The database name must use the <alias>
 or <filepath> syntax (refer to Databases).
 cluster_name(str): XNET cluster name to use for
 interface configuration. The name must specify a cluster from
 the database given in the database_name parameter. If it is left
 blank, the cluster is extracted from the ``signals`` parameter.
 signals(list of str): Strings describing signals for the session. The
 list syntax is as follows:

 ``signals`` contains one or more XNET Signal names. Each name must
 be one of the following options, whichever uniquely
 identifies a signal within the database given:

 - ``<Signal>``
 - ``<Frame>.<Signal>``
 - ``<Cluster>.<Frame>.<Signal>``
 - ``<PDU>.<Signal>``
 - ``<Cluster>.<PDU>.<Signal>``

 ``signals`` may also contain one or more trigger signals. For
 information about trigger signals, refer to Signal Output
 Single-Point Mode or Signal Input Single-Point Mode.
 """
 flattened_list = _utils.flatten_items(signals)

 self._handle = None # To satisfy `__del__` in case nx_create_session throws
 self._handle = _funcs.nx_create_session(
 database_name,
 cluster_name,
 flattened_list,
 "",
 constants.CreateSessionMode.SIGNAL_CONVERSION_SINGLE_POINT)
 self._j1939 = session_j1939.J1939(self._handle)
 self._signals = session_signals.Signals(self._handle)

 def __del__(self):
 if self._handle is not None:
 warnings.warn(
 'Session was not explicitly closed before it was destructed. '
 'Resources on the device may still be reserved.',
 errors.XnetResourceWarning)

 def __enter__(self):
 return self

 def __exit__(self, exception_type, exception_value, traceback):
 self.close()

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == typing.cast(SignalConversionSinglePointSession, other)._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __repr__(self):
 # type: () -> typing.Text
 return '{}(handle={})'.format(type(self).__name__, self._handle)

[docs] def close(self):
 # type: () -> None
 """Close (clear) the XNET session."""
 if self._handle is None:
 warnings.warn(
 'Attempting to close NI-XNET session but session was already '
 'closed', errors.XnetResourceWarning)
 return

 _funcs.nx_clear(self._handle)

 self._handle = None

 @property
 def signals(self):
 # type: () -> session_signals.Signals
 """:any:`nixnet._session.signals.Signals`: Operate on session's signals"""
 return self._signals

 @property
 def j1939(self):
 # type: () -> session_j1939.J1939
 """:any:`nixnet._session.j1939.J1939`: Returns the J1939 configuration object for the session."""
 return self._j1939

 @property
 def application_protocol(self):
 # type: () -> constants.AppProtocol
 """:any:`nixnet._enums.AppProtocol`: This property returns the application protocol that the session uses.

 The database used with the session determines the application protocol.
 """
 return constants.AppProtocol(_props.get_session_application_protocol(self._handle))

 @property
 def cluster_name(self):
 # type: () -> typing.Text
 """str: This property returns the cluster (network) name used with the session."""
 return _props.get_session_cluster_name(self._handle)

 @property
 def database_name(self):
 # type: () -> typing.Text
 """str: This property returns the database name used with the session."""
 return _props.get_session_database_name(self._handle)

 @property
 def mode(self):
 # type: () -> constants.CreateSessionMode
 """:any:`nixnet._enums.CreateSessionMode`: This property returns the mode associated with the session.

 For more information, refer to :any:`nixnet._enums.CreateSessionMode`.
 """
 return constants.CreateSessionMode(_props.get_session_mode(self._handle))

 @property
 def protocol(self):
 # type: () -> constants.Protocol
 """:any:`nixnet._enums.Protocol`: This property returns the protocol that the interface in the session uses."""
 return constants.Protocol(_props.get_session_protocol(self._handle))

 def _convert_bytes_to_signals(self, bytes):
 # type: (bytes) -> typing.Iterable[typing.Tuple[int, float]]
 num_signals = len(self.signals)
 timestamps, values = _funcs.nx_convert_frames_to_signals_single_point(self._handle, bytes, num_signals)
 for timestamp, value in zip(timestamps, values):
 yield timestamp.value, value.value

[docs] def convert_frames_to_signals(self, frames):
 # type: (typing.Iterable[types.Frame]) -> typing.Iterable[typing.Tuple[int, float]]
 """Convert Frames to signals.

 The frames passed into the ``frames`` array are read one by one, and
 the signal values found are written to internal buffers for each
 signal. Frames are identified by their identifier (FlexRay: slot)
 field. After all frames in ``frames`` array are processed, the internal
 signal buffers' status is returned with the corresponding timestamps
 from the frames where a signal value was found. The signal internal
 buffers' status is being preserved over multiple calls to this
 function.

 This way, for example, data returned from multiple calls of nxFrameRead
 for a Frame Input Stream Mode session (or any other Frame Input
 session) can be passed to this function directly.

 .. note:: Frames unknown to the session are silently ignored.
 """
 units = itertools.chain.from_iterable(
 _frames.serialize_frame(frame.to_raw())
 for frame in frames)
 bytes = b"".join(units)
 return self._convert_bytes_to_signals(bytes)

 def _convert_signals_to_bytes(self, signals, num_bytes):
 # type: (typing.Iterable[float], int) -> bytes
 buffer, number_of_bytes_returned = _funcs.nx_convert_signals_to_frames_single_point(
 self._handle,
 list(signals),
 num_bytes)
 return buffer[0:number_of_bytes_returned]

[docs] def convert_signals_to_frames(self, signals, frame_type=types.XnetFrame):
 # type: (typing.Iterable[float], typing.Type[types.FrameFactory]) -> typing.Iterable[types.Frame]
 """Convert signals to frames.

 The signal values written to the ``signals`` array are written to a raw
 frame buffer array. For each frame included in the session, one frame
 is generated in the array that contains the signal values. Signals not
 present in the session are written as their respective default values;
 empty space in the frames that signals do not occupy is written with
 the frame's default payload.

 The frame header values are filled with appropriate values so that this
 function's output can be directly written to a Frame Output session.

 Args:
 signals(list of float): Values corresponding to signals configured
 in this session.
 frame_type(:any:`nixnet.types.FrameFactory`): A factory for the
 desired frame formats.

 Yields:
 :any:`nixnet.types.Frame`
 """
 from_raw = typing.cast(typing.Callable[[types.RawFrame], types.Frame], frame_type.from_raw)
 # Unlike some session reads, this should be safe from asking to read too much.
 num_frames_to_read = 5
 while True:
 try:
 num_bytes_to_read = num_frames_to_read * _frames.nxFrameFixed_t.size
 buffer = self._convert_signals_to_bytes(signals, num_bytes_to_read)
 break
 except errors.XnetError as e:
 if e.error_type == constants.Err.BUFFER_TOO_SMALL:
 num_frames_to_read *= 2
 else:
 raise
 for frame in _frames.iterate_frames(buffer):
 yield from_raw(frame)

 nixnet.errors

 Source code for nixnet.errors

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401
import warnings

from nixnet import _enums

__all__ = ['XnetError', 'XnetWarning', 'XnetResourceWarning']

class Error(Exception):
 """Base error class for module."""
 pass

[docs]class XnetError(Error):
 """Error raised by any NI-XNET method."""
 def __init__(
 self,
 message, # type: typing.Text
 error_code, # type: int
):
 # type: (...) -> None
 """Initialize error.

 Args:
 message(str): Error message.
 error_code(int): NI-XNET error code.
 """
 super(XnetError, self).__init__(message)

 self._error_code = error_code

 try:
 self._error_type = _enums.Err(self._error_code)
 except ValueError:
 self._error_type = _enums.Err.INTERNAL_ERROR

 @property
 def error_code(self):
 # type: (...) -> int
 """int: Error code reported by NI-XNET."""
 return self._error_code

 @property
 def error_type(self):
 # type: (...) -> _enums.Err
 """:any:`nixnet._enums.Err`: Error type reported by NI-XNET."""
 return self._error_type

[docs]class XnetWarning(Warning):
 """Warning raised by any NI-XNET method."""
 def __init__(
 self,
 message, # type: typing.Text
 warning_code, # type: int
):
 # type: (...) -> None
 """Initialize warning.

 Args:
 message(str): Warning message.
 warning_code(int): NI-XNET warning code.
 """
 super(XnetWarning, self).__init__(
 'Warning {0} occurred.\n\n{1}'.format(warning_code, message))

 self._warning_code = warning_code

 try:
 self._warning_type = _enums.Warn(self._warning_code)
 except ValueError:
 self._warning_type = None

 @property
 def warning_code(self):
 # type: (...) -> int
 """int: Warning code reported by NI-XNET."""
 return self._warning_code

 @property
 def warning_type(self):
 # type: (...) -> _enums.Warn
 """:any:`nixnet._enums.Warn`: Warning type reported by NI-XNET."""
 return self._warning_type

class _ResourceWarning(Warning):
 """Resource warning raised by any NI-XNET method.

 Used in place of built-in ResourceWarning to allow Python 2.7 support.
 """
 pass

If ResourceWarning is in exceptions, it is also in the built-in namespace.
try:
 XnetResourceWarning = ResourceWarning # type: typing.Type[Warning]
except NameError:
 XnetResourceWarning = _ResourceWarning # type: ignore

warnings.filterwarnings("always", category=XnetWarning)
warnings.filterwarnings("always", category=XnetResourceWarning)

 nixnet.session

 Source code for nixnet.session

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401

from nixnet import _funcs
from nixnet import _utils
from nixnet import constants

from nixnet._session import base
from nixnet._session import frames as session_frames
from nixnet._session import signals as session_signals

__all__ = [
 "FrameInStreamSession",
 "FrameOutStreamSession",
 "FrameInQueuedSession",
 "FrameOutQueuedSession",
 "FrameInSinglePointSession",
 "FrameOutSinglePointSession",
 "SignalInSinglePointSession",
 "SignalOutSinglePointSession"]

[docs]class FrameInStreamSession(base.SessionBase):
 """Frame Input Stream session.

 This session reads all frames received from the network using a single
 stream.

 The input data is returned as a list of frames. Because all frames are
 returned, your application must evaluate identification in each frame (such
 as a CAN identifier or FlexRay slot/cycle/channel) to interpret the frame
 payload data.

 Previously, you could use only one Frame Input Stream session for a given
 interface. Now, multiple Frame Input Stream sessions can be open at the same
 time on CAN and LIN interfaces.

 While using one or more Frame Input Stream sessions, you can use other
 sessions with different input modes. Received frames are copied to Frame
 Input Stream sessions in addition to any other applicable input session. For
 example, if you create a Frame Input Single-Point session for frame_a, then
 create a Frame Input Stream session, when frame_a is received, its data is
 returned from the call to read function of both sessions. This duplication
 of incoming frames enables you to analyze overall traffic while running a
 higher level application that uses specific frame or signal data.

 When used with a FlexRay interface, frames from both channels are returned.
 For example, if a frame is received in a static slot on both channel A and
 channel B, two frames are returned from the read function.

 .. note:: Typical use case: Analyzing and/or logging all frame traffic in
 the network.
 """

 def __init__(
 self,
 interface_name, # type: typing.Text
 database_name=':memory:', # type: typing.Text
 cluster_name='', # type: typing.Text
):
 # type: (...) -> None
 """Create a Frame Input Stream session.

 This function creates a Frame Input Stream session using the named
 references to database objects.

 Args:
 interface_name(str): XNET Interface name to use for
 this session.
 database_name(str): XNET database name to use for
 interface configuration. The database name must use the <alias>
 or <filepath> syntax (refer to Databases).
 cluster_name(str): XNET cluster name to use for
 interface configuration. The name must specify a cluster from
 the database given in the database_name parameter.
 """
 flattened_list = _utils.flatten_items(None)
 base.SessionBase.__init__(
 self,
 database_name,
 cluster_name,
 flattened_list,
 interface_name,
 constants.CreateSessionMode.FRAME_IN_STREAM)
 self._frames = session_frames.InFrames(self._handle)

 @property
 def frames(self):
 # type: () -> session_frames.InFrames
 """:any:`nixnet._session.frames.InFrames`: Operate on session's frames"""
 return self._frames

[docs]class FrameOutStreamSession(base.SessionBase):
 """Frame Output Stream session.

 This session transmits an arbitrary sequence of frame values using a single
 stream. The values are not limited to a single frame in the database, but
 can transmit any frame.

 The data passed to the write frame function is a list of frame values,
 each of which transmits as soon as possible. Frames transmit sequentially
 (one after another).

 Like Frame Input Stream sessions, you can create more than one Frame Output
 Stream session for a given interface.

 For CAN, frame values transmit on the network based entirely on the time
 when you call the write frame function. The timing of each frame as
 specified in the database is ignored. For example, if you provide four frame
 values to the the write frame function, the first frame value transmits
 immediately, followed by the next three values transmitted back to back. For
 this session, the CAN frame payload length in the database is ignored, and
 the write frame function is always used.

 Similarly for LIN, frame values transmit on the network based entirely on
 the time when you call the write frame function. The timing of each frame as
 specified in the database is ignored. The LIN frame payload length in the
 database is ignored, and the write frame function is always used. For LIN,
 this session/mode is allowed only on the interface as master. If the payload
 for a frame is empty, only the header part of the frame is transmitted. For
 a nonempty payload, the header + response for the frame is transmitted. If a
 frame for transmit is defined in the database (in-memory or otherwise), it
 is transmitted using its database checksum type. If the frame for transmit
 is not defined in the database, it is transmitted using enhanced checksum.

 This session is not supported for FlexRay.

 The frame values for this session are stored in a queue, such that every value
 provided is transmitted.
 """

 def __init__(
 self,
 interface_name, # type: typing.Text
 database_name=':memory:', # type: typing.Text
 cluster_name='', # type: typing.Text
):
 # type: (...) -> None
 """Create a Frame Input Stream session.

 This function creates a Frame Output Stream session using the named
 references to database objects.

 Args:
 interface_name(str): XNET Interface name to use for
 this session.
 database_name(str): XNET database name to use for
 interface configuration. The database name must use the <alias>
 or <filepath> syntax (refer to Databases).
 cluster_name(str): XNET cluster name to use for
 interface configuration. The name must specify a cluster from
 the database given in the database_name parameter.
 """
 flattened_list = _utils.flatten_items(None)
 base.SessionBase.__init__(
 self,
 database_name,
 cluster_name,
 flattened_list,
 interface_name,
 constants.CreateSessionMode.FRAME_OUT_STREAM)
 self._frames = session_frames.OutFrames(self._handle)

 @property
 def frames(self):
 # type: () -> session_frames.OutFrames
 """:any:`nixnet._session.frames.InFrames`: Operate on session's frames"""
 return self._frames

[docs]class FrameInQueuedSession(base.SessionBase):
 """Frame Input Queued session.

 This session reads data from a dedicated queue per frame. It enables your
 application to read a sequence of data specific to a frame (for example, a
 CAN identifier).

 You specify only one frame for the session, and the read frame function
 returns values for that frame only. If you need sequential data for multiple
 frames, create multiple sessions, one per frame.

 The input data is returned as a list of frame values. These values
 represent all values received for the frame since the previous call to the
 read frame function.
 """

 def __init__(
 self,
 interface_name, # type: typing.Text
 database_name, # type: typing.Text
 cluster_name, # type: typing.Text
 frame, # type: typing.Text
):
 # type: (...) -> None
 """Create a Frame Input Queued session.

 This function creates a Frame Input Queued session using the named
 references to database objects.

 Args:
 interface_name(str): XNET Interface name to use for
 this session.
 database_name(str): XNET database name to use for
 interface configuration. The database name must use the <alias>
 or <filepath> syntax (refer to Databases).
 cluster_name(str): XNET cluster name to use for
 interface configuration. The name must specify a cluster from
 the database given in the database_name parameter. If it is left
 blank, the cluster is extracted from the ``frame`` parameter.
 frame(str): XNET Frame or PDU name. This name
 must be one of the following options, whichever uniquely
 identifies a frame within the database given:

 - ``<Frame>``
 - ``<Cluster>.<Frame>``
 - ``<PDU>``
 - ``<Cluster>.<PDU>``
 """
 flattened_list = _utils.flatten_items(frame)
 base.SessionBase.__init__(
 self,
 database_name,
 cluster_name,
 flattened_list,
 interface_name,
 constants.CreateSessionMode.FRAME_IN_QUEUED)
 self._frames = session_frames.InFrames(self._handle)

 @property
 def frames(self):
 # type: () -> session_frames.InFrames
 """:any:`nixnet._session.frames.InFrames`: Operate on session's frames"""
 return self._frames

[docs]class FrameOutQueuedSession(base.SessionBase):
 """Frame Output Queued session.

 This session provides a sequence of values for a single frame, for transmit
 using that frame's timing as specified in the database.

 The output data is provided as a list of frame values, to be transmitted
 sequentially for the frame specified in the session.

 You can only specify one frame for this session. To transmit sequential
 values for multiple frames, use a different Frame Output Queued session for
 each frame or use the Frame Output Stream session.

 The frame values for this session are stored in a queue, such that every
 value provided is transmitted.

 For this session, NI-XNET transmits each frame according to its properties
 in the database. Therefore, when you call the write frame function, the
 number of payload bytes in each frame value must match that frame's Payload
 Length property. The other frame value elements are ignored, so you can
 leave them uninitialized. For CAN interfaces, if the number of payload bytes
 you write is smaller than the Payload Length configured in the database, the
 requested number of bytes transmits. If the number of payload bytes is
 larger than the Payload Length configured in the database, the queue is
 flushed and no frames transmit. For other interfaces, transmitting a number
 of payload bytes different than the frame's payload may cause unexpected
 results on the bus.
 """

 def __init__(
 self,
 interface_name, # type: typing.Text
 database_name, # type: typing.Text
 cluster_name, # type: typing.Text
 frame, # type: typing.Text
):
 # type: (...) -> None
 """Create a Frame Output Queued session.

 This function creates a Frame Output Stream session using the named
 references to database objects.

 Args:
 interface_name(str): XNET Interface name to use for
 this session.
 database_name(str): XNET database name to use for
 interface configuration. The database name must use the <alias>
 or <filepath> syntax (refer to Databases).
 cluster_name(str): XNET cluster name to use for
 interface configuration. The name must specify a cluster from
 the database given in the database_name parameter. If it is left
 blank, the cluster is extracted from the ``frame`` parameter.
 frame(str): XNET Frame or PDU name. This name
 must be one of the following options, whichever uniquely
 identifies a frame within the database given:

 - ``<Frame>``
 - ``<Cluster>.<Frame>``
 - ``<PDU>``
 - ``<Cluster>.<PDU>``
 """
 flattened_list = _utils.flatten_items(frame)
 base.SessionBase.__init__(
 self,
 database_name,
 cluster_name,
 flattened_list,
 interface_name,
 constants.CreateSessionMode.FRAME_OUT_QUEUED)
 self._frames = session_frames.OutFrames(self._handle)

 @property
 def frames(self):
 # type: () -> session_frames.OutFrames
 """:any:`nixnet._session.frames.OutFrames`: Operate on session's frames"""
 return self._frames

[docs]class FrameInSinglePointSession(base.SessionBase):
 """Frame Input Single-Point session.

 This session reads the most recent value received for each frame.

 This session does not use queues to store each received frame. If the
 interface receives two frames prior to calling the read frame function, that
 read returns signals for the second frame.

 The input data is returned as a list of frames, one for each frame
 specified for the session.

 .. note:: Typical use case: Control or simulation applications that require
 lower level access to frames (not signals).
 """

 def __init__(
 self,
 interface_name, # type: typing.Text
 database_name, # type: typing.Text
 cluster_name, # type: typing.Text
 frames, # type: typing.Union[typing.Text, typing.List[typing.Text]]
):
 # type: (...) -> None
 """Create a Frame Input Single-Point session.

 This function creates a Frame Input Single-Point session using the named
 references to database objects.

 Args:
 interface_name(str): XNET Interface name to use for
 this session.
 database_name(str): XNET database name to use for
 interface configuration. The database name must use the <alias>
 or <filepath> syntax (refer to Databases).
 cluster_name(str): XNET cluster name to use for
 interface configuration. The name must specify a cluster from
 the database given in the database_name parameter. If it is left
 blank, the cluster is extracted from the ``frames`` parameter.
 frames(list of str): Strings describing frames for the session. The
 list syntax is as follows:

 List contains one or more XNET Frame or PDU names. Each name
 must be one of the following options, whichever uniquely
 identifies a frame within the database given:

 - ``<Frame>``
 - ``<Cluster>.<Frame>``
 - ``<PDU>``
 - ``<Cluster>.<PDU>``
 """
 flattened_list = _utils.flatten_items(frames)
 base.SessionBase.__init__(
 self,
 database_name,
 cluster_name,
 flattened_list,
 interface_name,
 constants.CreateSessionMode.FRAME_IN_SINGLE_POINT)
 self._frames = session_frames.SinglePointInFrames(self._handle)

 @property
 def frames(self):
 # type: () -> session_frames.SinglePointInFrames
 """:any:`nixnet._session.frames.InFrames`: Operate on session's frames"""
 return self._frames

[docs]class FrameOutSinglePointSession(base.SessionBase):
 """Frame Output Single-Point session.

 This session writes frame values for the next transmit.

 This session does not use queues to store frame values. If the write frame
 function is called twice before the next transmit, the transmitted frame
 uses the value from the second call to the write frame function.

 The output data is provided as a list of frames, one for each frame
 specified for the session.

 For this session, NI-XNET transmits each frame according to its properties
 in the database. Therefore, when you call the write frame function, the
 number of payload bytes in each frame value must match that frame's Payload
 Length property. The other frame value elements are ignored, so you can
 leave them uninitialized. For CAN interfaces, if the number of payload bytes
 you write is smaller than the Payload Length configured in the database, the
 requested number of bytes transmit. If the number of payload bytes is larger
 than the Payload Length configured in the database, the queue is flushed and
 no frames transmit. For other interfaces, transmitting a number of payload
 bytes different than the frame payload may cause unexpected results on the bus.

 .. note:: Typical use case: Control or simulation applications that require lower level access
 to frames (not signals).
 """
 def __init__(
 self,
 interface_name, # type: typing.Text
 database_name, # type: typing.Text
 cluster_name, # type: typing.Text
 frames, # type: typing.Union[typing.Text, typing.List[typing.Text]]
):
 # type: (...) -> None
 """Create a Frame Output Single-Point session.

 This function creates a Frame Output Single-Point session using the named
 references to database objects.

 Args:
 interface_name(str): XNET Interface name to use for
 this session.
 database_name(str): XNET database name to use for
 interface configuration. The database name must use the <alias>
 or <filepath> syntax (refer to Databases).
 cluster_name(str): XNET cluster name to use for
 interface configuration. The name must specify a cluster from
 the database given in the database_name parameter. If it is left
 blank, the cluster is extracted from the ``frames`` parameter.
 frames(list of str): Strings describing frames for the session. The
 list syntax is as follows:

 List contains one or more XNET Frame or PDU names. Each name
 must be one of the following options, whichever uniquely
 identifies a frame within the database given:

 - ``<Frame>``
 - ``<Cluster>.<Frame>``
 - ``<PDU>``
 - ``<Cluster>.<PDU>``
 """
 flattened_list = _utils.flatten_items(frames)
 base.SessionBase.__init__(
 self,
 database_name,
 cluster_name,
 flattened_list,
 interface_name,
 constants.CreateSessionMode.FRAME_OUT_SINGLE_POINT)
 self._frames = session_frames.SinglePointOutFrames(self._handle)

 @property
 def frames(self):
 # type: () -> session_frames.SinglePointOutFrames
 """:any:`nixnet._session.frames.InFrames`: Operate on session's frames"""
 return self._frames

[docs]class SignalInSinglePointSession(base.SessionBase):
 """Signal Input Single-Point session.

 This session reads the most recent value received for each signal.

 This session does not use queues to store each received frame. If the
 interface receives two frames prior to calling
 :any:`nixnet._session.signals.SinglePointInSignals.read`, that call to
 :any:`nixnet._session.signals.SinglePointInSignals.read` returns signals
 for the second frame.

 Use :any:`nixnet._session.signals.SinglePointInSignals.read` for this session.

 You also can specify a trigger signal for a frame. This signal name is
 :trigger:.<frame name>, and once it is specified in the __init__ ``signals``
 list, it returns a value of 0.0 if the frame did not arrive since the last
 Read (or Start), and 1.0 if at least one frame of this ID arrived. You can
 specify multiple trigger signals for different frames in the same session.
 For multiplexed signals, a signal may or may not be contained in a received
 frame. To define a trigger signal for a multiplexed signal, use the signal
 name :trigger:.<frame name>.<signal name>. This signal returns 1.0 only if a
 frame with appropriate set multiplexer bit has been received since the last
 Read or Start.

 .. note:: Typical use case: Control or simulation applications, such as
 Hardware In the Loop (HIL).
 """

 def __init__(
 self,
 interface_name, # type: typing.Text
 database_name, # type: typing.Text
 cluster_name, # type: typing.Text
 signals, # type: typing.Union[typing.Text, typing.List[typing.Text]]
):
 # type: (...) -> None
 """Create a Signal Input Single-Point session.

 This function creates a Signal Input Single-Point session using the named
 references to database objects.

 Args:
 interface_name(str): XNET Interface name to use for
 this session.
 database_name(str): XNET database name to use for
 interface configuration. The database name must use the <alias>
 or <filepath> syntax (refer to Databases).
 cluster_name(str): XNET cluster name to use for
 interface configuration. The name must specify a cluster from
 the database given in the database_name parameter. If it is left
 blank, the cluster is extracted from the ``signals`` parameter.
 signals(list of str): Strings describing signals for the session. The
 list syntax is as follows:

 ``signals`` contains one or more XNET Signal names. Each name must
 be one of the following options, whichever uniquely
 identifies a signal within the database given:

 - ``<Signal>``
 - ``<Frame>.<Signal>``
 - ``<Cluster>.<Frame>.<Signal>``
 - ``<PDU>.<Signal>``
 - ``<Cluster>.<PDU>.<Signal>``

 ``signals`` may also contain one or more trigger signals. For
 information about trigger signals, refer to Signal Output
 Single-Point Mode or Signal Input Single-Point Mode.
 """
 flattened_list = _utils.flatten_items(signals)
 base.SessionBase.__init__(
 self,
 database_name,
 cluster_name,
 flattened_list,
 interface_name,
 constants.CreateSessionMode.SIGNAL_IN_SINGLE_POINT)
 self._signals = session_signals.SinglePointInSignals(self._handle)

 @property
 def signals(self):
 # type: () -> session_signals.SinglePointInSignals
 """:any:`nixnet._session.signals.SinglePointInSignals`: Operate on session's signals"""
 return self._signals

[docs]class SignalOutSinglePointSession(base.SessionBase):
 """Signal Out Single-Point session.

 This session writes signal values for the next frame transmit.

 This session does not use queues to store signal values. If
 :any:`nixnet._session.signals.SinglePointOutSignals.write` is called twice
 before the next transmit, the transmitted frame uses signal values from the
 second call to :any:`nixnet._session.signals.SinglePointOutSignals.write`.

 Use :any:`nixnet._session.signals.SinglePointOutSignals.write` for this session.

 You also can specify a trigger signal for a frame. This signal name is
 :trigger:.<frame name>, and once it is specified in the __init__ ``signals``
 list, you can write a value of 0.0 to suppress writing of that frame, or any
 value not equal to 0.0 to write the frame. You can specify multiple trigger
 signals for different frames in the same session.

 .. note:: Typical use case: Control or simulation applications, such as
 Hardware In the Loop (HIL).
 """

 def __init__(
 self,
 interface_name, # type: typing.Text
 database_name, # type: typing.Text
 cluster_name, # type: typing.Text
 signals, # type: typing.Union[typing.Text, typing.List[typing.Text]]
):
 # type: (...) -> None
 """Create a Signal Output Single-Point session.

 This function creates a Signal Output Single-Point session using the named
 references to database objects.

 Args:
 interface_name(str): XNET Interface name to use for
 this session.
 database_name(str): XNET database name to use for
 interface configuration. The database name must use the <alias>
 or <filepath> syntax (refer to Databases).
 cluster_name(str): XNET cluster name to use for
 interface configuration. The name must specify a cluster from
 the database given in the database_name parameter. If it is left
 blank, the cluster is extracted from the ``signals`` parameter.
 signals(list of str): Strings describing signals for the session. The
 list syntax is as follows:

 ``signals`` contains one or more XNET Signal names. Each name must
 be one of the following options, whichever uniquely
 identifies a signal within the database given:

 - ``<Signal>``
 - ``<Frame>.<Signal>``
 - ``<Cluster>.<Frame>.<Signal>``
 - ``<PDU>.<Signal>``
 - ``<Cluster>.<PDU>.<Signal>``

 ``signals`` may also contain one or more trigger signals. For
 information about trigger signals, refer to Signal Output
 Single-Point Mode or Signal Output Single-Point Mode.
 """
 flattened_list = _utils.flatten_items(signals)
 base.SessionBase.__init__(
 self,
 database_name,
 cluster_name,
 flattened_list,
 interface_name,
 constants.CreateSessionMode.SIGNAL_OUT_SINGLE_POINT)
 self._signals = session_signals.SinglePointOutSignals(self._handle)

 @property
 def signals(self):
 # type: () -> session_signals.SinglePointOutSignals
 """:any:`nixnet._session.signals.SinglePointInSignals`: Operate on session's signals"""
 return self._signals

def create_session_by_ref(
 database_refs,
 interface_name,
 mode):
 return _funcs.nx_create_session_by_ref(database_refs, interface_name, mode)

def read_signal_waveform(
 session_ref,
 timeout,
 start_time,
 delta_time,
 value_buffer,
 size_of_value_buffer,
 number_of_values_returned):
 raise NotImplementedError("Placeholder")

def read_signal_xy(
 session_ref,
 time_limit,
 value_buffer,
 size_of_value_buffer,
 timestamp_buffer,
 size_of_timestamp_buffer,
 num_pairs_buffer,
 size_of_num_pairs_buffer):
 raise NotImplementedError("Placeholder")

def write_signal_waveform(
 session_ref,
 timeout,
 value_buffer):
 _funcs.nx_write_signal_waveform(session_ref, timeout, value_buffer)

def write_signal_xy(
 session_ref,
 timeout,
 value_buffer,
 timestamp_buffer,
 num_pairs_buffer):
 _funcs.nx_write_signal_xy(session_ref, timeout, value_buffer, timestamp_buffer, num_pairs_buffer)

 nixnet.types

 Source code for nixnet.types

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import abc
import collections
import typing # NOQA: F401

import six

from nixnet import _cconsts
from nixnet import _errors
from nixnet import _py2
from nixnet import constants

__all__ = [
 'DriverVersion',
 'CanComm',
 'LinComm',
 'CanIdentifier',
 'FrameFactory',
 'Frame',
 'RawFrame',
 'CanFrame',
 'CanBusErrorFrame',
 'LinFrame',
 'LinBusErrorFrame',
 'DelayFrame',
 'LogTriggerFrame',
 'StartTriggerFrame',
 'XnetFrame',
 'PduProperties']

DriverVersion_ = collections.namedtuple(
 'DriverVersion_',
 ['major', 'minor', 'update', 'phase', 'build'])

[docs]class DriverVersion(DriverVersion_):
 """Driver Version

 The arguments align with the following fields: ``[major].[minor].[update][phase][build]``.

 Attributes:
 major (int):
 minor (int):
 update (int):
 phase (:any:`nixnet._enums.Phase`):
 build (int):
 """

CanComm_ = collections.namedtuple(
 'CanComm_',
 ['state', 'tcvr_err', 'sleep', 'last_err', 'tx_err_count', 'rx_err_count'])

[docs]class CanComm(CanComm_):
 """CAN Communication State.

 Attributes:
 state (:any:`nixnet._enums.CanCommState`): Communication State
 tcvr_err (bool): Transceiver Error.
 Transceiver error indicates whether an error condition exists on
 the physical transceiver. This is typically referred to as the
 transceiver chip NERR pin. False indicates normal operation (no
 error), and true indicates an error.
 sleep (bool): Sleep.
 Sleep indicates whether the transceiver and communication
 controller are in their sleep state. False indicates normal
 operation (awake), and true indicates sleep.
 last_err (:any:`nixnet._enums.CanLastErr`): Last Error.
 Last error specifies the status of the last attempt to receive or
 transmit a frame
 tx_err_count (int): Transmit Error Counter.
 The transmit error counter begins at 0 when communication starts on
 the CAN interface. The counter increments when an error is detected
 for a transmitted frame and decrements when a frame transmits
 successfully. The counter increases more for an error than it is
 decreased for success. This ensures that the counter generally
 increases when a certain ratio of frames (roughly 1/8) encounter
 errors.
 When communication state transitions to Bus Off, the transmit error
 counter no longer is valid.
 rx_err_count (int): Receive Error Counter.
 The receive error counter begins at 0 when communication starts on
 the CAN interface. The counter increments when an error is detected
 for a received frame and decrements when a frame is received
 successfully. The counter increases more for an error than it is
 decreased for success. This ensures that the counter generally
 increases when a certain ratio of frames (roughly 1/8) encounter
 errors.
 """

 pass

LinComm_ = collections.namedtuple(
 'LinComm_',
 ['sleep', 'state', 'last_err', 'err_received', 'err_expected', 'err_id', 'tcvr_rdy', 'sched_index'])

[docs]class LinComm(LinComm_):
 """CAN Communication State.

 Attributes:
 sleep (bool): Sleep.
 Indicates whether the transceiver and communication
 controller are in their sleep state. False indicates normal
 operation (awake), and true indicates sleep.
 state (:any:`nixnet._enums.LinCommState`): Communication State
 last_err (:any:`nixnet._enums.LinLastErr`): Last Error.
 Last error specifies the status of the last attempt to receive or
 transmit a frame
 err_received (int): Returns the value received from the network
 when last error occurred.

 When ``last_err`` is ``READBACK``, this is the value read back.

 When ``last_err`` is ``CHECKSUM``, this is the received checksum.
 err_expected (int): Returns the value that the LIN interface
 expected to see (instead of last received).

 When ``last_err`` is ``READBACK``, this is the value transmitted.

 When ``last_err`` is ``CHECKSUM``, this is the calculated checksum.
 err_id (int): Returns the frame identifier in which the last error
 occurred.

 This is not applicable when ``last_err`` is ``NONE`` or ``UNKNOWN_ID``.
 tcvr_rdy (bool): Indicates whether the LIN transceiver is powered from
 the bus.

 True indicates the bus power exists, so it is safe to start
 communication on the LIN interface.

 If this value is false, you cannot start communication
 successfully. Wire power to the LIN transceiver and run your
 application again.
 sched_index (int): Indicates the LIN schedule that the interface
 currently is running.

 This index refers to a LIN schedule that you requested using the
 :any:`nixnet._session.base.SessionBase.change_lin_schedule` function. It
 indexes the array of schedules represented in the
 :any:`nixnet._session.intf.Interface.lin_sched_names`.

 This index applies only when the LIN interface is running as a
 master. If the LIN interface is running as a slave only, this
 element should be ignored.
 """

 pass

PduProperties_ = collections.namedtuple(
 'PDU_PROPERTIES_',
 ['pdu', 'start_bit', 'update_bit'])

[docs]class PduProperties(PduProperties_):
 """Properties that map a PDU onto a frame.

 Mapping PDUs to a frame requires setting three frame properties that are combined into this tuple.

 Attributes:
 pdu (:any:`Pdu`): Defines the sequence of values for the other two properties.
 start_bit (int): Defines the start bit of the PDU inside the frame.
 update_bit (int): Defines the update bit for the PDU inside the frame.
 If the update bit is not used, set the value to ``-1``.
 """

[docs]class CanIdentifier(object):
 """CAN frame arbitration identifier.

 Attributes:
 identifier(int): CAN frame arbitration identifier
 extended(bool): If the identifier is extended
 """

 _FRAME_ID_MASK = 0x000007FF
 _EXTENDED_FRAME_ID_MASK = 0x1FFFFFFF

 def __init__(self, identifier, extended=False):
 # type: (int, bool) -> None
 self.identifier = identifier
 self.extended = extended

[docs] @classmethod
 def from_raw(cls, raw):
 # type: (int) -> CanIdentifier
 """Parse a raw frame identifier into a CanIdentifier

 Args:
 raw(int): A raw frame identifier

 Returns:
 CanIdentifier: parsed value

 >>> CanIdentifier.from_raw(0x1)
 CanIdentifier(0x1)
 >>> CanIdentifier.from_raw(0x20000001)
 CanIdentifier(0x1, extended=True)
 """
 extended = bool(raw & _cconsts.NX_FRAME_ID_CAN_IS_EXTENDED)
 if extended:
 identifier = raw & cls._EXTENDED_FRAME_ID_MASK
 else:
 identifier = raw & cls._FRAME_ID_MASK
 return cls(identifier, extended)

 def __int__(self):
 """Convert CanIdentifier into a raw frame identifier

 >>> hex(int(CanIdentifier(1)))
 '0x1'
 >>> hex(int(CanIdentifier(1, True)))
 '0x20000001'
 """
 identifier = self.identifier
 if self.extended:
 if identifier != (identifier & self._EXTENDED_FRAME_ID_MASK):
 _errors.check_for_error(_cconsts.NX_ERR_UNDEFINED_FRAME_ID)
 identifier |= _cconsts.NX_FRAME_ID_CAN_IS_EXTENDED
 else:
 if identifier != (identifier & self._FRAME_ID_MASK):
 _errors.check_for_error(_cconsts.NX_ERR_UNDEFINED_FRAME_ID)
 return identifier

 def __eq__(self, other):
 if isinstance(other, CanIdentifier):
 other_id = typing.cast(CanIdentifier, other)
 return all((
 self.identifier == other_id.identifier,
 self.extended == other_id.extended))
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __repr__(self):
 """CanIdentifier debug representation.

 >>> CanIdentifier(1)
 CanIdentifier(0x1)
 >>> CanIdentifier(1, True)
 CanIdentifier(0x1, extended=True)
 """
 if self.extended:
 return "{}(0x{:x}, extended={})".format(
 type(self).__name__,
 self.identifier,
 self.extended)
 else:
 return "{}(0x{:x})".format(
 type(self).__name__,
 self.identifier)

[docs]@six.add_metaclass(abc.ABCMeta)
class FrameFactory(object):
 """ABC for creating :any:`nixnet.types.Frame` objects."""

 __slots__ = ()

[docs] @_py2.abstractclassmethod
 def from_raw(cls, frame): # NOQA: N805 can't detect abstractclassmethod
 # No type annotation because mypy doesn't understand
 # abstractclassmethod is the same as classmethod
 """Convert from RawFrame."""
 pass

[docs]@six.add_metaclass(abc.ABCMeta)
class Frame(FrameFactory):
 """ABC for frame objects."""

 __slots__ = ()

[docs] @abc.abstractmethod
 def to_raw(self):
 # type: () -> RawFrame
 """Convert to RawFrame."""
 pass

 @abc.abstractproperty
 def type(self):
 # type: () -> constants.FrameType
 """:any:`nixnet._enums.FrameType`: Frame format."""
 pass

 @abc.abstractmethod
 def __eq__(self, other):
 pass

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 @abc.abstractmethod
 def __repr__(self):
 pass

[docs]class RawFrame(Frame):
 """Raw Frame.

 Attributes:
 timestamp(int): Absolute time the XNET interface received the end-of-frame.
 identifier(int): Frame identifier.
 type(:any:`nixnet._enums.FrameType`): Frame type.
 flags(int): Flags that qualify the type.
 info(int): Info that qualify the type.
 payload(bytes): Payload.
 """

 __slots__ = [
 "timestamp",
 "identifier",
 "_type",
 "flags",
 "info",
 "payload"]

 def __init__(self, timestamp, identifier, type, flags=0, info=0, payload=b""):
 # type: (int, int, constants.FrameType, int, int, bytes) -> None
 self.timestamp = timestamp
 self.identifier = identifier
 self._type = type
 self.flags = flags
 self.info = info
 self.payload = payload

[docs] @classmethod
 def from_raw(cls, frame):
 """Convert from RawFrame."""
 return frame

[docs] def to_raw(self):
 """Convert to RawFrame."""
 return self

 @property
 def type(self):
 return self._type

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 other_frame = typing.cast(RawFrame, other)
 return all((
 self.timestamp == other_frame.timestamp,
 self.identifier == other_frame.identifier,
 self.type == other_frame.type,
 self.flags == other_frame.flags,
 self.info == other_frame.info,
 self.payload == other_frame.payload))
 else:
 return NotImplemented

 def __repr__(self):
 # type: () -> typing.Text
 """RawFrame debug representation.

 >>> RawFrame(1, 2, constants.FrameType.CAN_DATA, 3, 4)
 RawFrame(timestamp=0x1, identifier=0x2, type=FrameType.CAN_DATA, flags=0x3, info=0x4)
 """
 optional = []
 if self.flags != 0:
 optional.append('flags=0x{:x}'.format(self.flags))
 if self.info != 0:
 optional.append('info=0x{:x}'.format(self.info))
 if self.payload:
 optional.append('len(payload)={}'.format(len(self.payload)))
 if optional:
 optional_params = ', {}'.format(", ".join(optional))
 else:
 optional_params = ''
 return "{}(timestamp=0x{:x}, identifier=0x{:x}, type={}{})".format(
 type(self).__name__,
 self.timestamp,
 self.identifier,
 self.type,
 optional_params)

[docs]class CanFrame(Frame):
 """CAN Frame.

 Attributes:
 identifier(:any:`nixnet.types.CanIdentifier`): CAN frame arbitration identifier.
 echo(bool): If the frame is an echo of a successful
 transmit rather than being received from the network.
 type(:any:`nixnet._enums.FrameType`): Frame type.
 timestamp(int): Absolute time the XNET interface received the end-of-frame.
 payload(bytes): Payload.
 """

 __slots__ = [
 "identifier",
 "echo",
 "_type",
 "timestamp",
 "payload"]

 def __init__(self, identifier, type=constants.FrameType.CAN_DATA, payload=b""):
 # type: (typing.Union[CanIdentifier, int], constants.FrameType, bytes) -> None
 if isinstance(identifier, int):
 self.identifier = CanIdentifier(identifier)
 else:
 self.identifier = identifier
 self.echo = False # Used only for Read
 self._type = type
 self.timestamp = 0 # Used only for Read
 self.payload = payload

[docs] @classmethod
 def from_raw(cls, frame):
 """Convert from RawFrame.

 >>> raw = RawFrame(5, 0x20000001, constants.FrameType.CAN_DATA, _cconsts.NX_FRAME_FLAGS_TRANSMIT_ECHO, 0, b'')
 >>> CanFrame.from_raw(raw)
 CanFrame(CanIdentifier(0x1, extended=True), echo=True, timestamp=0x5)
 """
 identifier = CanIdentifier.from_raw(frame.identifier)
 can_frame = CanFrame(identifier, constants.FrameType(frame.type), frame.payload)
 can_frame.timestamp = frame.timestamp
 can_frame.echo = bool(frame.flags & _cconsts.NX_FRAME_FLAGS_TRANSMIT_ECHO)
 return can_frame

[docs] def to_raw(self):
 """Convert to RawFrame.

 >>> CanFrame(CanIdentifier(1, True), constants.FrameType.CAN_DATA).to_raw()
 RawFrame(timestamp=0x0, identifier=0x20000001, type=FrameType.CAN_DATA)
 >>> c = CanFrame(CanIdentifier(1, True), constants.FrameType.CAN_DATA)
 >>> c.echo = True
 >>> c.to_raw()
 RawFrame(timestamp=0x0, identifier=0x20000001, type=FrameType.CAN_DATA, flags=0x80)
 """
 identifier = int(self.identifier)
 flags = 0
 if self.echo:
 flags |= _cconsts.NX_FRAME_FLAGS_TRANSMIT_ECHO
 return RawFrame(self.timestamp, identifier, self.type, flags, 0, self.payload)

 @property
 def type(self):
 return self._type

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 other_frame = typing.cast(CanFrame, other)
 return all((
 self.identifier == other_frame.identifier,
 self.echo == other_frame.echo,
 self.type == other_frame.type,
 self.timestamp == other_frame.timestamp,
 self.payload == other_frame.payload))
 else:
 return NotImplemented

 def __repr__(self):
 # type: () -> typing.Text
 """CanFrame debug representation.

 >>> CanFrame(1)
 CanFrame(CanIdentifier(0x1))
 >>> CanFrame(1, constants.FrameType.CANFD_DATA, b'\x01')
 CanFrame(CanIdentifier(0x1), type=FrameType.CANFD_DATA, len(payload)=1)
 """
 optional = []
 if self.echo:
 optional.append('echo={}'.format(self.echo))
 if self.type != constants.FrameType.CAN_DATA:
 optional.append('type={}'.format(self.type))
 if self.timestamp != 0:
 optional.append('timestamp=0x{:x}'.format(self.timestamp))
 if self.payload:
 optional.append('len(payload)={}'.format(len(self.payload)))
 if optional:
 optional_params = ', {}'.format(", ".join(optional))
 else:
 optional_params = ''
 return "{}({}{})".format(
 type(self).__name__,
 self.identifier,
 optional_params)

[docs]class CanBusErrorFrame(Frame):
 """Error detected on hardware bus of a :any:`nixnet.session.FrameInStreamSession`.

 .. note:: This requires enabling
 :any:`nixnet._session.intf.Interface.bus_err_to_in_strm`.

 See also :any:`nixnet.types.CanComm`.

 Attributes:
 timestamp(int): Absolute time when the bus error occurred.
 state (:any:`nixnet._enums.CanCommState`): Communication State
 tcvr_err (bool): Transceiver Error.
 bus_err (:any:`nixnet._enums.CanLastErr`): Last Error.
 tx_err_count (int): Transmit Error Counter.
 rx_err_count (int): Receive Error Counter.
 """

 __slots__ = [
 "timestamp",
 "state",
 "tcvr_err",
 "bus_err",
 "tx_err_count",
 "rx_err_count"]

 def __init__(self, timestamp, state, tcvr_err, bus_err, tx_err_count, rx_err_count):
 # type: (int, constants.CanCommState, bool, constants.CanLastErr, int, int) -> None
 self.timestamp = timestamp
 self.state = state
 self.tcvr_err = tcvr_err
 self.bus_err = bus_err
 self.tx_err_count = tx_err_count
 self.rx_err_count = rx_err_count

[docs] @classmethod
 def from_raw(cls, frame):
 """Convert from RawFrame.

 >>> raw = RawFrame(0x64, 0x0, constants.FrameType.CAN_BUS_ERROR, 0, 0, b'\\x00\\x01\\x02\\x03\\x04')
 >>> CanBusErrorFrame.from_raw(raw)
 CanBusErrorFrame(0x64, CanCommState.ERROR_ACTIVE, True, CanLastErr.ACK, 1, 2)
 """
 timestamp = frame.timestamp
 state = constants.CanCommState(six.indexbytes(frame.payload, 0))
 tx_err_count = six.indexbytes(frame.payload, 1)
 rx_err_count = six.indexbytes(frame.payload, 2)
 bus_err = constants.CanLastErr(six.indexbytes(frame.payload, 3))
 tcvr_err = six.indexbytes(frame.payload, 4) != 0
 return CanBusErrorFrame(timestamp, state, tcvr_err, bus_err, tx_err_count, rx_err_count)

[docs] def to_raw(self):
 """Convert to RawFrame.

 >>> CanBusErrorFrame(100, constants.CanCommState.BUS_OFF, True, constants.CanLastErr.STUFF, 1, 2).to_raw()
 RawFrame(timestamp=0x64, identifier=0x0, type=FrameType.CAN_BUS_ERROR, len(payload)=5)
 """
 identifier = 0
 flags = 0
 info = 0

 payload_data = [
 self.state.value,
 self.tx_err_count,
 self.rx_err_count,
 self.bus_err.value,
 1 if self.tcvr_err else 0,
]
 payload = bytes(bytearray(payload_data))
 return RawFrame(self.timestamp, identifier, self.type, flags, info, payload)

 @property
 def type(self):
 return constants.FrameType.CAN_BUS_ERROR

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 other_frame = typing.cast(CanBusErrorFrame, other)
 return all((
 self.timestamp == other_frame.timestamp,
 self.state == other_frame.state,
 self.tcvr_err == other_frame.tcvr_err,
 self.bus_err == other_frame.bus_err,
 self.tx_err_count == other_frame.tx_err_count,
 self.rx_err_count == other_frame.rx_err_count))
 else:
 return NotImplemented

 def __repr__(self):
 # type: () -> typing.Text
 """CanBusErrorFrame debug representation.

 >>> CanBusErrorFrame(100, constants.CanCommState.BUS_OFF, True, constants.CanLastErr.STUFF, 1, 2)
 CanBusErrorFrame(0x64, CanCommState.BUS_OFF, True, CanLastErr.STUFF, 1, 2)
 """
 return "{}(0x{:x}, {}, {}, {}, {}, {})".format(
 type(self).__name__,
 self.timestamp,
 self.state,
 self.tcvr_err,
 self.bus_err,
 self.tx_err_count,
 self.rx_err_count)

[docs]class LinFrame(object):
 """LIN Frame.

 Attributes:
 identifier(int): LIN frame arbitration identifier.
 echo(bool): If the frame is an echo of a successful
 transmit rather than being received from the network.
 type(:any:`nixnet._enums.FrameType`): Frame type.
 timestamp(int): Absolute time the XNET interface received the end-of-frame.
 eventslot(bool): Whether the frame was received within an
 event-triggered slot or an unconditional or sporadic slot.
 eventid(int): Identifier for an event-triggered slot.
 payload(bytes): A byte string representing the payload.
 """

 __slots__ = [
 "identifier",
 "echo",
 "type",
 "timestamp",
 "eventslot",
 "eventid",
 "payload"]

 _FRAME_ID_MASK = 0x0000003F

 def __init__(self, identifier, type=constants.FrameType.LIN_DATA, payload=b""):
 # type: (int, constants.FrameType, bytes) -> None
 self.identifier = identifier
 self.echo = False # Used only for Read
 self.type = type
 self.timestamp = 0 # Used only for Read
 self.eventslot = False # Used only for Read
 self.eventid = 0 # Used only for Read
 self.payload = payload

[docs] @classmethod
 def from_raw(cls, frame):
 # type: (RawFrame) -> LinFrame
 """Convert from RawFrame.

 >>> raw = RawFrame(5, 2, constants.FrameType.LIN_DATA, 0x81, 1, b'\x01')
 >>> LinFrame.from_raw(raw)
 LinFrame(identifier=0x2, echo=True, timestamp=0x5, eventslot=True, eventid=1, len(payload)=1)
 >>> raw = RawFrame(5, 2, constants.FrameType.LIN_DATA, _cconsts.NX_FRAME_FLAGS_TRANSMIT_ECHO, 0, b'\x01')
 >>> LinFrame.from_raw(raw)
 LinFrame(identifier=0x2, echo=True, timestamp=0x5, len(payload)=1)
 """
 identifier = frame.identifier & cls._FRAME_ID_MASK
 lin_frame = LinFrame(identifier, constants.FrameType(frame.type), frame.payload)
 lin_frame.timestamp = frame.timestamp
 lin_frame.echo = bool(frame.flags & _cconsts.NX_FRAME_FLAGS_TRANSMIT_ECHO)
 lin_frame.eventslot = bool(frame.flags & _cconsts.NX_FRAME_FLAGS_LIN_EVENT_SLOT)
 if lin_frame.eventslot:
 lin_frame.eventid = frame.info
 else:
 lin_frame.eventid = 0

 return lin_frame

[docs] def to_raw(self):
 # type: () -> RawFrame
 """Convert to RawFrame.

 >>> LinFrame(2, constants.FrameType.LIN_DATA).to_raw()
 RawFrame(timestamp=0x0, identifier=0x2, type=FrameType.LIN_DATA)
 >>> l = LinFrame(2, constants.FrameType.LIN_DATA)
 >>> l.echo = True
 >>> l.eventslot = True
 >>> l.eventid = 1
 >>> l.to_raw()
 RawFrame(timestamp=0x0, identifier=0x2, type=FrameType.LIN_DATA, flags=0x81, info=0x1)
 """
 if self.identifier != (self.identifier & self._FRAME_ID_MASK):
 _errors.check_for_error(_cconsts.NX_ERR_UNDEFINED_FRAME_ID)
 flags = 0
 info = 0
 if self.echo:
 flags |= _cconsts.NX_FRAME_FLAGS_TRANSMIT_ECHO
 if self.eventslot:
 flags |= _cconsts.NX_FRAME_FLAGS_LIN_EVENT_SLOT
 info |= self.eventid
 return RawFrame(self.timestamp, self.identifier, self.type, flags, info, self.payload)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 other_frame = typing.cast(LinFrame, other)
 return all((
 self.identifier == other_frame.identifier,
 self.echo == other_frame.echo,
 self.type == other_frame.type,
 self.timestamp == other_frame.timestamp,
 self.eventslot == other_frame.eventslot,
 self.eventid == other_frame.eventid,
 self.payload == other_frame.payload))
 else:
 return NotImplemented

 def __repr__(self):
 # type: () -> typing.Text
 """LinFrame debug representation.

 >>> LinFrame(2)
 LinFrame(identifier=0x2)
 >>> LinFrame(2, constants.FrameType.LIN_NO_RESPONSE, b'\x01')
 LinFrame(identifier=0x2, type=FrameType.LIN_NO_RESPONSE, len(payload)=1)
 """
 optional = []
 if self.echo:
 optional.append('echo={}'.format(self.echo))
 if self.type != constants.FrameType.LIN_DATA:
 optional.append('type={}'.format(self.type))
 if self.timestamp != 0:
 optional.append('timestamp=0x{:x}'.format(self.timestamp))
 if self.eventslot:
 optional.append('eventslot={}'.format(self.eventslot))
 if self.eventid != 0:
 optional.append('eventid={}'.format(self.eventid))
 if self.payload:
 optional.append('len(payload)={}'.format(len(self.payload)))
 if optional:
 optional_params = ', {}'.format(", ".join(optional))
 else:
 optional_params = ''
 return "{}(identifier=0x{:x}{})".format(
 type(self).__name__,
 self.identifier,
 optional_params)

[docs]class LinBusErrorFrame(Frame):
 """Error detected on hardware bus of a :any:`nixnet.session.FrameInStreamSession`.

 .. note:: This requires enabling
 :any:`nixnet._session.intf.Interface.bus_err_to_in_strm`.

 See also :any:`nixnet.types.LinComm`.

 Attributes:
 timestamp(int): Absolute time when the bus error occurred.
 state (:any:`nixnet._enums.LinCommState`): Communication State.
 bus_err (:any:`nixnet._enums.LinLastErr`): Last Error.
 err_id (int): Identifier on bus.
 err_received (int): Received byte on bus
 err_expected (int): Expected byte on bus
 """

 __slots__ = [
 "timestamp",
 "state",
 "bus_err",
 "err_id",
 "err_received",
 "err_expected"]

 def __init__(self, timestamp, state, bus_err, err_id, err_received, err_expected):
 # type: (int, constants.LinCommState, constants.LinLastErr, int, int, int) -> None
 self.timestamp = timestamp
 self.state = state
 self.bus_err = bus_err
 self.err_id = err_id
 self.err_received = err_received
 self.err_expected = err_expected

[docs] @classmethod
 def from_raw(cls, frame):
 """Convert from RawFrame.

 >>> raw = RawFrame(0x64, 0x0, constants.FrameType.LIN_BUS_ERROR, 0, 0, b'\\x00\\x01\\x02\\x03\\x04')
 >>> LinBusErrorFrame.from_raw(raw)
 LinBusErrorFrame(0x64, LinCommState.IDLE, LinLastErr.UNKNOWN_ID, 0x2, 3, 4)
 """
 timestamp = frame.timestamp
 state = constants.LinCommState(six.indexbytes(frame.payload, 0))
 bus_err = constants.LinLastErr(six.indexbytes(frame.payload, 1))
 err_id = six.indexbytes(frame.payload, 2)
 err_received = six.indexbytes(frame.payload, 3)
 err_expected = six.indexbytes(frame.payload, 4)
 return LinBusErrorFrame(timestamp, state, bus_err, err_id, err_received, err_expected)

[docs] def to_raw(self):
 """Convert to RawFrame.

 >>> LinBusErrorFrame(100, constants.LinCommState.INACTIVE, constants.LinLastErr.UNKNOWN_ID, 2, 3, 4).to_raw()
 RawFrame(timestamp=0x64, identifier=0x0, type=FrameType.LIN_BUS_ERROR, len(payload)=5)
 """
 identifier = 0
 flags = 0
 info = 0

 payload_data = [
 self.state.value,
 self.bus_err.value,
 self.err_id,
 self.err_received,
 self.err_expected,
]
 payload = bytes(bytearray(payload_data))
 return RawFrame(self.timestamp, identifier, self.type, flags, info, payload)

 @property
 def type(self):
 return constants.FrameType.LIN_BUS_ERROR

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 other_frame = typing.cast(LinBusErrorFrame, other)
 return all((
 self.timestamp == other_frame.timestamp,
 self.state == other_frame.state,
 self.bus_err == other_frame.bus_err,
 self.err_id == other_frame.err_id,
 self.err_received == other_frame.err_received,
 self.err_expected == other_frame.err_expected))
 else:
 return NotImplemented

 def __repr__(self):
 # type: () -> typing.Text
 """LinBusErrorFrame debug representation.

 >>> LinBusErrorFrame(100, constants.LinCommState.INACTIVE, constants.LinLastErr.CRC, 1, 2, 3)
 LinBusErrorFrame(0x64, LinCommState.INACTIVE, LinLastErr.CRC, 0x1, 2, 3)
 """
 return "{}(0x{:x}, {}, {}, 0x{:x}, {}, {})".format(
 type(self).__name__,
 self.timestamp,
 self.state,
 self.bus_err,
 self.err_id,
 self.err_received,
 self.err_expected)

[docs]class DelayFrame(Frame):
 """Delay hardware when DelayFrame is outputted.

 .. note:: This requires
 :any:`nixnet._session.intf.Interface.out_strm_timng` to be in replay mode.

 Attributes:
 offset(int): Time to delay in milliseconds.
 """

 __slots__ = [
 "offset"]

 def __init__(self, offset):
 # type: (int) -> None
 self.offset = offset

[docs] @classmethod
 def from_raw(cls, frame):
 """Convert from RawFrame.

 >>> raw = RawFrame(5, 0, constants.FrameType.SPECIAL_DELAY, 0, 0, b'')
 >>> DelayFrame.from_raw(raw)
 DelayFrame(5)
 """
 return DelayFrame(frame.timestamp)

[docs] def to_raw(self):
 """Convert to RawFrame.

 >>> DelayFrame(250).to_raw()
 RawFrame(timestamp=0xfa, identifier=0x0, type=FrameType.SPECIAL_DELAY)
 """
 identifier = 0
 flags = 0
 info = 0
 payload = b''
 return RawFrame(self.offset, identifier, self.type, flags, info, payload)

 @property
 def type(self):
 return constants.FrameType.SPECIAL_DELAY

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 other_frame = typing.cast(DelayFrame, other)
 return self.offset == other_frame.offset
 else:
 return NotImplemented

 def __repr__(self):
 # type: () -> typing.Text
 """DelayFrame debug representation.

 >>> DelayFrame(250)
 DelayFrame(250)
 """
 return "{}({})".format(type(self).__name__, self.offset)

[docs]class LogTriggerFrame(Frame):
 """Timestamp of when a trigger occurred.

 This frame is generated on input sessions when a rising edge is detected on
 an external connection.

 .. note:: This requires using
 :any:`nixnet._session.base.SessionBase.connect_terminals` to connect an
 external connection to the internal ``LogTrigger`` terminal.

 Attributes:
 timestamp(int): Absolute time that the trigger occurred.
 """

 __slots__ = [
 "timestamp"]

 def __init__(self, timestamp):
 # type: (int) -> None
 self.timestamp = timestamp

[docs] @classmethod
 def from_raw(cls, frame):
 """Convert from RawFrame.

 >>> raw = RawFrame(5, 0, constants.FrameType.SPECIAL_LOG_TRIGGER, 0, 0, b'')
 >>> LogTriggerFrame.from_raw(raw)
 LogTriggerFrame(0x5)
 """
 return LogTriggerFrame(frame.timestamp)

[docs] def to_raw(self):
 """Convert to RawFrame.

 >>> LogTriggerFrame(250).to_raw()
 RawFrame(timestamp=0xfa, identifier=0x0, type=FrameType.SPECIAL_LOG_TRIGGER)
 """
 identifier = 0
 flags = 0
 info = 0
 payload = b''
 return RawFrame(self.timestamp, identifier, self.type, flags, info, payload)

 @property
 def type(self):
 return constants.FrameType.SPECIAL_LOG_TRIGGER

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 other_frame = typing.cast(LogTriggerFrame, other)
 return self.timestamp == other_frame.timestamp
 else:
 return NotImplemented

 def __repr__(self):
 # type: () -> typing.Text
 """LogTriggerFrame debug representation.

 >>> LogTriggerFrame(250)
 LogTriggerFrame(0xfa)
 """
 return "{}(0x{:x})".format(type(self).__name__, self.timestamp)

[docs]class StartTriggerFrame(Frame):
 """Timestamp of :any:`nixnet.session.FrameInStreamSession` start.

 .. note:: This requires enabling
 :any:`nixnet._session.intf.Interface.start_trig_to_in_strm`.

 Attributes:
 timestamp(int): Absolute time that the trigger occurred.
 """

 __slots__ = [
 "timestamp"]

 def __init__(self, timestamp):
 # type: (int) -> None
 self.timestamp = timestamp

[docs] @classmethod
 def from_raw(cls, frame):
 """Convert from RawFrame.

 >>> raw = RawFrame(5, 0, constants.FrameType.SPECIAL_START_TRIGGER, 0, 0, b'')
 >>> StartTriggerFrame.from_raw(raw)
 StartTriggerFrame(0x5)
 """
 return StartTriggerFrame(frame.timestamp)

[docs] def to_raw(self):
 """Convert to RawFrame.

 >>> StartTriggerFrame(250).to_raw()
 RawFrame(timestamp=0xfa, identifier=0x0, type=FrameType.SPECIAL_START_TRIGGER)
 """
 identifier = 0
 flags = 0
 info = 0
 payload = b''
 return RawFrame(self.timestamp, identifier, self.type, flags, info, payload)

 @property
 def type(self):
 return constants.FrameType.SPECIAL_START_TRIGGER

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 other_frame = typing.cast(StartTriggerFrame, other)
 return self.timestamp == other_frame.timestamp
 else:
 return NotImplemented

 def __repr__(self):
 # type: () -> typing.Text
 """StartTriggerFrame debug representation.

 >>> StartTriggerFrame(250)
 StartTriggerFrame(0xfa)
 """
 return "{}(0x{:x})".format(type(self).__name__, self.timestamp)

[docs]class XnetFrame(FrameFactory):
 """Create `Frame` based on `RawFrame` content."""

 __slots__ = ()

[docs] @classmethod
 def from_raw(cls, frame):
 """Convert from RawFrame."""
 frame_type = {
 constants.FrameType.CAN_DATA: CanFrame,
 constants.FrameType.CAN20_DATA: CanFrame,
 constants.FrameType.CANFD_DATA: CanFrame,
 constants.FrameType.CANFDBRS_DATA: CanFrame,
 constants.FrameType.CAN_REMOTE: CanFrame,
 constants.FrameType.CAN_BUS_ERROR: CanBusErrorFrame,
 constants.FrameType.LIN_DATA: LinFrame,
 constants.FrameType.SPECIAL_DELAY: DelayFrame,
 constants.FrameType.SPECIAL_LOG_TRIGGER: LogTriggerFrame,
 constants.FrameType.SPECIAL_START_TRIGGER: StartTriggerFrame,
 }.get(frame.type)
 if frame_type is None:
 raise NotImplementedError("Unsupported frame type", frame.type)
 return frame_type.from_raw(frame)

 nixnet._session.base

 Source code for nixnet._session.base

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import ctypes # type: ignore
import typing # NOQA: F401
import warnings

from nixnet import _ctypedefs
from nixnet import _errors
from nixnet import _funcs
from nixnet import _props
from nixnet import _utils
from nixnet import constants
from nixnet import errors
from nixnet import types # NOQA: F401

from nixnet._session import intf as session_intf
from nixnet._session import j1939 as session_j1939

[docs]class SessionBase(object):
 """Session base object."""

 def __init__(
 self,
 database_name, # type: typing.Text
 cluster_name, # type: typing.Text
 list, # type: typing.Text
 interface_name, # type: typing.Text
 mode, # type: constants.CreateSessionMode
):
 # type: (...) -> None
 """Create an XNET session at run time using named references to database objects.

 This function creates a session using the named database objects
 specified in 'list' from the database named in 'database_name'.

 This function is intended to be used by session classes that derive from
 SessionBase; therefore, it is not public.

 Args:
 database_name: A string representing the XNET database to use for
 interface configuration. The database name must use the <alias>
 or <filepath> syntax (refer to Databases).
 cluster_name: A string representing the XNET cluster to use for
 interface configuration. The name must specify a cluster from
 the database given in the database_name parameter. If it is left
 blank, the cluster is extracted from the list parameter; this is
 not allowed for modes of 'constants.CreateSessionMode.FRAME_IN_STREAM'
 or 'constants.CreateSessionMode.FRAME_OUT_STREAM'.
 list: A list of strings describing signals or frames for the session.
 The list syntax depends on the mode. Refer to mode spefic
 session classes defined below for 'list' syntax.
 interface_name: A string representing the XNET Interface to use for
 this session. If Mode is
 'constants.CreateSessionMode.SIGNAL_CONVERSION_SINGLE_POINT',
 this input is ignored. You can set it to an empty string.
 mode: The session mode. See :any:`nixnet._enums.CreateSessionMode`.

 Returns:
 A session base object.
 """
 self._handle = None # To satisfy `__del__` in case nx_create_session throws
 self._handle = _funcs.nx_create_session(database_name, cluster_name, list, interface_name, mode)
 self._intf = session_intf.Interface(self._handle)
 self._j1939 = session_j1939.J1939(self._handle)

 def __del__(self):
 if self._handle is not None:
 warnings.warn(
 'Session was not explicitly closed before it was destructed. '
 'Resources on the device may still be reserved.',
 errors.XnetResourceWarning)

 def __enter__(self):
 return self

 def __exit__(self, exception_type, exception_value, traceback):
 self.close()

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == typing.cast(SessionBase, other)._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __repr__(self):
 # type: () -> typing.Text
 return '{}(handle={})'.format(type(self).__name__, self._handle)

[docs] def close(self):
 # type: () -> None
 """Close (clear) the XNET session.

 This function stops communication for the session and releases all
 resources the session uses. It internally calls
 :any:`nixnet._session.base.SessionBase.stop` with normal scope, so if
 this is the last session using the interface, communication stops.

 You typically use 'close' when you need to close the existing session to
 create a new session that uses the same objects. For example, if you
 create a session for a frame named frame_a using Frame Output
 Single-Point mode, then you create a second session for frame_a using
 Frame Output Queued mode, the second call to the session constructor
 returns an error, because frame_a can be accessed using only one output
 mode. If you call 'close' before the second constructor call, you can
 close the previous use of frame_a to create the new session.
 """
 if self._handle is None:
 warnings.warn(
 'Attempting to close NI-XNET session but session was already '
 'closed', errors.XnetResourceWarning)
 return

 _funcs.nx_clear(self._handle)

 self._handle = None

[docs] def start(self, scope=constants.StartStopScope.NORMAL):
 # type: (constants.StartStopScope) -> None
 """Start communication for the XNET session.

 Because the session is started automatically by default, this function
 is optional. This function is for more advanced applications to start
 multiple sessions in a specific order. For more information about the
 automatic start feature, refer to the
 :any:`nixnet._session.base.SessionBase.auto_start` property.

 For each physical interface, the NI-XNET hardware is divided into two logical units:

 Sessions: You can create one or more sessions, each of which contains
 frames or signals to be transmitted (or received) on the bus.

 Interface: The interface physically connects to the bus and transmits
 (or receives) data for the sessions.

 You can start each logical unit separately. When a session is started,
 all contained frames or signals are placed in a state where they are
 ready to communicate. When the interface is started, it takes data from
 all started sessions to communicate with other nodes on the bus. For a
 specification of the state models for the session and interface, refer
 to State Models.

 If an output session starts before you write data, or you read an input
 session before it receives a frame, default data is used. For more
 information, refer to the XNET Frame Default Payload and XNET Signal
 Default Value properties.

 Args:
 scope(:any:`nixnet._enums.StartStopScope`): Describes the impact of
 this operation on the underlying state models for the session
 and its interface.
 """
 _funcs.nx_start(self._handle, scope)

[docs] def stop(self, scope=constants.StartStopScope.NORMAL):
 # type: (constants.StartStopScope) -> None
 """Stop communication for the XNET session.

 Because the session is stopped automatically when closed (cleared),
 this function is optional.

 For each physical interface, the NI-XNET hardware is divided into two logical units:

 Sessions: You can create one or more sessions, each of which contains
 frames or signals to be transmitted (or received) on the bus.

 Interface: The interface physically connects to the bus and transmits
 (or receives) data for the sessions.

 You can stop each logical unit separately. When a session is stopped,
 all contained frames or signals are placed in a state where they are no
 longer ready to communicate. When the interface is stopped, it no longer
 takes data from sessions to communicate with other nodes on the bus. For
 a specification of the state models for the session and interface, refer
 to State Models.

 Args:
 scope(:any:`nixnet._enums.StartStopScope`): Describes the impact of
 this operation on the underlying state models for the session
 and its interface.
 """
 _funcs.nx_stop(self._handle, scope)

[docs] def flush(self):
 # type: () -> None
 """Flushes (empties) all XNET session queues.

 With the exception of single-point modes, all sessions use queues to
 store frames. For input modes, the queues store frame values (or
 corresponding signal values) that have been received, but not obtained
 by calling the read function. For output sessions, the queues store
 frame values provided to write function, but not transmitted successfully.

 :any:`nixnet._session.base.SessionBase.start` and
 :any:`nixnet._session.base.SessionBase.stop` have no effect on these
 queues. Use 'flush' to discard all values in the session's queues.

 For example, if you call a write function to write three frames, then
 immediately call :any:`nixnet._session.base.SessionBase.stop`, then
 call :any:`nixnet._session.base.SessionBase.start` a few seconds
 later, the three frames transmit. If you call 'flush' between
 :any:`nixnet._session.base.SessionBase.stop` and
 :any:`nixnet._session.base.SessionBase.start`, no frames transmit.

 As another example, if you receive three frames, then call
 :any:`nixnet._session.base.SessionBase.stop`, the three frames remains
 in the queue. If you call :any:`nixnet._session.base.SessionBase.start`
 a few seconds later, then call a read function, you obtain the three
 frames received earlier, potentially followed by other frames received
 after calling :any:`nixnet._session.base.SessionBase.start`. If you
 call 'flush' between :any:`nixnet._session.base.SessionBase.stop` and
 :any:`nixnet._session.base.SessionBase.start`, read function returns
 only frames received after the calling
 :any:`nixnet._session.base.SessionBase.start`.
 """
 _funcs.nx_flush(self._handle)

[docs] def wait_for_transmit_complete(self, timeout=10):
 # type: (float) -> None
 """Wait for transmition to complete.

 All frames written for the session have been transmitted on the bus.
 This condition applies to CAN, LIN, and FlexRay. This condition is state
 based, and the state is Boolean (true/false).

 Args:
 timeout(float): The maximum amount of time to wait in seconds.
 """
 _funcs.nx_wait(self._handle, constants.Condition.TRANSMIT_COMPLETE, 0, timeout)

[docs] def wait_for_intf_communicating(self, timeout=10):
 # type: (float) -> None
 """Wait for the interface to begin communication on the network.

 If a start trigger is configured for the interface, this first waits for
 the trigger. Once the interface is started, this waits for the
 protocol's communication state to transition to a value that indicates
 communication with remote nodes.

 After this wait succeeds, calls to 'read_state' will return:

 :any:`nixnet._enums.CanCommState`: 'constants.CAN_COMM.ERROR_ACTIVE'

 :any:`nixnet._enums.CanCommState`: 'constants.CAN_COMM.ERROR_PASSIVE'

 'constants.ReadState.TIME_COMMUNICATING': Valid time for
 communication (invalid time of 0 prior)

 Args:
 timeout(float): The maximum amount of time to wait in seconds.
 """
 _funcs.nx_wait(self._handle, constants.Condition.INTF_COMMUNICATING, 0, timeout)

[docs] def wait_for_intf_remote_wakeup(self, timeout=10):
 # type: (float) -> None
 """Wait for interface remote wakeup.

 Wait for the interface to wakeup due to activity by a remote node on the
 network. This wait is used for CAN, when you set the 'can_tcvr_state'
 property to 'constants.CanTcvrState.SLEEP'. Although the interface
 itself is ready to communicate, this places the transceiver into a sleep
 state. When a remote CAN node transmits a frame, the transceiver wakes
 up, and communication is restored. This wait detects that remote wakeup.

 This wait is used for LIN when you set 'lin_sleep' property to
 'constants.LinSleep.REMOTE_SLEEP' or 'constants.LinSleep.LOCAL_SLEEP'.
 When asleep, if a remote LIN ECU transmits the wakeup pattern (break),
 the XNET LIN interface detects this transmission and wakes up. This wait
 detects that remote wakeup.

 Args:
 timeout(float): The maximum amount of time to wait in seconds.
 """
 _funcs.nx_wait(self._handle, constants.Condition.INTF_REMOTE_WAKEUP, 0, timeout)

[docs] def connect_terminals(self, source, destination):
 # type: (typing.Text, typing.Text) -> None
 """Connect terminals on the XNET interface.

 This function connects a source terminal to a destination terminal on
 the interface hardware. The XNET terminal represents an external or
 internal hardware connection point on a National Instruments XNET
 hardware product. External terminals include PXI Trigger lines for a PXI
 card, RTSI terminals for a PCI card, or the single external terminal for
 a C Series module. Internal terminals include timebases (clocks) and
 logical entities such as a start trigger.

 The terminal inputs use the Terminal I/O names. Typically, one of the
 pair is an internal and the other an external.

 Args:
 source(str): Connection source name.
 destination(str): Connection destination name.
 """
 _funcs.nx_connect_terminals(self._handle, source, destination)

[docs] def disconnect_terminals(self, source, destination):
 # type: (typing.Text, typing.Text) -> None
 """Disconnect terminals on the XNET interface.

 This function disconnects a specific pair of source/destination terminals
 previously connected with :any:`nixnet._session.base.SessionBase.connect_terminals`.

 When the final session for a given interface is cleared, NI-XNET
 automatically disconnects all terminal connections for that interface.
 Therefore, 'disconnect_terminals' is not required for most applications.

 This function typically is used to change terminal connections
 dynamically while an application is running. To disconnect a terminal,
 you first must stop the interface using
 :any:`nixnet._session.base.SessionBase.stop` with the Interface Only
 scope. Then you can call 'disconnect_terminals' and
 :any:`nixnet._session.base.SessionBase.connect_terminals` to adjust
 terminal connections. Finally, you can call
 :any:`nixnet._session.base.SessionBase.start` with the Interface Only
 scope to restart the interface.

 You can disconnect only a terminal that has been previously connected.
 Attempting to disconnect a nonconnected terminal results in an error.

 Args:
 source(str): Connection source name.
 destination(str): Connection destination name.
 """
 _funcs.nx_disconnect_terminals(self._handle, source, destination)

[docs] def change_lin_schedule(self, sched_index):
 # type: (int) -> None
 """Writes communication states of an XNET session.

 This function writes a request for the LIN interface to change
 the running schedule.

 According to the LIN protocol, only the master executes schedules,
 not slaves. If the
 :any:`nixnet._session.intf.Interface.lin_master` property is false (slave),
 this write function implicitly sets that property to true (master). If the
 interface currently is running as a slave, this write returns an error,
 because it cannot change to master while running.

 Args:
 sched_index(int): Index to the schedule table that the LIN master executes.

 The schedule tables are sorted the way they are returned from the
 database with the `nixnet.database._cluster.Cluster.lin_schedules`
 property.
 """
 _funcs.nx_write_state(self._handle, constants.WriteState.LIN_SCHEDULE_CHANGE, _ctypedefs.u32(sched_index))

[docs] def change_lin_diagnostic_schedule(self, schedule):
 # type: (constants.LinDiagnosticSchedule) -> None
 """Writes communication states of an XNET session.

 This function writes a request for the LIN interface to change
 the diagnostic schedule.

 Args:
 schedule(:any:`nixnet._enums.LinDiagnosticSchedule`): Diagnostic schedule
 that the LIN master executes.
 """
 _funcs.nx_write_state(self._handle, constants.WriteState.LIN_DIAGNOSTIC_SCHEDULE_CHANGE, _ctypedefs.u32(schedule.value)) # NOQA: E501

 @property
 def time_current(self):
 # type: () -> int
 """int: Current interface time."""
 state_value_ctypes = _ctypedefs.nxTimestamp_t()
 state_size = ctypes.sizeof(state_value_ctypes)
 _funcs.nx_read_state(
 self._handle,
 constants.ReadState.TIME_CURRENT,
 state_size,
 ctypes.pointer(state_value_ctypes))
 time = state_value_ctypes.value
 return time

 @property
 def time_start(self):
 # type: () -> int
 """int: Time the interface was started."""
 state_value_ctypes = _ctypedefs.nxTimestamp_t()
 state_size = ctypes.sizeof(state_value_ctypes)
 _funcs.nx_read_state(
 self._handle,
 constants.ReadState.TIME_START,
 state_size,
 ctypes.pointer(state_value_ctypes))
 time = state_value_ctypes.value
 if time == 0:
 # The interface is not communicating.
 _errors.check_for_error(constants.Err.SESSION_NOT_STARTED.value)
 return time

 @property
 def time_communicating(self):
 # type: () -> int
 """int: Time the interface started communicating.

 The time is usually later than ``time_start`` because the interface
 must undergo a communication startup procedure.
 """
 state_value_ctypes = _ctypedefs.nxTimestamp_t()
 state_size = ctypes.sizeof(state_value_ctypes)
 _funcs.nx_read_state(
 self._handle,
 constants.ReadState.TIME_COMMUNICATING,
 state_size,
 ctypes.pointer(state_value_ctypes))
 time = state_value_ctypes.value
 if time == 0:
 # The interface is not communicating.
 _errors.check_for_error(constants.Err.SESSION_NOT_STARTED.value)
 return time

 @property
 def state(self):
 # type: () -> constants.SessionInfoState
 """:any:`nixnet._enums.SessionInfoState`: Session running state."""
 state_value_ctypes = _ctypedefs.u32()
 state_size = ctypes.sizeof(state_value_ctypes)
 _funcs.nx_read_state(
 self._handle,
 constants.ReadState.SESSION_INFO,
 state_size,
 ctypes.pointer(state_value_ctypes))
 state = state_value_ctypes.value
 return constants.SessionInfoState(state)

 @property
 def can_comm(self):
 # type: () -> types.CanComm
 """:any:`nixnet.types.CanComm`: CAN Communication state"""
 state_value_ctypes = _ctypedefs.u32()
 state_size = ctypes.sizeof(state_value_ctypes)
 _funcs.nx_read_state(
 self._handle,
 constants.ReadState.CAN_COMM,
 state_size,
 ctypes.pointer(state_value_ctypes))
 bitfield = state_value_ctypes.value
 return _utils.parse_can_comm_bitfield(bitfield)

 @property
 def lin_comm(self):
 # type: () -> types.LinComm
 """:any:`nixnet.types.LinComm`: LIN Communication state"""
 state_value_ctypes = (_ctypedefs.u32 * 2)() # type: ignore
 state_size = ctypes.sizeof(state_value_ctypes)
 _funcs.nx_read_state(
 self._handle,
 constants.ReadState.LIN_COMM,
 state_size,
 ctypes.pointer(state_value_ctypes))
 first = state_value_ctypes[0].value
 second = state_value_ctypes[1].value
 return _utils.parse_lin_comm_bitfield(first, second)

[docs] def check_fault(self):
 # type: () -> None
 """Check for an asynchronous fault.

 A fault is an error that occurs asynchronously to the NI-XNET
 application calls. The fault cause may be related to network
 communication, but it also can be related to XNET hardware, such as a
 fault in the onboard processor. Although faults are extremely rare,
 nxReadState provides a detection method distinct from the status of
 NI-XNET function calls, yet easy to use alongside the common practice
 of checking the communication state.
 """
 state_value_ctypes = _ctypedefs.u32()
 state_size = ctypes.sizeof(state_value_ctypes)
 fault = _funcs.nx_read_state(
 self._handle,
 constants.ReadState.SESSION_INFO,
 state_size,
 ctypes.pointer(state_value_ctypes))
 _errors.check_for_error(fault)

 @property
 def intf(self):
 # type: () -> session_intf.Interface
 """:any:`nixnet._session.intf.Interface`: Returns the Interface configuration object for the session."""
 return self._intf

 @property
 def j1939(self):
 # type: () -> session_j1939.J1939
 """:any:`nixnet._session.j1939.J1939`: Returns the J1939 configuration object for the session."""
 return self._j1939

 @property
 def application_protocol(self):
 # type: () -> constants.AppProtocol
 """:any:`nixnet._enums.AppProtocol`: This property returns the application protocol that the session uses.

 The database used with the session determines the application protocol.
 """
 return constants.AppProtocol(_props.get_session_application_protocol(self._handle))

 @property
 def auto_start(self):
 # type: () -> bool
 """bool: Automatically starts the output session on the first call to the appropriate write function.

 For input sessions, start always is performed within the first call to
 the appropriate read function (if not already started using
 :any:`nixnet._session.base.SessionBase.start`). This is done
 because there is no known use case for reading a stopped input session.

 For output sessions, as long as the first call to the appropriate write
 function contains valid data, you can leave this property at its default
 value of true. If you need to call the appropriate write function
 multiple times prior to starting the session, or if you are starting
 multiple sessions simultaneously, you can set this property to false.
 After calling the appropriate write function as desired, you can call
 :any:`nixnet._session.base.SessionBase.start` to start the session(s).

 When automatic start is performed, it is equivalent to
 :any:`nixnet._session.base.SessionBase.start` with scope set to Normal.
 This starts the session itself, and if the interface is not already
 started, it starts the interface also.
 """
 return _props.get_session_auto_start(self._handle)

 @auto_start.setter
 def auto_start(self, value):
 # type: (bool) -> None
 _props.set_session_auto_start(self._handle, value)

 @property
 def cluster_name(self):
 # type: () -> typing.Text
 """str: This property returns the cluster (network) name used with the session."""
 return _props.get_session_cluster_name(self._handle)

 @property
 def database_name(self):
 # type: () -> typing.Text
 """str: This property returns the database name used with the session."""
 return _props.get_session_database_name(self._handle)

 @property
 def mode(self):
 # type: () -> constants.CreateSessionMode
 """:any:`nixnet._enums.CreateSessionMode`: This property returns the mode associated with the session.

 For more information, refer to :any:`nixnet._enums.CreateSessionMode`.
 """
 return constants.CreateSessionMode(_props.get_session_mode(self._handle))

 @property
 def num_pend(self):
 # type: () -> int
 """int: This property returns the number of values (frames or signals) pending for the session.

 For input sessions, this is the number of frame/signal values available
 to the appropriate read function. If you call the appropriate read
 function with number to read of this number and timeout of 0.0, the
 appropriate read function should return this number of values successfully.

 For output sessions, this is the number of frames/signal values provided
 to the appropriate write function but not yet transmitted onto the network.

 Stream frame sessions using FlexRay or CAN FD protocol may use a
 variable size of frames. In these cases, this property assumes the
 largest possible frame size. If you use smaller frames, the real number
 of pending values might be higher.

 The largest possible frames sizes are:

 CAN FD: 64 byte payload.

 FlexRay: The higher value of the frame size in the static segment
 and the maximum frame size in the dynamic segment. The XNET Cluster
 FlexRay Payload Length Maximum property provides this value.
 """
 return _props.get_session_num_pend(self._handle)

 @property
 def num_unused(self):
 # type: () -> int
 """int: This property returns the number of values (frames or signals) unused for the session.

 If you get this property prior to starting the session, it provides the
 size of the underlying queue(s). Contrary to the Queue Size property,
 this value is in number of frames for Frame I/O, not number of bytes;
 for Signal I/O, it is the number of signal values in both cases. After
 start, this property returns the queue size minus the
 :any:`Number of Values Pending <nixnet._session.base.SessionBase.num_pend>`
 property.

 For input sessions, this is the number of frame/signal values unused in
 the underlying queue(s).

 For output sessions, this is the number of frame/signal values you can
 provide to a subsequent call to the appropriate write function. If you
 call the appropriate write function with this number of values and
 timeout of 0.0, it should return success.

 Stream frame sessions using FlexRay or CAN FD protocol may use a
 variable size of frames. In these cases, this property assumes the
 largest possible frame size. If you use smaller frames, the real number
 of pending values might be higher.

 The largest possible frames sizes are:

 CAN FD: 64 byte payload.

 FlexRay: The higher value of the frame size in the static segment
 and the maximum frame size in the dynamic segment. The XNET Cluster
 FlexRay Payload Length Maximum property provides this value.
 """
 return _props.get_session_num_unused(self._handle)

 @property
 def protocol(self):
 # type: () -> constants.Protocol
 """:any:`nixnet._enums.Protocol`: This property returns the protocol that the interface in the session uses."""
 return constants.Protocol(_props.get_session_protocol(self._handle))

 @property
 def queue_size(self):
 # type: () -> int
 """int: Get or set queue size.

 For output sessions, queues store data passed to the appropriate
 write function and not yet transmitted onto the network. For input
 sessions, queues store data received from the network and not yet
 obtained using the appropriate read function.

 For most applications, the default queue sizes are sufficient. You can
 write to this property to override the default. When you write (set)
 this property, you must do so prior to the first session start. You
 cannot set this property again after calling
 :any:`nixnet._session.base.SessionBase.stop`.

 For signal I/O sessions, this property is the number of signal values
 stored. This is analogous to the number of values you use with the
 appropriate read or write function.

 For frame I/O sessions, this property is the number of bytes of frame
 data stored.

 For standard CAN or LIN frame I/O sessions, each frame uses exactly 24
 bytes. You can use this number to convert the Queue Size (in bytes)
 to/from the number of frame values.

 For CAN FD and FlexRay frame I/O sessions, each frame value size can
 vary depending on the payload length. For more information, refer to
 Raw Frame Format.

 For Signal I/O XY sessions, you can use signals from more than one frame.
 Within the implementation, each frame uses a dedicated queue. According
 to the formulas below, the default queue sizes can be different for each
 frame. If you read the default Queue Size property for a Signal Input XY
 session, the largest queue size is returned, so that a call to the
 appropriate read function of that size can empty all queues. If you
 read the default Queue Size property for a Signal Output XY session, the
 smallest queue size is returned, so that a call to the appropriate write
 function of that size can succeed when all queues are empty. If you
 write the Queue Size property for a Signal I/O XY session, that size is
 used for all frames, so you must ensure that it is sufficient for the
 frame with the fastest transmit time.

 For Signal I/O Waveform sessions, you can use signals from more than one
 frame. Within the implementation, each frame uses a dedicated queue. The
 Queue Size property does not represent the memory in these queues, but
 rather the amount of time stored. The default queue allocations store
 Application Time worth of resampled signal values. If you read the
 default Queue Size property for a Signal I/O Waveform session, it
 returns Application Time multiplied by the time Resample Rate. If you
 write the Queue Size property for a Signal I/O Waveform session, that
 value is translated from a number of samples to a time, and that time is
 used to allocate memory for each queue.

 For Single-Point sessions (signal or frame), this property is ignored.
 Single-Point sessions always use a value of 1 as the effective queue size.
 """
 return _props.get_session_queue_size(self._handle)

 @queue_size.setter
 def queue_size(self, value):
 # type: (int) -> None
 _props.set_session_queue_size(self._handle, value)

 nixnet._session.collection

 Source code for nixnet._session.collection

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import abc
import collections
import typing # NOQA: F401

import six

from nixnet import _props

@six.add_metaclass(abc.ABCMeta)
class Collection(collections.Sequence):
 """Collection of items in a session."""

 def __init__(self, handle):
 # type: (int) -> None
 self._handle = handle
 self.__list_cache = None # type: typing.List[typing.Text]

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

 def __len__(self):
 # type: () -> int
 return _props.get_session_num_in_list(self._handle)

 def __iter__(self):
 item_count = len(self)
 item_names = self._list_cache
 assert item_count == len(item_names), \
 "Frame count ({}) is out of sync with items ({})".format(item_count, item_names)
 for index, name in enumerate(item_names):
 yield self._create_item(self._handle, index, name)

 def __contains__(self, index):
 if isinstance(index, six.integer_types):
 return 0 <= index and index < len(self._list_cache)
 elif isinstance(index, six.string_types):
 name = index
 return name in self._list_cache
 else:
 raise TypeError(index)

 def __getitem__(self, index):
 if isinstance(index, six.integer_types):
 name = self._list_cache[index]
 elif isinstance(index, six.string_types):
 name = index
 item_names = self._list_cache
 try:
 index = item_names.index(name)
 except ValueError:
 raise KeyError(name)
 else:
 raise TypeError(index)

 return self._create_item(self._handle, index, name)

 def get(self, index, default=None):
 # type: (typing.Union[int, typing.Text], typing.Any) -> Item
 """Access an item, returning ``default`` on failure.

 Args:
 index(str or int): Item name or index
 default: Value to return when lookup fails
 """
 if isinstance(index, six.integer_types):
 try:
 name = self._list_cache[index]
 except IndexError:
 return default
 elif isinstance(index, six.string_types):
 name = index
 item_names = self._list_cache
 try:
 index = item_names.index(name)
 except ValueError:
 return default
 else:
 raise TypeError(index)

 return self._create_item(self._handle, index, name)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 other_collection = typing.cast(Collection, other)
 return (
 self._handle == other_collection._handle and
 self._list_cache == other_collection._list_cache)
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 @property
 def _list_cache(self):
 # type: () -> typing.List[typing.Text]
 if self.__list_cache is None:
 self.__list_cache = list(_props.get_session_list(self._handle))
 return self.__list_cache

 @abc.abstractmethod
 def _create_item(self, handle, index, name):
 # type: (int, int, typing.Text) -> Item
 pass

class Item(object):
 """Item configuration for a session."""

 def __init__(self, handle, index, name):
 # type: (int, int, typing.Text) -> None
 self._handle = handle
 self._index = index
 self._name = name

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 other_item = typing.cast(Item, other)
 return (
 self._handle == other_item._handle and
 self._index == other_item._index)
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __int__(self):
 # type: () -> int
 return self._index

 def __str__(self):
 # type: () -> typing.Text
 return self._name

 nixnet._session.frames

 Source code for nixnet._session.frames

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import itertools
import typing # NOQA: F401

from nixnet import _frames
from nixnet import _funcs
from nixnet import _props
from nixnet._session import collection
from nixnet import constants
from nixnet import types

[docs]class Frames(collection.Collection):
 """Frames in a session."""

 def _create_item(self, handle, index, name):
 return Frame(handle, index, name)

 @property
 def payld_len_max(self):
 # type: () -> int
 """int: Returns the maximum payload length of all frames in this session, expressed as bytes (0-254).

 For CAN Stream (Input and Output), this property depends on the XNET
 Cluster CAN I/O Mode property. If the I/O mode is
 `constants.CanIoMode.CAN`, this property is 8 bytes. If the I/O mode is
 'constants.CanIoMode.CAN_FD' or 'constants.CanIoMode.CAN_FD_BRS', this
 property is 64 bytes.

 For LIN Stream (Input and Output), this property always is 8 bytes.

 For FlexRay Stream (Input and Output), this property is the same as the
 XNET Cluster FlexRay Payload Length Maximum property value.

 For Queued and Single-Point (Input and Output), this is the maximum
 payload of all frames specified in the List property.
 """
 return _props.get_session_payld_len_max(self._handle)

[docs]class InFrames(Frames):
 """Frames in a session."""

[docs] def read_bytes(
 self,
 num_bytes,
 timeout=constants.TIMEOUT_NONE):
 # type: (int, float) -> bytes
 """Read data as a list of raw bytes (frame data).

 The raw bytes encode one or more frames using the Raw Frame Format.

 Args:
 num_bytes(int): The number of bytes to read.
 timeout(float): The time in seconds to wait for number to read
 frame bytes to become available.

 To avoid returning a partial frame, even when
 'num_bytes' are available from the hardware, this
 read may return fewer bytes in buffer. For example, assume you
 pass 'num_bytes' 70 bytes and 'timeout' of 10
 seconds. During the read, two frames are received, the first 24
 bytes in size, and the second 56 bytes in size, for a total of
 80 bytes. The read returns after the two frames are received,
 but only the first frame is copied to data. If the read copied
 46 bytes of the second frame (up to the limit of 70), that frame
 would be incomplete and therefore difficult to interpret. To
 avoid this problem, the read always returns complete frames in
 buffer.

 If 'timeout' is positive, this function waits for
 'num_bytes' frame bytes to be received, then
 returns complete frames up to that number. If the bytes do not
 arrive prior to the 'timeout', an error is returned.

 If 'timeout' is 'constants.TIMEOUT_INFINITE', this
 function waits indefinitely for 'num_bytes' frame bytes.

 If 'timeout' is 'constants.TIMEOUT_NONE', this
 function does not wait and immediately returns all available
 frame bytes up to the limit 'num_bytes' specifies.

 Returns:
 A list of raw bytes representing the data.
 """
 buffer, number_of_bytes_returned = _funcs.nx_read_frame(self._handle, num_bytes, timeout)
 return buffer[0:number_of_bytes_returned]

[docs] def read(
 self,
 num_frames,
 timeout=constants.TIMEOUT_NONE,
 frame_type=types.XnetFrame):
 # type: (int, float, typing.Type[types.FrameFactory]) -> typing.Iterable[types.Frame]
 """Read frames.

 Args:
 num_frames(int): Number of frames to read.
 timeout(float): The time in seconds to wait for number to read
 frame bytes to become available.

 If 'timeout' is positive, this function waits for
 'num_frames' frames to be received, then
 returns complete frames up to that number. If the frames do not
 arrive prior to the 'timeout', an error is returned.

 If 'timeout' is 'constants.TIMEOUT_INFINITE', this function
 waits indefinitely for 'num_frames' frames.

 If 'timeout' is 'constants.TIMEOUT_NONE', this function does not
 wait and immediately returns all available frames up to the
 limit 'num_frames' specifies.
 frame_type(:any:`nixnet.types.FrameFactory`): A factory for the
 desired frame formats.

 Yields:
 :any:`nixnet.types.Frame`
 """
 from_raw = typing.cast(typing.Callable[[types.RawFrame], types.Frame], frame_type.from_raw)
 # NOTE: If the frame payload exceeds the base unit, this will return
 # less than num_frames
 num_bytes = num_frames * _frames.nxFrameFixed_t.size
 buffer = self.read_bytes(num_bytes, timeout)
 for frame in _frames.iterate_frames(buffer):
 yield from_raw(frame)

[docs]class SinglePointInFrames(Frames):
 """Frames in a session."""

[docs] def read_bytes(
 self,
 num_bytes):
 # type: (int) -> bytes
 """Read data as a list of raw bytes (frame data).

 Args:
 num_bytes(int): Number of bytes to read.

 Returns:
 bytes: Raw bytes representing the data.
 """
 buffer, number_of_bytes_returned = _funcs.nx_read_frame(
 self._handle,
 num_bytes,
 constants.TIMEOUT_NONE)
 return buffer[0:number_of_bytes_returned]

[docs] def read(
 self,
 frame_type=types.XnetFrame):
 # type: (typing.Type[types.FrameFactory]) -> typing.Iterable[types.Frame]
 """Read frames.

 Args:
 frame_type(:any:`nixnet.types.FrameFactory`): A factory for the
 desired frame formats.

 Yields:
 :any:`nixnet.types.Frame`
 """
 from_raw = typing.cast(typing.Callable[[types.RawFrame], types.Frame], frame_type.from_raw)
 # NOTE: If the frame payload exceeds the base unit, this will return
 # less than num_frames
 num_frames = len(self)
 num_bytes = num_frames * _frames.nxFrameFixed_t.size
 buffer = self.read_bytes(num_bytes)
 for frame in _frames.iterate_frames(buffer):
 yield from_raw(frame)

[docs]class OutFrames(Frames):
 """Frames in a session."""

[docs] def write_bytes(
 self,
 frame_bytes,
 timeout=10):
 # type: (bytes, float) -> None
 """Write a list of raw bytes (frame data).

 The raw bytes encode one or more frames using the Raw Frame Format.

 Args:
 frame_bytes(bytes): Frames to transmit.
 timeout(float): The time in seconds to wait for number to read
 frame bytes to become available.

 If 'timeout' is positive, this function waits up to that 'timeout'
 for space to become available in queues. If the space is not
 available prior to the 'timeout', a 'timeout' error is returned.

 If 'timeout' is 'constants.TIMEOUT_INFINITE', this functions
 waits indefinitely for space to become available in queues.

 If 'timeout' is 'constants.TIMEOUT_NONE', this function does not
 wait and immediately returns with a 'timeout' error if all data
 cannot be queued. Regardless of the 'timeout' used, if a 'timeout'
 error occurs, none of the data is queued, so you can attempt to
 call this function again at a later time with the same data.
 """
 _funcs.nx_write_frame(self._handle, bytes(frame_bytes), timeout)

[docs] def write(
 self,
 frames,
 timeout=10):
 # type: (typing.Iterable[types.Frame], float) -> None
 """Write frame data.

 Args:
 frames(list of float): One or more :any:`nixnet.types.Frame` objects to be
 written to the session.
 timeout(float): The time in seconds to wait for number to read
 frame bytes to become available.

 If 'timeout' is positive, this function waits up to that 'timeout'
 for space to become available in queues. If the space is not
 available prior to the 'timeout', a 'timeout' error is returned.

 If 'timeout' is 'constants.TIMEOUT_INFINITE', this functions
 waits indefinitely for space to become available in queues.

 If 'timeout' is 'constants.TIMEOUT_NONE', this function does not
 wait and immediately returns with a 'timeout' error if all data
 cannot be queued. Regardless of the 'timeout' used, if a 'timeout'
 error occurs, none of the data is queued, so you can attempt to
 call this function again at a later time with the same data.
 """
 units = itertools.chain.from_iterable(
 _frames.serialize_frame(frame.to_raw())
 for frame in frames)
 bytes = b"".join(units)
 self.write_bytes(bytes, timeout)

[docs]class SinglePointOutFrames(Frames):
 """Frames in a session."""

[docs] def write_bytes(
 self,
 frame_bytes):
 # type: (bytes) -> None
 """Write a list of raw bytes (frame data).

 The raw bytes encode one or more frames using the Raw Frame Format.

 Args:
 frame_bytes(bytes): Frames to transmit.
 """
 _funcs.nx_write_frame(self._handle, bytes(frame_bytes), constants.TIMEOUT_NONE)

[docs] def write(
 self,
 frames):
 # type: (typing.Iterable[types.Frame]) -> None
 """Write frame data.

 Args:
 frames(list of float): One or more :any:`nixnet.types.Frame` objects to be
 written to the session.
 """
 units = itertools.chain.from_iterable(
 _frames.serialize_frame(frame.to_raw())
 for frame in frames)
 bytes = b"".join(units)
 self.write_bytes(bytes)

[docs]class Frame(collection.Item):
 """Frame configuration for a session."""

[docs] def set_can_start_time_off(self, offset):
 # type: (float) -> None
 """Set CAN Start Time Offset.

 Use this function to have more control over the schedule of frames on
 the bus, to offer more determinism by configuring cyclic frames to be
 spaced evenly.

 If you do not call this function or you set it to a negative number,
 NI-XNET chooses this start time offset based on the arbitration
 identifier and periodic transmit time.

 ``offset`` takes effect whenever a session is started. If you stop a
 session and restart it, the start time offset is re-evaluated.

 Args:
 offset(float): The amount of time that must elapse between the
 session being started and the time that the first frame is
 transmitted across the bus. This is different than the cyclic
 rate, which determines the time between subsequent frame
 transmissions.
 """
 _props.set_session_can_start_time_off(self._handle, self._index, offset)

[docs] def set_can_tx_time(self, time):
 # type: (float) -> None
 """Set CAN Transmit Time.

 If you call this function while a frame object is currently started, the
 frame object is stopped, the cyclic rate updated, and then the frame
 object is restarted. Because of the stopping and starting, the frame's
 start time offset is re-evaluated.

 The first time a queued frame object is started, the XNET frame's
 transmit time determines the object's default queue size. Changing this
 rate has no impact on the queue size. Depending on how you change the
 rate, the queue may not be sufficient to store data for an extended
 period of time. You can mitigate this by setting the session Queue Size
 property to provide sufficient storage for all rates you use. If you are
 using a single-point session, this is not relevant.

 Args:
 time(float): Frame's transmit time while the session is running.
 The transmit time is the amount of time that must elapse
 between subsequent transmissions of a cyclic frame. The default
 value of this property comes from the database (the XNET Frame
 CAN Transmit Time property).
 """
 _props.set_session_can_tx_time(self._handle, self._index, time)

[docs] def set_skip_n_cyclic_frames(self, n):
 # type: (int) -> None
 """Set Skip N Cyclic Frames

 When the frame's transmission time arrives and the skip count is
 nonzero, a frame value is dequeued (if this is not a single-point
 session), and the skip count is decremented, but the frame actually is
 not transmitted across the bus. When the skip count decrements to zero,
 subsequent cyclic transmissions resume.

 This function is useful for testing of ECU behavior when a cyclic frame
 is expected, but is missing for N cycles.

 .. note:: Only CAN interfaces currently support this function.

 .. note:: This property is valid only for output sessions and frames
 with cyclic timing (that is, not event-based frames).

 Args:
 n(int): Skip the next N cyclic frames when nonzero.
 """
 _props.set_session_skip_n_cyclic_frames(self._handle, self._index, n)

[docs] def set_lin_tx_n_corrupted_chksums(self, n):
 # type: (int) -> None
 """Set LIN Transmit N Corrupted Checksums.

 When set to a nonzero value, this function causes the next N number of
 checksums to be corrupted. The checksum is corrupted by negating the
 value calculated per the database; (EnhancedValue * -1) or
 (ClassicValue * -1).

 If the frame is transmitted in an unconditional or sporadic schedule
 slot, N is always decremented for each frame transmission. If the frame
 is transmitted in an event-triggered slot and a collision occurs, N is
 not decremented. In that case, N is decremented only when the collision
 resolving schedule is executed and the frame is successfully
 transmitted. If the frame is the only one to transmit in the
 event-triggered slot (no collision), N is decremented at
 event-triggered slot time.

 This function is useful for testing ECU behavior when a corrupted
 checksum is transmitted.

 .. note:: This function is valid only for output sessions.

 Args:
 n(int): Number of checksums to be corrupted.
 """
 _props.set_session_lin_tx_n_corrupted_chksums(self._handle, self._index, n)

[docs] def set_j1939_addr_filter(self, address=""):
 # type: (typing.Union[typing.Text, int]) -> None
 """Set J1939 Address Filter.

 Define a filter for the source address of the PGN transmitting node.
 You can use it when multiple nodes with different addresses are
 transmitting the same PGN.

 If the filter is active, the session accepts only frames transmitted by
 a node with the defined address. All other frames with the same PGN but
 transmitted by other nodes are ignored.

 .. note:: You can use this function in input sessions only.

 Args:
 address(str or int): Decimal value of the address. Leave blank to
 reset the filter.
 """
 _props.set_session_j1939_addr_filter(self._handle, self._index, str(address))

 nixnet._session.intf

 Source code for nixnet._session.intf

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401

import six

from nixnet import _props
from nixnet import constants
from nixnet.database import _frame

[docs]class Interface(object):
 '''Interface configuration for a session'''

 def __init__(self, handle):
 # type: (int) -> None
 self._handle = handle

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

 def __str__(self):
 return self._name

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._name == other._name
 elif isinstance(other, six.string_types):
 return self._name == other
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 @property
 def baud_rate(self):
 # type: () -> int
 '''int: CAN, FlexRay, or LIN interface baud rate.

 The default value for this interface property is the same as the
 cluster's baud rate in the database. Your application can set this
 interface baud rate to override the value in the database, or when no
 database is used.

 CAN

 When the upper nibble (0xF0000000) is clear, this is a numeric baud
 rate (for example, 500000).

 NI-XNET CAN hardware currently accepts the following numeric baud
 rates: 33333, 40000, 50000, 62500, 80000, 83333, 100000, 125000,
 160000, 200000, 250000, 400000, 500000, 800000, and 1000000.

 LIN

 When the upper nibble (0xF0000000) is clear, you can set only baud
 rates within the LIN-specified range (2400 to 20000) for the interface.
 '''
 return _props.get_session_intf_baud_rate64(self._handle)

 @baud_rate.setter
 def baud_rate(self, value):
 # type: (int) -> None
 _props.set_session_intf_baud_rate64(self._handle, value)

 @property
 def bus_err_to_in_strm(self):
 # type: () -> bool
 '''bool: Bus Error Frames to Input Stream?

 Specifies whether the hardware should place a CAN or LIN bus error
 frame into the Stream Input queue after it is generated.
 '''
 return _props.get_session_intf_bus_err_to_in_strm(self._handle)

 @bus_err_to_in_strm.setter
 def bus_err_to_in_strm(self, value):
 # type: (bool) -> None
 _props.set_session_intf_bus_err_to_in_strm(self._handle, value)

 @property
 def echo_tx(self):
 # type: () -> bool
 '''bool: Echo Transmit?

 Determines whether Frame Input or Signal Input sessions contain frames
 that the interface transmits.

 When this property is true, and a frame transmit is complete for an
 Output session, the frame is echoed to the Input session. Frame Input
 sessions can use the Flags field to differentiate frames received from
 the bus and frames the interface transmits. When reading frames with
 the :any:`nixnet.types.RawFrame`, you can parse the Flags field
 manually by reviewing the Raw Frame Format section. Signal Input
 sessions cannot differentiate the origin of the incoming data.

 .. note:: Echoed frames are placed into the input sessions only after
 the frame transmit is complete. If there are bus problems (for
 example, no listener) such that the frame did not transmit, the
 frame is not received.
 '''
 return _props.get_session_intf_echo_tx(self._handle)

 @echo_tx.setter
 def echo_tx(self, value):
 # type: (bool) -> None
 _props.set_session_intf_echo_tx(self._handle, value)

 @property
 def out_strm_list(self):
 # type: () -> typing.Iterable[_frame.Frame]
 '''Output Stream List.

 The Output Stream List property provides a list of frames for use with
 the replay feature (:any:`out_strm_timng` property set to
 :any:`OutStrmTimng` ``REPLAY_EXCLUSIVE`` or ``REPLAY_INCLUSIVE``). In
 Replay Exclusive mode, the hardware transmits only frames that do not
 appear in the list. In Replay Inclusive mode, the hardware transmits
 only frames that appear in the list. For a LIN interface, the header of
 each frame written to stream output is transmitted, and the Exclusive
 or Inclusive mode controls the response transmission. Using these
 modes, you can either emulate an ECU (Replay Inclusive, where the list
 contains the frames the ECU transmits) or test an ECU (Replay
 Exclusive, where the list contains the frames the ECU transmits), or
 some other combination.

 This property's data type is an array of database handles to frames. If
 you are not using a database file or prefer to specify the frames using
 CAN arbitration IDs or LIN unprotected IDs, you can use
 Interface:Output Stream List By ID instead of this property.

 .. note:: Only CAN and LIN interfaces currently support this property.
 '''
 for ref in _props.get_session_intf_out_strm_list(self._handle):
 yield _frame.Frame(_handle=ref)

 @out_strm_list.setter
 def out_strm_list(self, value):
 # type: (typing.Iterable[_frame.Frame]) -> None
 frame_handles = [frame._handle for frame in value]
 _props.set_session_intf_out_strm_list(self._handle, frame_handles)

 @property
 def out_strm_list_by_id(self):
 # type: () -> typing.Iterable[int]
 '''int: Output Stream List by Frame Identifier.

 Provide a list of frames for use with the replay feature
 Interface:Output Stream Timing property.

 This property serves the same purpose as Interface:Output Stream List,
 in that it provides a list of frames for replay filtering. This
 property provides an alternate format for you to specify the frames by
 their CAN arbitration ID or LIN unprotected ID. The property's data
 type is an array of integers. Each integer represents a CAN or LIN
 frame's identifier, using the same encoding as :any:`nixnet.types.RawFrame`.

 For CAN Frames, see :any:`nixnet.types.CanIdentifier` for parsing and
 generating raw identifiers.

 LIN frame ID values may be within the range of possible LIN
 IDs (0-63).

 See also :any:`Interface.out_strm_list`.
 '''
 for id in _props.get_session_intf_can_out_strm_list_by_id(self._handle):
 yield id

 @out_strm_list_by_id.setter
 def out_strm_list_by_id(self, value):
 # type: (typing.Iterable[int]) -> None
 _props.set_session_intf_can_out_strm_list_by_id(self._handle, list(value))

 @property
 def out_strm_timng(self):
 # type: () -> constants.OutStrmTimng
 ''':any:`nixnet._enums.OutStrmTimng`: Output Stream Timing.

 The Output Stream Timing property configures how the hardware transmits
 frames queued using a Frame Output Stream session.

 See also :any:`Interface.out_strm_list`.

 .. note:: Only CAN and LIN interfaces currently support this property.
 '''
 return constants.OutStrmTimng(_props.get_session_intf_out_strm_timng(self._handle))

 @out_strm_timng.setter
 def out_strm_timng(self, value):
 # type: (constants.OutStrmTimng) -> None
 _props.set_session_intf_out_strm_timng(self._handle, value.value)

 @property
 def start_trig_to_in_strm(self):
 # type: () -> bool
 '''bool: Start Trigger Frames to Input Stream?

 Configures the hardware to place a start trigger frame into the Stream
 Input queue after it is generated. A Start Trigger frame is generated
 when the interface is started.

 The start trigger frame is especially useful if you plan to log and
 replay CAN data.
 '''
 return _props.get_session_intf_start_trig_to_in_strm(self._handle)

 @start_trig_to_in_strm.setter
 def start_trig_to_in_strm(self, value):
 # type: (bool) -> None
 _props.set_session_intf_start_trig_to_in_strm(self._handle, value)

[docs] def set_can_ext_tcvr_config(self, value):
 # type: (int) -> None
 '''Configure XS series CAN hardware to communicate properly with your external transceiver.

 Args:
 value(int): Bitfield
 '''
 _props.set_session_intf_can_ext_tcvr_config(self._handle, value)

 @property
 def can_lstn_only(self):
 # type: () -> bool
 '''bool: Listen Only? property configures whether the CAN interface transmits any information to the CAN bus.

 When this property is false, the interface can transmit CAN frames and
 acknowledge received CAN frames.

 When this property is true, the interface can neither transmit CAN
 frames nor acknowledge a received CAN frame. The true value enables
 passive monitoring of network traffic, which can be useful for
 debugging scenarios when you do not want to interfere with a
 communicating network cluster.
 '''
 return _props.get_session_intf_can_lstn_only(self._handle)

 @can_lstn_only.setter
 def can_lstn_only(self, value):
 # type: (bool) -> None
 _props.set_session_intf_can_lstn_only(self._handle, value)

 @property
 def can_pend_tx_order(self):
 # type: () -> constants.CanPendTxOrder
 ''':any:`nixnet._enums.CanPendTxOrder`: Pending Transmit Order

 The Pending Transmit Order property configures how the CAN interface
 manages the internal queue of frames. More than one frame may desire to
 transmit at the same time. NI-XNET stores the frames in an internal
 queue and transmits them onto the CAN bus when the bus is idle.

 .. note:: You can modify this property only when the interface is
 stopped.
 .. note:: Setting this property causes the internal queue to be flushed.
 If you start a session, queue frames, and then stop the session and
 change this mode, some frames may be lost. Set this property to the
 desired value once; do not constantly change modes.
 '''
 return constants.CanPendTxOrder(_props.get_session_intf_can_pend_tx_order(self._handle))

 @can_pend_tx_order.setter
 def can_pend_tx_order(self, value):
 # type: (constants.CanPendTxOrder) -> None
 _props.set_session_intf_can_pend_tx_order(self._handle, value.value)

 @property
 def can_sing_shot(self):
 # type: () -> bool
 '''bool: Single Shot Transmit?

 The Single Shot Transmit? property configures whether the CAN interface
 retries failed transmissions.

 When this property is false, failed transmissions retry as specified by
 the CAN protocol (ISO 11898-1, 6.11 Automatic Retransmission). If a CAN
 frame is not transmitted successfully, the interface attempts to
 retransmit the frame as soon as the bus is idle again. This retransmit
 process continues until the frame is successfully transmitted.

 When this property is true, failed transmissions do not retry. If a CAN
 frame is not transmitted successfully, no further transmissions are
 attempted.

 .. note:: You can modify this property only when the interface is
 stopped.
 .. note:: Setting this property causes the internal queue to be flushed.
 If you start a session, queue frames, and then stop the session and
 change this mode, some frames may be lost. Set this property to the
 desired value once; do not constantly change modes.
 '''
 return _props.get_session_intf_can_sing_shot(self._handle)

 @can_sing_shot.setter
 def can_sing_shot(self, value):
 # type: (bool) -> None
 _props.set_session_intf_can_sing_shot(self._handle, value)

 @property
 def can_term(self):
 # type: () -> constants.CanTerm
 ''':any:`nixnet._enums.CanTerm`: CAN Termination.

 The Termination property configures the onboard termination of the
 NI-XNET interface CAN connector (port). The enumeration is generic and
 supports two values: Off and On. However, different CAN hardware has
 different termination requirements, and the Off and On values have
 different meanings, see :any:`nixnet._enums.CanTerm`.

 .. note:: You can modify this property only when the interface is
 stopped.
 .. note:: This property does not take effect until the interface is
 started.
 '''
 return constants.CanTerm(_props.get_session_intf_can_term(self._handle))

 @can_term.setter
 def can_term(self, value):
 # type: (constants.CanTerm) -> None
 _props.set_session_intf_can_term(self._handle, value.value)

 @property
 def can_tcvr_state(self):
 # type: () -> constants.CanTcvrState
 ''':any:`nixnet._enums.CanTcvrState`: CAN Transceiver State.

 The Transceiver State property configures the CAN transceiver and CAN
 controller modes. The transceiver state controls whether the
 transceiver is asleep or communicating, as well as configuring other
 special modes.
 '''
 return constants.CanTcvrState(_props.get_session_intf_can_tcvr_state(self._handle))

 @can_tcvr_state.setter
 def can_tcvr_state(self, value):
 # type: (constants.CanTcvrState) -> None
 _props.set_session_intf_can_tcvr_state(self._handle, value.value)

 @property
 def can_tcvr_type(self):
 # type: () -> constants.CanTcvrType
 ''':any:`nixnet._enums.CanTcvrType`: CAN Transceiver Type.

 For XNET hardware that provides a software-selectable transceiver, the
 Transceiver Type property allows you to set the transceiver type. Use
 the XNET Interface CAN.Tranceiver Capability property to determine
 whether your hardware supports a software-selectable transceiver.

 The default value for this property depends on your type of hardware.
 If you have fixed-personality hardware, the default value is the
 hardware value. If you have hardware that supports software-selectable
 transceivers, the default is High-Speed.
 '''
 return constants.CanTcvrType(_props.get_session_intf_can_tcvr_type(self._handle))

 @can_tcvr_type.setter
 def can_tcvr_type(self, value):
 # type: (constants.CanTcvrType) -> None
 _props.set_session_intf_can_tcvr_type(self._handle, value.value)

 @property
 def can_io_mode(self):
 # type: () -> constants.CanIoMode
 ''':any:`nixnet._enums.CanIoMode`: CAN IO Mode.

 This property indicates the I/O Mode the interface is using.

 The value is initialized from the database cluster when the session is
 created and cannot be changed later. However, you can transmit standard
 CAN frames on a CAN FD network.
 '''
 return constants.CanIoMode(_props.get_session_intf_can_io_mode(self._handle))

 @property
 def can_fd_baud_rate(self):
 # type: () -> int
 '''int: The fast data baud rate for :any:`can_io_mode` of :any:`nixnet._enums.CanIoMode` ``CAN_FD_BRS``

 The default value for this interface property is the same as the
 cluster's FD baud rate in the database. Your application can set this
 interface FD baud rate to override the value in the database.

 When the upper nibble (0xF0000000) is clear, this is a numeric baud
 rate (for example, 500000).

 NI-XNET CAN hardware currently accepts the following numeric baud
 rates: 200000, 250000, 400000, 500000, 800000, 1000000, 1250000,
 1600000, 2000000, 2500000, 4000000, 5000000, and 8000000.

 .. note:: Not all CAN transceivers are rated to transmit at the requested
 rate. If you attempt to use a rate that exceeds the transceiver's
 qualified rate, XNET Start returns a warning. NI-XNET Hardware
 Overview describes the CAN transceivers' limitations.
 '''
 return _props.get_session_intf_can_fd_baud_rate64(self._handle)

 @can_fd_baud_rate.setter
 def can_fd_baud_rate(self, value):
 # type: (int) -> None
 _props.set_session_intf_can_fd_baud_rate64(self._handle, value)

 @property
 def can_tx_io_mode(self):
 # type: () -> constants.CanIoMode
 ''':any:`nixnet._enums.CanIoMode`: CAN Transmit IO Mode

 This property specifies the I/O Mode the interface uses when
 transmitting a CAN frame. By default, it is the same as the XNET
 Cluster CAN:I/O Mode property. However, even if the interface is in CAN
 FD+BRS mode, you can force it to transmit frames in the standard CAN
 format. For this purpose, set this property to CAN.

 The Transmit I/O mode may not exceed the mode set by the XNET Cluster
 CAN:I/O Mode property.

 .. note:: This property is not supported in CAN FD+BRS ISO mode. If you
 are using ISO CAN FD mode, you define the transmit I/O mode in the
 database with the I/O Mode property of the frame. (When a database
 is not used (for example, in frame stream mode), define the transmit
 I/O mode with the frame type field of the frame data.) Note that ISO
 CAN FD mode is the default mode for CAN FD in NI-XNET.
 .. note:: This property affects only the transmission of frames. Even if
 you set the transmit I/O mode to CAN, the interface still can
 receive frames in FD modes (if the XNET Cluster CAN:I/O Mode
 property is configured in an FD mode).
 '''
 return constants.CanIoMode(_props.get_session_intf_can_tx_io_mode(self._handle))

 @can_tx_io_mode.setter
 def can_tx_io_mode(self, value):
 # type: (constants.CanIoMode) -> None
 _props.set_session_intf_can_tx_io_mode(self._handle, value.value)

 @property
 def can_fd_iso_mode(self):
 # type: () -> constants.CanFdIsoMode
 ''':any:`nixnet._enums.CanFdIsoMode`: CAN FS ISO Mode.

 This property is valid only when the interface is in CAN FD(+BRS) mode.
 It specifies whether the interface is working in the ISO CAN FD
 standard (ISO standard 11898-1:2015) or non-ISO CAN FD standard (Bosch
 CAN FD 1.0 specification). Two ports using different standards (ISO CAN
 FD vs. non-ISO CAN FD) cannot communicate with each other.

 When you use a CAN FD database (DBC or FIBEX file created with
 NI-XNET), you can specify the ISO CAN FD mode when creating an alias
 name for the database. An alias is created automatically when you open
 a new database in the NI-XNET Database Editor. The specified ISO CAN FD
 mode is used as default, which you can change in the session using this
 property.
 '''
 return constants.CanFdIsoMode(_props.get_session_intf_can_fd_iso_mode(self._handle))

 @can_fd_iso_mode.setter
 def can_fd_iso_mode(self, value):
 # type: (constants.CanFdIsoMode) -> None
 _props.set_session_intf_can_fd_iso_mode(self._handle, value.value)

 @property
 def can_edge_filter(self):
 # type: () -> bool
 '''bool: CAN Enable Edge Filter.

 When this property is enabled, the CAN hardware requires two
 consecutive dominant tq for hard synchronization.
 '''
 return _props.get_session_intf_can_edge_filter(self._handle)

 @can_edge_filter.setter
 def can_edge_filter(self, value):
 # type: (bool) -> None
 _props.set_session_intf_can_edge_filter(self._handle, value)

 @property
 def can_transmit_pause(self):
 # type: () -> bool
 '''bool: CAN Transmit Pause.

 When this property is enabled, the CAN hardware waits for two bit times
 before transmitting the next frame. This allows other CAN nodes to
 transmit lower priority CAN messages while this CAN node is
 transmitting high-priority CAN messages with high speed.
 '''
 return _props.get_session_intf_can_transmit_pause(self._handle)

 @can_transmit_pause.setter
 def can_transmit_pause(self, value):
 # type: (bool) -> None
 _props.set_session_intf_can_transmit_pause(self._handle, value)

 @property
 def can_disable_prot_exception_handling(self):
 # type: () -> bool
 '''bool: CAN Disable Protocol Exception Handling.

 A protocol exception occurs when the CAN hardware detects an invalid
 combination of bits on the CAN bus reserved for a future protocol
 expansion. NI-XNET allows you to define how the hardware should behave
 in case of a protocol exception:

 False (default): the CAN hardware stops receiving frames and starts a bus integration.

 True: the CAN hardware transmits an error frame when it detects a
 protocol exception condition.
 '''
 return _props.get_session_intf_can_disable_prot_exception_handling(self._handle)

 @can_disable_prot_exception_handling.setter
 def can_disable_prot_exception_handling(self, value):
 # type: (bool) -> None
 _props.set_session_intf_can_disable_prot_exception_handling(self._handle, value)

 @property
 def flex_ray_acc_start_rng(self):
 return _props.get_session_intf_flex_ray_acc_start_rng(self._handle)

 @flex_ray_acc_start_rng.setter
 def flex_ray_acc_start_rng(self, value):
 _props.set_session_intf_flex_ray_acc_start_rng(self._handle, value)

 @property
 def flex_ray_alw_hlt_clk(self):
 return _props.get_session_intf_flex_ray_alw_hlt_clk(self._handle)

 @flex_ray_alw_hlt_clk.setter
 def flex_ray_alw_hlt_clk(self, value):
 _props.set_session_intf_flex_ray_alw_hlt_clk(self._handle, value)

 @property
 def flex_ray_alw_pass_act(self):
 return _props.get_session_intf_flex_ray_alw_pass_act(self._handle)

 @flex_ray_alw_pass_act.setter
 def flex_ray_alw_pass_act(self, value):
 _props.set_session_intf_flex_ray_alw_pass_act(self._handle, value)

 @property
 def flex_ray_auto_aslp_whn_stp(self):
 return _props.get_session_intf_flex_ray_auto_aslp_whn_stp(self._handle)

 @flex_ray_auto_aslp_whn_stp.setter
 def flex_ray_auto_aslp_whn_stp(self, value):
 _props.set_session_intf_flex_ray_auto_aslp_whn_stp(self._handle, value)

 @property
 def flex_ray_clst_drift_dmp(self):
 return _props.get_session_intf_flex_ray_clst_drift_dmp(self._handle)

 @flex_ray_clst_drift_dmp.setter
 def flex_ray_clst_drift_dmp(self, value):
 _props.set_session_intf_flex_ray_clst_drift_dmp(self._handle, value)

 @property
 def flex_ray_coldstart(self):
 return _props.get_session_intf_flex_ray_coldstart(self._handle)

 @property
 def flex_ray_dec_corr(self):
 return _props.get_session_intf_flex_ray_dec_corr(self._handle)

 @flex_ray_dec_corr.setter
 def flex_ray_dec_corr(self, value):
 _props.set_session_intf_flex_ray_dec_corr(self._handle, value)

 @property
 def flex_ray_delay_comp_a(self):
 return _props.get_session_intf_flex_ray_delay_comp_a(self._handle)

 @flex_ray_delay_comp_a.setter
 def flex_ray_delay_comp_a(self, value):
 _props.set_session_intf_flex_ray_delay_comp_a(self._handle, value)

 @property
 def flex_ray_delay_comp_b(self):
 return _props.get_session_intf_flex_ray_delay_comp_b(self._handle)

 @flex_ray_delay_comp_b.setter
 def flex_ray_delay_comp_b(self, value):
 _props.set_session_intf_flex_ray_delay_comp_b(self._handle, value)

 @property
 def flex_ray_key_slot_id(self):
 return _props.get_session_intf_flex_ray_key_slot_id(self._handle)

 @flex_ray_key_slot_id.setter
 def flex_ray_key_slot_id(self, value):
 _props.set_session_intf_flex_ray_key_slot_id(self._handle, value)

 @property
 def flex_ray_latest_tx(self):
 return _props.get_session_intf_flex_ray_latest_tx(self._handle)

 @property
 def flex_ray_list_timo(self):
 return _props.get_session_intf_flex_ray_list_timo(self._handle)

 @flex_ray_list_timo.setter
 def flex_ray_list_timo(self, value):
 _props.set_session_intf_flex_ray_list_timo(self._handle, value)

 @property
 def flex_ray_mac_init_off_a(self):
 return _props.get_session_intf_flex_ray_mac_init_off_a(self._handle)

 @flex_ray_mac_init_off_a.setter
 def flex_ray_mac_init_off_a(self, value):
 _props.set_session_intf_flex_ray_mac_init_off_a(self._handle, value)

 @property
 def flex_ray_mac_init_off_b(self):
 return _props.get_session_intf_flex_ray_mac_init_off_b(self._handle)

 @flex_ray_mac_init_off_b.setter
 def flex_ray_mac_init_off_b(self, value):
 _props.set_session_intf_flex_ray_mac_init_off_b(self._handle, value)

 @property
 def flex_ray_mic_init_off_a(self):
 return _props.get_session_intf_flex_ray_mic_init_off_a(self._handle)

 @flex_ray_mic_init_off_a.setter
 def flex_ray_mic_init_off_a(self, value):
 _props.set_session_intf_flex_ray_mic_init_off_a(self._handle, value)

 @property
 def flex_ray_mic_init_off_b(self):
 return _props.get_session_intf_flex_ray_mic_init_off_b(self._handle)

 @flex_ray_mic_init_off_b.setter
 def flex_ray_mic_init_off_b(self, value):
 _props.set_session_intf_flex_ray_mic_init_off_b(self._handle, value)

 @property
 def flex_ray_max_drift(self):
 return _props.get_session_intf_flex_ray_max_drift(self._handle)

 @flex_ray_max_drift.setter
 def flex_ray_max_drift(self, value):
 _props.set_session_intf_flex_ray_max_drift(self._handle, value)

 @property
 def flex_ray_microtick(self):
 return _props.get_session_intf_flex_ray_microtick(self._handle)

 @property
 def flex_ray_null_to_in_strm(self):
 return _props.get_session_intf_flex_ray_null_to_in_strm(self._handle)

 @flex_ray_null_to_in_strm.setter
 def flex_ray_null_to_in_strm(self, value):
 _props.set_session_intf_flex_ray_null_to_in_strm(self._handle, value)

 @property
 def flex_ray_off_corr(self):
 return _props.get_session_intf_flex_ray_off_corr(self._handle)

 @property
 def flex_ray_off_corr_out(self):
 return _props.get_session_intf_flex_ray_off_corr_out(self._handle)

 @flex_ray_off_corr_out.setter
 def flex_ray_off_corr_out(self, value):
 _props.set_session_intf_flex_ray_off_corr_out(self._handle, value)

 @property
 def flex_ray_rate_corr(self):
 return _props.get_session_intf_flex_ray_rate_corr(self._handle)

 @property
 def flex_ray_rate_corr_out(self):
 return _props.get_session_intf_flex_ray_rate_corr_out(self._handle)

 @flex_ray_rate_corr_out.setter
 def flex_ray_rate_corr_out(self, value):
 _props.set_session_intf_flex_ray_rate_corr_out(self._handle, value)

 @property
 def flex_ray_samp_per_micro(self):
 return _props.get_session_intf_flex_ray_samp_per_micro(self._handle)

 @flex_ray_samp_per_micro.setter
 def flex_ray_samp_per_micro(self, value):
 _props.set_session_intf_flex_ray_samp_per_micro(self._handle, value)

 @property
 def flex_ray_sing_slot_en(self):
 return _props.get_session_intf_flex_ray_sing_slot_en(self._handle)

 @flex_ray_sing_slot_en.setter
 def flex_ray_sing_slot_en(self, value):
 _props.set_session_intf_flex_ray_sing_slot_en(self._handle, value)

 @property
 def flex_ray_statistics_en(self):
 return _props.get_session_intf_flex_ray_statistics_en(self._handle)

 @flex_ray_statistics_en.setter
 def flex_ray_statistics_en(self, value):
 _props.set_session_intf_flex_ray_statistics_en(self._handle, value)

 @property
 def flex_ray_sym_to_in_strm(self):
 return _props.get_session_intf_flex_ray_sym_to_in_strm(self._handle)

 @flex_ray_sym_to_in_strm.setter
 def flex_ray_sym_to_in_strm(self, value):
 _props.set_session_intf_flex_ray_sym_to_in_strm(self._handle, value)

 @property
 def flex_ray_sync_ch_a_even(self):
 return _props.get_session_intf_flex_ray_sync_ch_a_even(self._handle)

 @property
 def flex_ray_sync_ch_a_odd(self):
 return _props.get_session_intf_flex_ray_sync_ch_a_odd(self._handle)

 @property
 def flex_ray_sync_ch_b_even(self):
 return _props.get_session_intf_flex_ray_sync_ch_b_even(self._handle)

 @property
 def flex_ray_sync_ch_b_odd(self):
 return _props.get_session_intf_flex_ray_sync_ch_b_odd(self._handle)

 @property
 def flex_ray_sync_status(self):
 return _props.get_session_intf_flex_ray_sync_status(self._handle)

 @property
 def flex_ray_term(self):
 return _props.get_session_intf_flex_ray_term(self._handle)

 @flex_ray_term.setter
 def flex_ray_term(self, value):
 _props.set_session_intf_flex_ray_term(self._handle, value)

 @property
 def flex_ray_wakeup_ch(self):
 return _props.get_session_intf_flex_ray_wakeup_ch(self._handle)

 @flex_ray_wakeup_ch.setter
 def flex_ray_wakeup_ch(self, value):
 _props.set_session_intf_flex_ray_wakeup_ch(self._handle, value)

 @property
 def flex_ray_wakeup_ptrn(self):
 return _props.get_session_intf_flex_ray_wakeup_ptrn(self._handle)

 @flex_ray_wakeup_ptrn.setter
 def flex_ray_wakeup_ptrn(self, value):
 _props.set_session_intf_flex_ray_wakeup_ptrn(self._handle, value)

 def set_flex_ray_sleep(self, value):
 _props.set_session_intf_flex_ray_sleep(self._handle, value)

 @property
 def flex_ray_connected_chs(self):
 return _props.get_session_intf_flex_ray_connected_chs(self._handle)

 @flex_ray_connected_chs.setter
 def flex_ray_connected_chs(self, value):
 _props.set_session_intf_flex_ray_connected_chs(self._handle, value)

 @property
 def lin_break_length(self):
 # type: () -> int
 '''int: LIN Break Length

 The length of the serial break used at the start of a frame header
 (schedule entry). The value is specified in bit-times.

 The valid range is 10-36 (inclusive). The default value is 13, which is
 the value the LIN standard specifies.

 At baud rates below 9600, the upper limit may be lower than 36 to avoid
 violating hold times for the bus. For example, at 2400 baud, the valid
 range is 10-14.

 .. note:: This property is applicable only when the interface is the
 master.
 '''
 return _props.get_session_intf_lin_break_length(self._handle)

 @lin_break_length.setter
 def lin_break_length(self, value):
 # type: (int) -> None
 _props.set_session_intf_lin_break_length(self._handle, value)

 @property
 def lin_master(self):
 # type: () -> bool
 '''bool: LIN Master?

 Specifies the NI-XNET LIN interface role on the network: master (true)
 or slave (false).

 In a LIN network (cluster), there always is a single ECU in the system
 called the master. The master transmits a schedule of frame headers.
 Each frame header is a remote request for a specific frame ID. For each
 header, typically a single ECU in the network (slave) responds by
 transmitting the requested ID payload. The master ECU can respond to a
 specific header as well, and thus the master can transmit payload data
 for the slave ECUs to receive.

 The default value for this property is false (slave). This means that
 by default, the interface does not transmit frame headers onto the
 network. When you use input sessions, you read frames that other ECUs
 transmit. When you use output sessions, the NI-XNET interface waits for
 the remote master to send a header for a frame in the output sessions,
 then the interface responds with data for the requested frame.

 If you call the :any:`nixnet._session.base.SessionBase.change_lin_schedule` function to request execution of a
 schedule, that implicitly sets this property to true (master). You also
 can set this property to true using, but no schedule is active by
 default, so you still must call the
 :any:`nixnet._session.base.SessionBase.change_lin_schedule` function at some
 point to request a specific schedule.

 Regardless of this property's value, you use can input and output
 sessions. This property specifies which hardware transmits the
 scheduled frame headers: NI-XNET (true) or a remote master ECU (false).
 '''
 return _props.get_session_intf_lin_master(self._handle)

 @lin_master.setter
 def lin_master(self, value):
 # type: (bool) -> None
 _props.set_session_intf_lin_master(self._handle, value)

 @property
 def lin_sched_names(self):
 # type: () -> typing.Iterable[typing.Text]
 '''list of str: LIN Schedule Names

 List of schedules for use when the NI-XNET LIN interface acts as a
 master (``lin_master`` is true). When the interface is master, you can
 pass the index of one of these schedules to the
 :any:`nixnet._session.base.SessionBase.change_lin_schedule` function to request
 a schedule change.

 This list of schedules is the same as ``Cluster.lin_schedules`` used to
 configure the session.
 '''
 return _props.get_session_intf_lin_sched_names(self._handle)

[docs] def set_lin_sleep(self, state):
 # type: (constants.LinSleep) -> None
 '''Set LIN Sleep State

 Use the Sleep property to change the NI-XNET LIN interface sleep/awake
 state and optionally to change remote node (ECU) sleep/awake states.

 .. note:: Setting a new value is effectively a request, and the
 function returns before the request is complete. To detect the
 current interface sleep/wake state, use
 :any:`nixnet._session.base.SessionBase.lin_comm`.

 Args:
 state(:any:`nixnet._enums.LinSleep`): Desired state.
 '''
 _props.set_session_intf_lin_sleep(self._handle, state.value)

 @property
 def lin_term(self):
 # type: () -> constants.LinTerm
 ''':any:`nixnet._enums.LinTerm`: LIN Termination

 The Termination property configures the NI-XNET interface LIN connector
 (port) onboard termination. The enumeration is generic and supports two
 values: Off (disabled) and On (enabled).

 Per the LIN 2.1 standard, the Master ECU has a ~1 kOhm termination
 resistor between Vbat and Vbus. Therefore, use this property only if
 you are using your interface as the master and do not already have
 external termination.

 .. note:: You can modify this property only when the interface is
 stopped.
 .. note:: This property does not take effect until the interface is
 started.
 '''
 return constants.LinTerm(_props.get_session_intf_lin_term(self._handle))

 @lin_term.setter
 def lin_term(self, value):
 # type: (constants.LinTerm) -> None
 _props.set_session_intf_lin_term(self._handle, value.value)

 @property
 def lin_diag_p2min(self):
 # type: () -> float
 '''float: LIN Diag P2min

 This is the minimum time in seconds between reception of the last frame
 of the diagnostic request message and transmission of the response for
 the first frame in the diagnostic response message by the slave.

 .. note:: This property applies only to the interface as slave.
 '''
 return _props.get_session_intf_lin_diag_p2min(self._handle)

 @lin_diag_p2min.setter
 def lin_diag_p2min(self, value):
 # type: (float) -> None
 _props.set_session_intf_lin_diag_p2min(self._handle, value)

 @property
 def lin_diag_stmin(self):
 # type: () -> float
 '''float: LIN Diag STmin

 master:
 The minimum time in seconds the interface places between the end of
 transmission of a frame in a diagnostic request message and the
 start of transmission of the next frame in the diagnostic request
 message.
 slave:
 The minimum time in seconds the interface places between the end of
 transmission of a frame in a diagnostic response message and the
 start of transmission of the response for the next frame in the
 diagnostic response message.
 '''
 return _props.get_session_intf_lin_diag_stmin(self._handle)

 @lin_diag_stmin.setter
 def lin_diag_stmin(self, value):
 # type: (float) -> None
 _props.set_session_intf_lin_diag_stmin(self._handle, value)

 @property
 def lin_alw_start_wo_bus_pwr(self):
 # type: () -> bool
 '''bool: LIN Start Allowed without Bus Power?

 Configures whether the LIN interface does not check for bus power
 present at interface start, or checks and reports an error if bus power
 is missing.

 When this property is true, the LIN interface does not check for bus
 power present at start, so no error is reported if the interface is
 started without bus power.

 When this property is false, the LIN interface checks for bus power
 present at start, and an error is reported if the interface
 is started without bus power.

 .. note:: You can modify this property only when the interface is
 stopped.
 '''
 return _props.get_session_intf_lin_alw_start_wo_bus_pwr(self._handle)

 @lin_alw_start_wo_bus_pwr.setter
 def lin_alw_start_wo_bus_pwr(self, value):
 # type: (bool) -> None
 _props.set_session_intf_lin_alw_start_wo_bus_pwr(self._handle, value)

 @property
 def lin_ostr_slv_rsp_lst_by_nad(self):
 # type: () -> typing.Iterable[int]
 '''list of int: LIN Output Stream Slave Response List By NAD

 A list of NADs for use with the replay feature
 (:any:`nixnet._session.intf.Interface.out_strm_timng` set to Replay
 Exclusive or Replay Inclusive).

 For LIN, the array of frames to replay might contain multiple slave
 response frames, each with the same slave response identifier, but each
 having been transmitted by a different slave (per the NAD value in the
 data payload). This means that processing slave response frames for
 replay requires two levels of filtering. First, you can include or
 exclude the slave response frame or ID for replay using
 Interface:Output Stream List or Interface:Output Stream List By ID. If
 you do not include the slave response frame or ID for replay, no slave
 responses are transmitted. If you do include the slave response frame
 or ID for replay, you can use the Output Stream Slave Response List by
 NAD property to filter which slave responses (per the NAD values in the
 array) are transmitted. This property is always inclusive, regardless
 of the replay mode (inclusive or exclusive). If the NAD is in the list
 and the response frame or ID has been enabled for replay, any slave
 response for that NAD is transmitted. If the NAD is not in the list, no
 slave response for that NAD is transmitted.
 '''
 return _props.get_session_intf_lin_ostr_slv_rsp_lst_by_nad(self._handle)

 @lin_ostr_slv_rsp_lst_by_nad.setter
 def lin_ostr_slv_rsp_lst_by_nad(self, value):
 # type: (typing.List[int]) -> None
 _props.set_session_intf_lin_ostr_slv_rsp_lst_by_nad(self._handle, value)

 @property
 def lin_no_response_to_in_strm(self):
 # type: () -> bool
 '''bool: LIN No Response Frames to Input Stream?

 Configure the hardware to place a LIN no response frame into the
 Stream Input queue after it is generated. A no response frame is
 generated when the hardware detects a header with no response. For more
 information about the no response frame, see
 ``nixnet.types.NoResponseFrame``.
 '''
 return _props.get_session_intf_lin_no_response_to_in_strm(self._handle)

 @lin_no_response_to_in_strm.setter
 def lin_no_response_to_in_strm(self, value):
 # type: (bool) -> None
 _props.set_session_intf_lin_no_response_to_in_strm(self._handle, value)

 @property
 def lin_checksum_to_in_strm(self):
 # type: () -> bool
 """bool: LIN Checksum to Input Stream?

 Configure the hardware to place the received checksum for each LIN Data frame into the Event ID (Info) field.
 When ``False``, the Event ID field contains ``0`` for all LIN Data stream input frames.
 """
 return _props.get_session_intf_lin_checksum_to_in_strm(self._handle)

 @lin_checksum_to_in_strm.setter
 def lin_checksum_to_in_strm(self, value):
 # type: (bool) -> None
 _props.set_session_intf_lin_checksum_to_in_strm(self._handle, value)

 @property
 def src_term_start_trigger(self):
 # type: () -> typing.Text
 '''string: Source Terminal Start Trigger

 Specifies the name of the internal terminal to use as the interface
 Start Trigger.

 This property is supported for C Series modules in a CompactDAQ
 chassis. It is not supported for CompactRIO, PXI, or PCI (refer to
 :any:`nixnet._session.base.SessionBase.connect_terminals` for those platforms).

 The digital trigger signal at this terminal is for the Start Interface
 transition, to begin communication for all sessions that use the
 interface. This property routes the start trigger, but not the timebase
 (used for timestamp of received frames and cyclic transmit of frames).
 Routing the timebase is not required for CompactDAQ, because all
 modules in the chassis automatically use a shared timebase.

 Use this property to connect the interface Start Trigger to triggers in
 other modules and/or interfaces. When you read this property, you
 specify the interface Start Trigger as the source of a connection. When
 you write this property, you specify the interface Start Trigger as the
 destination of a connection, and the value you write represents the
 source.

 The connection this property creates is disconnected when you clear
 (close) all sessions that use the interface.
 '''
 return _props.get_session_intf_src_term_start_trigger(self._handle)

 @src_term_start_trigger.setter
 def src_term_start_trigger(self, value):
 # type: (typing.Text) -> None
 _props.set_session_intf_src_term_start_trigger(self._handle, value)

 @property
 def _name(self):
 # type: () -> typing.Text
 return _props.get_session_intf_name(self._handle)

 nixnet._session.j1939

 Source code for nixnet._session.j1939

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from nixnet import _props

[docs]class J1939(object):
 """J1939 configuration for a session"""

 def __init__(self, handle):
 # type: (int) -> None
 self._handle = handle

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

 def __str__(self):
 return self.name

 @property
 def address(self):
 return _props.get_session_j1939_address(self._handle)

 @address.setter
 def address(self, value):
 _props.set_session_j1939_address(self._handle, value)

 @property
 def name(self):
 return _props.get_session_j1939_name(self._handle)

 @name.setter
 def name(self, value):
 _props.set_session_j1939_name(self._handle, value)

 def set_ecu(self, value):
 _props.set_session_j1939_ecu(self._handle, value)

 @property
 def timeout_t1(self):
 return _props.get_session_j1939_timeout_t1(self._handle)

 @timeout_t1.setter
 def timeout_t1(self, value):
 _props.set_session_j1939_timeout_t1(self._handle, value)

 @property
 def timeout_t2(self):
 return _props.get_session_j1939_timeout_t2(self._handle)

 @timeout_t2.setter
 def timeout_t2(self, value):
 _props.set_session_j1939_timeout_t2(self._handle, value)

 @property
 def timeout_t3(self):
 return _props.get_session_j1939_timeout_t3(self._handle)

 @timeout_t3.setter
 def timeout_t3(self, value):
 _props.set_session_j1939_timeout_t3(self._handle, value)

 @property
 def timeout_t4(self):
 return _props.get_session_j1939_timeout_t4(self._handle)

 @timeout_t4.setter
 def timeout_t4(self, value):
 _props.set_session_j1939_timeout_t4(self._handle, value)

 @property
 def response_time_tr_sd(self):
 return _props.get_session_j1939_response_time_tr_sd(self._handle)

 @response_time_tr_sd.setter
 def response_time_tr_sd(self, value):
 _props.set_session_j1939_response_time_tr_sd(self._handle, value)

 @property
 def response_time_tr_gd(self):
 return _props.get_session_j1939_response_time_tr_gd(self._handle)

 @response_time_tr_gd.setter
 def response_time_tr_gd(self, value):
 _props.set_session_j1939_response_time_tr_gd(self._handle, value)

 @property
 def hold_time_th(self):
 return _props.get_session_j1939_hold_time_th(self._handle)

 @hold_time_th.setter
 def hold_time_th(self, value):
 _props.set_session_j1939_hold_time_th(self._handle, value)

 @property
 def num_packets_recv(self):
 return _props.get_session_j1939_num_packets_recv(self._handle)

 @num_packets_recv.setter
 def num_packets_recv(self, value):
 _props.set_session_j1939_num_packets_recv(self._handle, value)

 @property
 def num_packets_resp(self):
 return _props.get_session_j1939_num_packets_resp(self._handle)

 @num_packets_resp.setter
 def num_packets_resp(self, value):
 _props.set_session_j1939_num_packets_resp(self._handle, value)

 @property
 def max_repeat_cts(self):
 return _props.get_session_j1939_max_repeat_cts(self._handle)

 @max_repeat_cts.setter
 def max_repeat_cts(self, value):
 _props.set_session_j1939_max_repeat_cts(self._handle, value)

 @property
 def fill_byte(self):
 return _props.get_session_j1939_fill_byte(self._handle)

 @fill_byte.setter
 def fill_byte(self, value):
 _props.set_session_j1939_fill_byte(self._handle, value)

 @property
 def write_queue_size(self):
 return _props.get_session_j1939_write_queue_size(self._handle)

 @write_queue_size.setter
 def write_queue_size(self, value):
 _props.set_session_j1939_write_queue_size(self._handle, value)

 @property
 def ecu_busy(self):
 return _props.get_session_j1939_ecu_busy(self._handle)

 @ecu_busy.setter
 def ecu_busy(self, value):
 _props.set_session_j1939_ecu_busy(self._handle, value)

 @property
 def include_dest_addr_in_pgn(self):
 # type: () -> bool
 """bool: SAE J1939 Include Destination Address in PGN

 Incoming J1939 frames are matched to an XNET database by the Parameter Group Number (PGN) of the frame.
 When receiving PDU1 frames,
 the destination address of the frame (J1939 PS field) is ignored when calculating the PGN,
 in accordance to the J1939 specification.
 This causes an XNET session to receive all frames that share the same PGN,
 making it difficult to distinguish destinations for traffic.

 When set to ``True``,
 this property instructs NI-XNET to include the destination address when extracting the PGN from the frame.
 This allows the same PGN sent to different destination addresses to be handled by separate input sessions.

 This property may be set at any time.
 When set after session start,
 it will not affect frames already received.

 This property is valid only for input sessions.
 It is not valid for stream sessions.
 This property affects all frames in a session.
 """
 return _props.get_session_j1939_include_dest_addr_in_pgn(self._handle)

 @include_dest_addr_in_pgn.setter
 def include_dest_addr_in_pgn(self, value):
 # type: (bool) -> None
 _props.set_session_j1939_include_dest_addr_in_pgn(self._handle, value)

 nixnet._session.signals

 Source code for nixnet._session.signals

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401

from nixnet import _funcs

from nixnet._session import collection

[docs]class Signals(collection.Collection):
 """Signals in a session."""

 def _create_item(self, handle, index, name):
 return Signal(handle, index, name)

[docs]class SinglePointInSignals(Signals):
 """Writeable signals in a session."""

[docs] def read(self):
 # type: () -> typing.Iterable[typing.Tuple[int, float]]
 """Read data from a Signal Input Single-Point session.

 Yields:
 tuple of int and float: Timestamp and signal
 """
 num_signals = len(self)
 timestamps, values = _funcs.nx_read_signal_single_point(self._handle, num_signals)
 for timestamp, value in zip(timestamps, values):
 yield timestamp.value, value.value

[docs]class SinglePointOutSignals(Signals):
 """Writeable signals in a session."""

[docs] def write(
 self,
 signals):
 # type: (typing.Iterable[float]) -> None
 """Write data to a Signal Output Single-Point session.

 Args:
 signals(list of float): A list of signal values (float).
 """
 _funcs.nx_write_signal_single_point(self._handle, list(signals))

[docs]class Signal(collection.Item):
 """Signal configuration for a session."""

 nixnet.database._cluster

 Source code for nixnet.database._cluster

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401

from nixnet import _cconsts
from nixnet import _errors
from nixnet import _funcs
from nixnet import _props
from nixnet import constants

from nixnet.database import _collection
from nixnet.database import _database_object
from nixnet.database import _dbc_attributes
from nixnet.database import _find_object
from nixnet.database import _signal

[docs]class Cluster(_database_object.DatabaseObject):
 """Database cluster"""

 def __init__(
 self,
 **kwargs # type: int
):
 # type: (...) -> None
 if not kwargs or '_handle' not in kwargs:
 raise TypeError()

 self._handle = kwargs['_handle']
 self._dbc_attributes = None # type: typing.Optional[_dbc_attributes.DbcAttributeCollection]

 from nixnet.database import _ecu
 from nixnet.database import _frame
 from nixnet.database import _lin_sched
 from nixnet.database import _pdu
 self._ecus = _collection.DbCollection(
 self._handle, constants.ObjectClass.ECU, _cconsts.NX_PROP_CLST_ECU_REFS, _ecu.Ecu)
 self._frames = _collection.DbCollection(
 self._handle, constants.ObjectClass.FRAME, _cconsts.NX_PROP_CLST_FRM_REFS, _frame.Frame)
 self._lin_sched = _collection.DbCollection(
 self._handle, constants.ObjectClass.LIN_SCHED, _cconsts.NX_PROP_CLST_LIN_SCHEDULES, _lin_sched.LinSched)
 self._pdus = _collection.DbCollection(
 self._handle, constants.ObjectClass.PDU, _cconsts.NX_PROP_CLST_PDU_REFS, _pdu.Pdu)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == other._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

[docs] def check_config_status(self):
 # type: () -> None
 """Check this cluster's configuration status.

 By default, incorrectly configured clusters in the database are not returned from
 :any:`Database.clusters` because they cannot be used in the bus communication.
 You can change this behavior by setting :any:`Database.show_invalid_from_open` to `True`.
 When a cluster configuration status becomes invalid after the database is opened,
 the cluster still is returned from :any:`Database.clusters`
 even if :any:`Database.show_invalid_from_open` is `False`.

 Raises:
 :any:`XnetError`: The cluster is incorrectly configured.
 """
 status_code = _props.get_cluster_config_status(self._handle)
 _errors.check_for_error(status_code)

[docs] def export(self, db_filepath):
 # type: (typing.Text) -> None
 """Exports this cluster to a CANdb++ or LIN database file format.

 A CAN cluster is exported as a CANdb++ database file (.dbc).
 A LIN cluster is exported as a LIN database file (.ldf).
 If the target file exists, it is overwritten.

 Exporting a cluster is not supported under Real-Time (RT).

 Args:
 db_filepath(str): Contains the pathname to the database file.
 """
 _funcs.nxdb_save_database(self._handle, db_filepath)

[docs] def find(
 self,
 object_class, # type: typing.Type[_database_object.DatabaseObject]
 object_name, # type: typing.Text
):
 # type: (...) -> _database_object.DatabaseObject
 """Finds an object in the database.

 This function finds a database object relative to this parent object.
 This object may be a grandparent or great-grandparent.

 If this object is a direct parent
 (for example, :any:`Frame<_frame.Frame>` for :any:`Signal<_signal.Signal>`),
 the ``object_name`` to search for can be short, and the search proceeds quickly.

 If this object is not a direct parent
 (for example, :any:`Database` for :any:`Signal<_signal.Signal>`),
 the ``object_name`` to search for must be qualified such
 that it is unique within the scope of this object.

 For example, if the class of this object is :any:`Cluster`,
 and ``object_class`` is :any:`Signal<_signal.Signal>`,
 you can specify ``object_name`` of ``mySignal``,
 assuming that signal name is unique to the cluster.
 If not, you must include the :any:`Frame<_frame.Frame>` name as a prefix,
 such as ``myFrameA.mySignal``.

 NI-XNET supports the following subclasses of ``DatabaseObject`` as arguments for ``object_class``:

 * :any:`nixnet.database.Cluster<Cluster>`
 * :any:`nixnet.database.Frame<_frame.Frame>`
 * :any:`nixnet.database.Pdu<Pdu>`
 * :any:`nixnet.database.Signal<_signal.Signal>`
 * :any:`nixnet.database.SubFrame<SubFrame>`
 * :any:`nixnet.database.Ecu<Ecu>`
 * :any:`nixnet.database.LinSched<LinSched>`
 * :any:`nixnet.database.LinSchedEntry<LinSchedEntry>`

 Args:
 object_class(``DatabaseObject``): The class of the object to find.
 object_name(str): The name of the object to find.
 Returns:
 An instance of the found object.
 Raises:
 ValueError: Unsupported value provided for argument ``object_class``.
 :any:`XnetError`: The object is not found.
 """
 return _find_object.find_object(self._handle, object_class, object_name)

[docs] def merge(
 self,
 source_obj,
 copy_mode,
 prefix,
 wait_for_complete):
 # type: (typing.Any, constants.Merge, typing.Text, bool) -> int
 """Merges database objects and related subobjects from the source to this cluster.

 The source can be any of the following objects:

 * :any:`Frame<_frame.Frame>`
 * :any:`Pdu`
 * :any:`Ecu`
 * :any:`LinSched`
 * :any:`Cluster`

 All listed objects must have unique names in the cluster.
 They are referenced here as objects,
 as opposed to child objects (for example, a signal is a child of a frame).

 If the source object name is not used in the target cluster,
 this function copies the source objects with the child objects to the target.
 If an object with the same name exists in this cluster,
 you can avoid name collisions by specifying the prefix to be added to the name.

 If an object with the same name exists in this cluster,
 the merge behavior depends on the ``copy_mode`` input.

 Example

 Target frame F1(v1) has signals S1 and S2(v1). Source frame F1(v2) has signals S2(v2) and S3.

 (v1) and (v2) are two versions of one object with same name, but with different properties.

 * Result when ``copy_mode`` is ``COPY_USE_SOURCE``: F1(v2), S2(v2), S3.
 * Result when ``copy_mode`` is ``COPY_USE_TARGET``: F1(v1), S1, S2(v1).
 * Result when ``copy_mode`` is ``MERGE_USE_SOURCE``: F1(v2), S1, S2(v2), S3.
 * Result when ``copy_mode`` is ``MERGE_USE_TARGET``: F1(v1), S1, S2(v1), S3.

 If the source object is a cluster,
 this function copies all contained PDUs, ECUs, and LIN schedules
 with their child objects to this cluster.

 Depending on the number of contained objects in the source and destination clusters,
 the execution can take a longer time.
 If ``wait_for_complete`` is ``True``, this function waits until the merging process gets completed.
 If the execution completes without errors,
 ``perecent_complete`` returns ``100``.
 If ``wait_for_complete`` is ``False``,
 the function returns quickly,
 and ``perecent_complete`` returns values less than ``100``.
 You must call :any:`Cluster.merge` repeatedly until ``perecent_complete`` returns ``100``.
 You can use the time between calls to perform asynchronous tasks.

 Args:
 source_obj(object): The object to be merged into this cluster.
 copy_mode(:any:`Merge`): Defines the merging behavior if this cluster
 already contains an object with the same name.
 prefix(str): The prefix to be added to the source object name if an
 object with the same name and type exists in this cluster.
 wait_for_complete(bool): Determines whether the function returns directly
 or waits until the entire transmission is completed.
 Returns:
 int: A value which indicates the merging progress as a percentage. ``100`` indicates completion.
 """
 return _funcs.nxdb_merge(self._handle, source_obj._handle, copy_mode.value, prefix, wait_for_complete)

 @property
 def baud_rate(self):
 # type: (...) -> int
 """int: Get or set the buad rate all custer nodes use.

 This baud rate represents the rate from the database,
 so it is read-only from the session.
 Use a session interface property (for example, :any:`Interface.baud_rate`)
 to override the database baud rate with an application-specific baud rate.

 CAN

 For CAN, this rate can be 33333, 40000, 50000, 62500, 80000, 83333,
 100000, 125000, 160000, 200000, 250000, 400000, 500000, 800000, or
 1000000. Some transceivers may support only a subset of these values.

 LIN

 For LIN, this rate can be 2400-20000 inclusive.

 If you need values other than these,
 use the custom settings as described in :any:`Interface.baud_rate`.
 """
 return _props.get_cluster_baud_rate64(self._handle)

 @baud_rate.setter
 def baud_rate(self, value):
 # type: (int) -> None
 _props.set_cluster_baud_rate64(self._handle, value)

 @property
 def comment(self):
 # type: () -> typing.Text
 """str: Get or set a comment describing the cluster object.

 A comment is a string containing up to 65535 characters.
 """
 return _props.get_cluster_comment(self._handle)

 @comment.setter
 def comment(self, value):
 # type: (typing.Text) -> None
 _props.set_cluster_comment(self._handle, value)

 @property
 def database_ref(self):
 # type: () -> int
 # todo: return a Database object here
 handle = _props.get_cluster_database_ref(self._handle)
 return handle

 @property
 def dbc_attributes(self):
 # type: () -> _dbc_attributes.DbcAttributeCollection
 """:any:`DbcAttributeCollection`: Access the cluster's DBC attributes."""
 if self._dbc_attributes is None:
 self._dbc_attributes = _dbc_attributes.DbcAttributeCollection(self._handle)
 return self._dbc_attributes

 @property
 def ecus(self):
 # type: () -> _collection.DbCollection
 """:any:`DbCollection`: Returns a collection of :any:`Ecu` objects in this cluster.

 An ECU is assigned to a cluster when the ECU object is created.
 You cannot change this assignment afterwards.
 """
 return self._ecus

 @property
 def frames(self):
 # type: () -> _collection.DbCollection
 """:any:`DbCollection`: Returns a collection of :any:`Frame<_frame.Frame>` objects in this cluster.

 A frame is assigned to a cluster when the frame object is created.
 You cannot change this assignment afterwards.
 """
 return self._frames

 @property
 def name(self):
 # type: () -> typing.Text
 """str: Get or set the name of the cluster object.

 Lowercase letters, uppercase letters, numbers,
 and the underscore (_) are valid characters for the short name.
 The space (), period (.), and other special characters are not supported within the name.
 The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
 The short name is limited to 128 characters.

 If you use a FIBEX file, the short name comes from the file.
 If you use a CANdb (.dbc), LDF (.ldf),
 or NI-CAN (.ncd) file,
 no cluster name is stored in the file,
 so NI-XNET uses the name Cluster.
 If you create the cluster yourself,
 the name that you provide is used.

 A cluster name must be unique for all clusters in a database.

 This short name does not include qualifiers to ensure that it is unique,
 such as the database name. It is for display purposes.
 """
 return _props.get_cluster_name(self._handle)

 @name.setter
 def name(self, value):
 # type: (typing.Text) -> None
 _props.set_cluster_name(self._handle, value)

 @property
 def pdus(self):
 # type: () -> _collection.DbCollection
 """:any:`DbCollection`: Returns a collection of :any:`Pdu<_pdu.Pdu>` objects in this cluster.

 A PDU is assigned to a cluster when the PDU object is created.
 You cannot change this assignment afterwards.
 """
 return self._pdus

 @property
 def pdus_reqd(self):
 # type: () -> bool
 """bool: Returns whether using :any:`PDUs<Pdu>` in the database API is required for this cluster.

 If this property returns ``False``,
 it is safe to use signals as child objects of a frame without PDUs.
 This behavior is compatible with NI-XNET 1.1 or earlier.
 Clusters from .dbc, .ncd, or FIBEX 2 files always return ``False`` for this property,
 so using PDUs from those files is not required.

 If this property returns ``True``,
 the cluster contains PDU configuration,
 which requires reading the PDUs as frame child objects and then signals as PDU child objects,
 as shown in the following figure.

 Internally, the database always uses PDUs,
 but shows the same signal objects also as children of a frame.

 .. image:: pdusrequired.gif

 |

 For this property to return ``False``,
 the following conditions must be fulfilled for all frames in the cluster:

 * Only one PDU is mapped to the frame.
 * This PDU is not mapped to other frames.
 * The PDU Start Bit in the frame is 0.
 * The PDU Update Bit is not used.

 If the conditions are not fulfilled for a given frame,
 signals from the frame are still returned,
 but reading the property returns a warning.
 """
 return _props.get_cluster_pdus_reqd(self._handle)

 @property
 def protocol(self):
 # type: () -> constants.Protocol
 """:any:`Protocol`: Get or set the cluster protocol."""
 return constants.Protocol(_props.get_cluster_protocol(self._handle))

 @protocol.setter
 def protocol(self, value):
 # type: (constants.Protocol) -> None
 _props.set_cluster_protocol(self._handle, value.value)

 @property
 def sigs(self):
 # type: () -> typing.Iterable[_signal.Signal]
 """list of :any:`Signal<_signal.Signal>`: Returns a list of all :any:`Signal<_signal.Signal>` objects in this cluster.""" # NOQA: E501
 for handle in _props.get_cluster_sig_refs(self._handle):
 yield _signal.Signal(_handle=handle)

 @property
 def can_io_mode(self):
 # type: () -> constants.CanIoMode
 """:any:`CanIoMode`: Get or set the CAN I/O Mode of the cluster."""
 return constants.CanIoMode(_props.get_cluster_can_io_mode(self._handle))

 @can_io_mode.setter
 def can_io_mode(self, value):
 # type: (constants.CanIoMode) -> None
 _props.set_cluster_can_io_mode(self._handle, value.value)

 @property
 def can_fd_baud_rate(self):
 # type: () -> int
 """int: Get or set the fast data baud rate when :any:`Cluster.can_io_mode` is ``CanIoMode.CAN_FD_BRS``.

 Refer to the :any:`CanIoMode` for a description of ``CanIoMode.CAN_FD_BRS``.
 Use a session interface property (for example, :any:`Interface.can_fd_baud_rate`)
 to override the database fast baud rate with an application-specific fast baud rate.

 NI-XNET CAN hardware currently accepts the following numeric baud rates:
 200000, 250000, 400000, 500000, 800000, 1000000, 1250000, 1600000,
 2000000, 2500000, 4000000, 5000000, and 8000000.
 Some transceivers may support only a subset of these values.

 If you need values other than these,
 use the custom settings as described in :any:`Interface.can_fd_baud_rate`.
 """
 return _props.get_cluster_can_fd_baud_rate64(self._handle)

 @can_fd_baud_rate.setter
 def can_fd_baud_rate(self, value):
 # type: (int) -> None
 _props.set_cluster_can_fd_baud_rate64(self._handle, value)

 @property
 def flex_ray_act_pt_off(self):
 return _props.get_cluster_flex_ray_act_pt_off(self._handle)

 @flex_ray_act_pt_off.setter
 def flex_ray_act_pt_off(self, value):
 _props.set_cluster_flex_ray_act_pt_off(self._handle, value)

 @property
 def flex_ray_cas_rx_l_max(self):
 return _props.get_cluster_flex_ray_cas_rx_l_max(self._handle)

 @flex_ray_cas_rx_l_max.setter
 def flex_ray_cas_rx_l_max(self, value):
 _props.set_cluster_flex_ray_cas_rx_l_max(self._handle, value)

 @property
 def flex_ray_channels(self):
 return _props.get_cluster_flex_ray_channels(self._handle)

 @flex_ray_channels.setter
 def flex_ray_channels(self, value):
 _props.set_cluster_flex_ray_channels(self._handle, value)

 @property
 def flex_ray_clst_drift_dmp(self):
 return _props.get_cluster_flex_ray_clst_drift_dmp(self._handle)

 @flex_ray_clst_drift_dmp.setter
 def flex_ray_clst_drift_dmp(self, value):
 _props.set_cluster_flex_ray_clst_drift_dmp(self._handle, value)

 @property
 def flex_ray_cold_st_ats(self):
 return _props.get_cluster_flex_ray_cold_st_ats(self._handle)

 @flex_ray_cold_st_ats.setter
 def flex_ray_cold_st_ats(self, value):
 _props.set_cluster_flex_ray_cold_st_ats(self._handle, value)

 @property
 def flex_ray_cycle(self):
 return _props.get_cluster_flex_ray_cycle(self._handle)

 @flex_ray_cycle.setter
 def flex_ray_cycle(self, value):
 _props.set_cluster_flex_ray_cycle(self._handle, value)

 @property
 def flex_ray_dyn_seg_start(self):
 return _props.get_cluster_flex_ray_dyn_seg_start(self._handle)

 @property
 def flex_ray_dyn_slot_idl_ph(self):
 return _props.get_cluster_flex_ray_dyn_slot_idl_ph(self._handle)

 @flex_ray_dyn_slot_idl_ph.setter
 def flex_ray_dyn_slot_idl_ph(self, value):
 _props.set_cluster_flex_ray_dyn_slot_idl_ph(self._handle, value)

 @property
 def flex_ray_latest_usable_dyn(self):
 return _props.get_cluster_flex_ray_latest_usable_dyn(self._handle)

 @property
 def flex_ray_latest_guar_dyn(self):
 return _props.get_cluster_flex_ray_latest_guar_dyn(self._handle)

 @property
 def flex_ray_lis_noise(self):
 return _props.get_cluster_flex_ray_lis_noise(self._handle)

 @flex_ray_lis_noise.setter
 def flex_ray_lis_noise(self, value):
 _props.set_cluster_flex_ray_lis_noise(self._handle, value)

 @property
 def flex_ray_macro_per_cycle(self):
 return _props.get_cluster_flex_ray_macro_per_cycle(self._handle)

 @flex_ray_macro_per_cycle.setter
 def flex_ray_macro_per_cycle(self, value):
 _props.set_cluster_flex_ray_macro_per_cycle(self._handle, value)

 @property
 def flex_ray_macrotick(self):
 return _props.get_cluster_flex_ray_macrotick(self._handle)

 @property
 def flex_ray_max_wo_clk_cor_fat(self):
 return _props.get_cluster_flex_ray_max_wo_clk_cor_fat(self._handle)

 @flex_ray_max_wo_clk_cor_fat.setter
 def flex_ray_max_wo_clk_cor_fat(self, value):
 _props.set_cluster_flex_ray_max_wo_clk_cor_fat(self._handle, value)

 @property
 def flex_ray_max_wo_clk_cor_pas(self):
 return _props.get_cluster_flex_ray_max_wo_clk_cor_pas(self._handle)

 @flex_ray_max_wo_clk_cor_pas.setter
 def flex_ray_max_wo_clk_cor_pas(self, value):
 _props.set_cluster_flex_ray_max_wo_clk_cor_pas(self._handle, value)

 @property
 def flex_ray_minislot_act_pt(self):
 return _props.get_cluster_flex_ray_minislot_act_pt(self._handle)

 @flex_ray_minislot_act_pt.setter
 def flex_ray_minislot_act_pt(self, value):
 _props.set_cluster_flex_ray_minislot_act_pt(self._handle, value)

 @property
 def flex_ray_minislot(self):
 return _props.get_cluster_flex_ray_minislot(self._handle)

 @flex_ray_minislot.setter
 def flex_ray_minislot(self, value):
 _props.set_cluster_flex_ray_minislot(self._handle, value)

 @property
 def flex_ray_nm_vec_len(self):
 return _props.get_cluster_flex_ray_nm_vec_len(self._handle)

 @flex_ray_nm_vec_len.setter
 def flex_ray_nm_vec_len(self, value):
 _props.set_cluster_flex_ray_nm_vec_len(self._handle, value)

 @property
 def flex_ray_nit(self):
 return _props.get_cluster_flex_ray_nit(self._handle)

 @flex_ray_nit.setter
 def flex_ray_nit(self, value):
 _props.set_cluster_flex_ray_nit(self._handle, value)

 @property
 def flex_ray_nit_start(self):
 return _props.get_cluster_flex_ray_nit_start(self._handle)

 @property
 def flex_ray_num_minislt(self):
 return _props.get_cluster_flex_ray_num_minislt(self._handle)

 @flex_ray_num_minislt.setter
 def flex_ray_num_minislt(self, value):
 _props.set_cluster_flex_ray_num_minislt(self._handle, value)

 @property
 def flex_ray_num_stat_slt(self):
 return _props.get_cluster_flex_ray_num_stat_slt(self._handle)

 @flex_ray_num_stat_slt.setter
 def flex_ray_num_stat_slt(self, value):
 _props.set_cluster_flex_ray_num_stat_slt(self._handle, value)

 @property
 def flex_ray_off_cor_st(self):
 return _props.get_cluster_flex_ray_off_cor_st(self._handle)

 @flex_ray_off_cor_st.setter
 def flex_ray_off_cor_st(self, value):
 _props.set_cluster_flex_ray_off_cor_st(self._handle, value)

 @property
 def flex_ray_payld_len_dyn_max(self):
 return _props.get_cluster_flex_ray_payld_len_dyn_max(self._handle)

 @flex_ray_payld_len_dyn_max.setter
 def flex_ray_payld_len_dyn_max(self, value):
 _props.set_cluster_flex_ray_payld_len_dyn_max(self._handle, value)

 @property
 def flex_ray_payld_len_max(self):
 return _props.get_cluster_flex_ray_payld_len_max(self._handle)

 @property
 def flex_ray_payld_len_st(self):
 return _props.get_cluster_flex_ray_payld_len_st(self._handle)

 @flex_ray_payld_len_st.setter
 def flex_ray_payld_len_st(self, value):
 _props.set_cluster_flex_ray_payld_len_st(self._handle, value)

 @property
 def flex_ray_stat_slot(self):
 return _props.get_cluster_flex_ray_stat_slot(self._handle)

 @flex_ray_stat_slot.setter
 def flex_ray_stat_slot(self, value):
 _props.set_cluster_flex_ray_stat_slot(self._handle, value)

 @property
 def flex_ray_sym_win(self):
 return _props.get_cluster_flex_ray_sym_win(self._handle)

 @flex_ray_sym_win.setter
 def flex_ray_sym_win(self, value):
 _props.set_cluster_flex_ray_sym_win(self._handle, value)

 @property
 def flex_ray_sym_win_start(self):
 return _props.get_cluster_flex_ray_sym_win_start(self._handle)

 @property
 def flex_ray_sync_node_max(self):
 return _props.get_cluster_flex_ray_sync_node_max(self._handle)

 @flex_ray_sync_node_max.setter
 def flex_ray_sync_node_max(self, value):
 _props.set_cluster_flex_ray_sync_node_max(self._handle, value)

 @property
 def flex_ray_tss_tx(self):
 return _props.get_cluster_flex_ray_tss_tx(self._handle)

 @flex_ray_tss_tx.setter
 def flex_ray_tss_tx(self, value):
 _props.set_cluster_flex_ray_tss_tx(self._handle, value)

 @property
 def flex_ray_wake_sym_rx_idl(self):
 return _props.get_cluster_flex_ray_wake_sym_rx_idl(self._handle)

 @flex_ray_wake_sym_rx_idl.setter
 def flex_ray_wake_sym_rx_idl(self, value):
 _props.set_cluster_flex_ray_wake_sym_rx_idl(self._handle, value)

 @property
 def flex_ray_wake_sym_rx_low(self):
 return _props.get_cluster_flex_ray_wake_sym_rx_low(self._handle)

 @flex_ray_wake_sym_rx_low.setter
 def flex_ray_wake_sym_rx_low(self, value):
 _props.set_cluster_flex_ray_wake_sym_rx_low(self._handle, value)

 @property
 def flex_ray_wake_sym_rx_win(self):
 return _props.get_cluster_flex_ray_wake_sym_rx_win(self._handle)

 @flex_ray_wake_sym_rx_win.setter
 def flex_ray_wake_sym_rx_win(self, value):
 _props.set_cluster_flex_ray_wake_sym_rx_win(self._handle, value)

 @property
 def flex_ray_wake_sym_tx_idl(self):
 return _props.get_cluster_flex_ray_wake_sym_tx_idl(self._handle)

 @flex_ray_wake_sym_tx_idl.setter
 def flex_ray_wake_sym_tx_idl(self, value):
 _props.set_cluster_flex_ray_wake_sym_tx_idl(self._handle, value)

 @property
 def flex_ray_wake_sym_tx_low(self):
 return _props.get_cluster_flex_ray_wake_sym_tx_low(self._handle)

 @flex_ray_wake_sym_tx_low.setter
 def flex_ray_wake_sym_tx_low(self, value):
 _props.set_cluster_flex_ray_wake_sym_tx_low(self._handle, value)

 @property
 def flex_ray_use_wakeup(self):
 return _props.get_cluster_flex_ray_use_wakeup(self._handle)

 @flex_ray_use_wakeup.setter
 def flex_ray_use_wakeup(self, value):
 _props.set_cluster_flex_ray_use_wakeup(self._handle, value)

 @property
 def lin_schedules(self):
 # type: () -> _collection.DbCollection
 """:any:`DbCollection`: Returns a collection of :any:`LinSched` defined in this cluster.

 You assign a LIN schedule to a cluster when you create the LIN schedule object.
 You cannot change this assignment afterwards.
 The schedules in this collection are sorted alphabetically by schedule name.
 """
 return self._lin_sched

 @property
 def lin_tick(self):
 # type: () -> float
 """float: Returns the relative time between LIN ticks (relative f64 in seconds).

 The :any:`LinSchedEntry.delay` property must be a multiple of this tick.

 This tick is referred to as the "timebase" in the LIN specification.

 The :any:`Ecu.lin_master` property defines the Tick property in this cluster.
 You cannot use the Tick property when there is no LIN Master property defined in this cluster.
 """
 return _props.get_cluster_lin_tick(self._handle)

 @lin_tick.setter
 def lin_tick(self, value):
 # type: (float) -> None
 _props.set_cluster_lin_tick(self._handle, value)

 @property
 def flex_ray_alw_pass_act(self):
 return _props.get_cluster_flex_ray_alw_pass_act(self._handle)

 @flex_ray_alw_pass_act.setter
 def flex_ray_alw_pass_act(self, value):
 _props.set_cluster_flex_ray_alw_pass_act(self._handle, value)

 @property
 def application_protocol(self):
 # type: () -> constants.AppProtocol
 """:any:`AppProtocol`: Get or set the application protocol."""
 return constants.AppProtocol(_props.get_cluster_application_protocol(self._handle))

 @application_protocol.setter
 def application_protocol(self, value):
 # type: (constants.AppProtocol) -> None
 _props.set_cluster_application_protocol(self._handle, value.value)

 @property
 def can_fd_iso_mode(self):
 # type: () -> constants.CanFdIsoMode
 """:any:`CanFdIsoMode`: Returns the mode of a CAN FD cluster.

 The default is ``CanFdIsoMode.ISO``.
 You define the value in a dialog box that appears when you define an alias for the database.
 """
 return constants.CanFdIsoMode(_props.get_cluster_can_fd_iso_mode(self._handle))

 nixnet.database._collection

 Source code for nixnet.database._collection

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import typing # NOQA: F401

import six

from nixnet import _cprops
from nixnet import _funcs
from nixnet import constants # NOQA: F401

from nixnet.database import _database_object # NOQA: F401

[docs]class DbCollection(collections.Mapping):
 """Collection of database objects."""

 def __init__(self, handle, db_type, prop_id, factory):
 # type: (int, constants.ObjectClass, int, typing.Any) -> None
 self._handle = handle
 self._type = db_type
 self._prop_id = prop_id
 self._factory = factory

 def __repr__(self):
 return '{}(handle={}, db_type={})'.format(type(self).__name__, self._handle, self._type)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 sys_other = typing.cast(DbCollection, other)
 return self._handle == sys_other._handle and self._prop_id == sys_other._prop_id
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __len__(self):
 return _cprops.get_database_ref_array_len(self._handle, self._prop_id)

 def __iter__(self):
 return self.keys()

 def __getitem__(self, index):
 """Return the database object.

 Args:
 Name of database object
 Returns:
 index(str): Name of database object.
 """
 if isinstance(index, six.string_types):
 ref = _funcs.nxdb_find_object(self._handle, self._type, index)
 return self._factory(_handle=ref)
 else:
 raise TypeError(index)

 def __delitem__(self, index):
 ref = _funcs.nxdb_find_object(self._handle, self._type, index)
 _funcs.nxdb_delete_object(ref)

[docs] def keys(self):
 """Return database object names in the collection.

 Yields:
 An iterator to database object names in the collection.
 """
 for child in self._get_children():
 yield child.name

[docs] def values(self):
 """Return database objects in the collection.

 Yields:
 An iterator to database objects in the collection.
 """
 return self._get_children()

[docs] def items(self):
 """Return all database object names and objects in the collection.

 Yields:
 An iterator to tuple pairs of database object names and objects in the collection
 """
 for child in self._get_children():
 yield child.name, child

[docs] def add(self, name):
 # type: (typing.Text) -> _database_object.DatabaseObject
 """Add a new database object to the collection.

 Args:
 name(str): Name of the new database object.
 Returns:
 ``DatabaseObject``: An instance of the new database object.
 """
 ref = _funcs.nxdb_create_object(self._handle, self._type, name)
 return self._factory(_handle=ref)

 def _get_children(self):
 for ref in _cprops.get_database_ref_array(self._handle, self._prop_id):
 yield self._factory(_handle=ref)

 nixnet.database._dbc_attributes

 Source code for nixnet.database._dbc_attributes

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import six
import typing # NOQA: F401

from nixnet import _funcs
from nixnet import constants

[docs]class DbcAttributeCollection(collections.Mapping):
 """Collection for accessing DBC attributes."""

 def __init__(self, handle):
 # type: (int) -> None
 self._handle = handle

 # Here, we are caching the attribute names and enums to work around a driver issue.
 # The issue results in an empty attribute value after intermixing calls to get attribute values and enums.
 # We can avoid this issue if we get all attribute enums first, before getting any attribute values.
 self._cache = dict(
 (name, self._get_enums(name))
 for name in self._get_names()
)

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == typing.cast(DbcAttributeCollection, other)._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __len__(self):
 return len(list(self.keys()))

 def __iter__(self):
 return self.keys()

 def __getitem__(self, key):
 # type: (typing.Text) -> typing.Tuple[typing.Text, bool]
 """Return the attribute value and whether it's the default value.

 Args:
 key(str): attribute name.
 Returns:
 tuple(str, bool): attribute value and whether it's the default value.
 """
 if isinstance(key, six.string_types):
 return self._get_value(key)
 else:
 raise TypeError(key)

[docs] def keys(self):
 """Return all attribute names in the collection.

 Yields:
 An iterator to all attribute names in the collection.
 """
 for name in self._cache:
 yield name

[docs] def values(self):
 """Return all attribute values in the collection.

 Yields:
 An iterator to all attribute values in the collection.
 """
 for name in self._cache:
 yield self._get_value(name)

[docs] def items(self):
 """Return all attribute names and values in the collection.

 Yields:
 An iterator to tuple pairs of attribute names and values in the collection.
 """
 for name in self._cache:
 yield name, self._get_value(name)

 def _get_names(self):
 # type: () -> typing.List[typing.Text]
 mode = constants.GetDbcAttributeMode.ATTRIBUTE_LIST
 attribute_size = _funcs.nxdb_get_dbc_attribute_size(self._handle, mode, '')
 attribute_info = _funcs.nxdb_get_dbc_attribute(self._handle, mode, '', attribute_size)
 name_string = attribute_info[0]
 name_list = [
 name
 for name in name_string.split(',')
 if name.strip()
]
 return name_list

 def _get_enums(self, name):
 # type: (typing.Text) -> typing.List[typing.Text]
 mode = constants.GetDbcAttributeMode.ENUMERATION_LIST
 attribute_size = _funcs.nxdb_get_dbc_attribute_size(self._handle, mode, name)
 attribute_info = _funcs.nxdb_get_dbc_attribute(self._handle, mode, name, attribute_size)
 enum_string = attribute_info[0]
 enum_list = [
 enum
 for enum in enum_string.split(',')
 if enum.strip()
]
 return enum_list

 def _get_value(self, name):
 # type: (typing.Text) -> typing.Tuple[typing.Text, bool]
 if name not in self._cache:
 raise KeyError('Attribute name %s not found in DBC attributes' % name)

 mode = constants.GetDbcAttributeMode.ATTRIBUTE
 attribute_size = _funcs.nxdb_get_dbc_attribute_size(self._handle, mode, name)
 attribute_info = _funcs.nxdb_get_dbc_attribute(self._handle, mode, name, attribute_size)
 enums = self._cache[name]
 if not enums:
 return attribute_info

 # This attribute is an enum. Replace the enum index with the enum string.
 index = int(attribute_info[0])
 attribute_info = (enums[index], attribute_info[1])
 return attribute_info

 nixnet.database._dbc_signal_value_table

 Source code for nixnet.database._dbc_signal_value_table

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import six
import typing # NOQA: F401

from nixnet import _funcs
from nixnet import constants

[docs]class DbcSignalValueTable(collections.Mapping):
 """Collection for accessing a DBC signal value table."""

 def __init__(self, handle):
 # type: (int) -> None
 self._handle = handle

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == typing.cast(DbcSignalValueTable, other)._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __len__(self):
 return len(self._value_table)

 def __iter__(self):
 return self.keys()

 def __getitem__(self, key):
 # type: (typing.Text) -> int
 """Return the value.

 Args:
 Value description.
 Returns:
 Value
 """
 if isinstance(key, six.string_types):
 return self._value_table[key]
 else:
 raise TypeError(key)

[docs] def keys(self):
 """Return all value descriptions in the collection.

 Yields:
 An iterator to all value descriptions in the collection.
 """
 return iter(self._value_table.keys())

[docs] def values(self):
 """Return all values in the collection.

 Yields:
 An iterator to all values in the collection.
 """
 return iter(self._value_table.values())

[docs] def items(self):
 """Return all value descriptions and values in the collection.

 Yields:
 An iterator to tuple pairs of value descriptions and values in the collection.
 """
 return iter(self._value_table.items())

 @property
 def _value_table(self):
 # type: () -> typing.Dict[typing.Text, int]
 mode = constants.GetDbcAttributeMode.VALUE_TABLE_LIST
 attribute_size = _funcs.nxdb_get_dbc_attribute_size(self._handle, mode, '')
 attribute_info = _funcs.nxdb_get_dbc_attribute(self._handle, mode, '', attribute_size)
 table_string = attribute_info[0]
 if not table_string:
 return {}

 table_list = table_string.split(',')
 if len(table_list) % 2:
 raise ValueError('Value tables require an even number of items: %s' % table_list)

 # table_string is of the format 'value1, key1, value2, key2, ...'
 # convert to a dict: { 'key1': int('value1'), 'key2': int('value2'), ... }
 table_dict = dict(
 (key, int(value))
 for value, key in zip(table_list[0::2], table_list[1::2]))
 return table_dict

 nixnet.database._ecu

 Source code for nixnet.database._ecu

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401

from nixnet import _errors
from nixnet import _props
from nixnet import constants

from nixnet.database import _cluster
from nixnet.database import _database_object
from nixnet.database import _dbc_attributes
from nixnet.database import _frame

[docs]class Ecu(_database_object.DatabaseObject):
 """Database ECU"""

 def __init__(
 self,
 **kwargs # type: int
):
 # type: (...) -> None
 if not kwargs or '_handle' not in kwargs:
 raise TypeError()

 self._handle = kwargs['_handle']
 self._dbc_attributes = None # type: typing.Optional[_dbc_attributes.DbcAttributeCollection]

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == other._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

[docs] def check_config_status(self):
 # type: () -> None
 """Check this ECU's configuration status.

 By default, incorrectly configured ECUs in the database are not returned from
 :any:`Cluster.ecus` because they cannot be used in the bus communication.
 You can change this behavior by setting :any:`Database.show_invalid_from_open` to `True`.
 When an ECU configuration status becomes invalid after the database is opened,
 the ECU still is returned from :any:`Cluster.ecus`
 even if :any:`Database.show_invalid_from_open` is `False`.

 Raises:
 :any:`XnetError`: The ECU is incorrectly configured.
 """
 status_code = _props.get_ecu_config_status(self._handle)
 _errors.check_for_error(status_code)

 @property
 def clst(self):
 # type: () -> _cluster.Cluster
 """:any:`Cluster`: Returns the parent cluster to which the ECU is connected.

 The parent cluster is determined when the ECU object is created.
 You cannot change it afterwards.
 """
 handle = _props.get_ecu_clst_ref(self._handle)
 return _cluster.Cluster(_handle=handle)

 @property
 def comment(self):
 # type: () -> typing.Text
 """str: Get or set a comment describing the ECU object.

 A comment is a string containing up to 65535 characters.
 """
 return _props.get_ecu_comment(self._handle)

 @comment.setter
 def comment(self, value):
 # type: (typing.Text) -> None
 _props.set_ecu_comment(self._handle, value)

 @property
 def dbc_attributes(self):
 # type: () -> _dbc_attributes.DbcAttributeCollection
 """:any:`DbcAttributeCollection`: Access the ECU's DBC attributes."""
 if self._dbc_attributes is None:
 self._dbc_attributes = _dbc_attributes.DbcAttributeCollection(self._handle)
 return self._dbc_attributes

 @property
 def name(self):
 # type: () -> typing.Text
 """str: Get or set the name of the ECU object.

 Lowercase letters, uppercase letters, numbers,
 and the underscore (_) are valid characters for the short name.
 The space (), period (.), and other special characters are not supported within the name.
 The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
 The short name is limited to 128 characters.

 An ECU name must be unique for all ECUs in a cluster.

 This short name does not include qualifiers to ensure that it is unique,
 such as the database and cluster name.
 It is for display purposes.
 """
 return _props.get_ecu_name(self._handle)

 @name.setter
 def name(self, value):
 # type: (typing.Text) -> None
 _props.set_ecu_name(self._handle, value)

 @property
 def rx_frms(self):
 # type: () -> typing.Iterable[_frame.Frame]
 """list of :any:`Frame<_frame.Frame>`: Get or set a list of frames the ECU receives.

 This property defines all frames the ECU receives.
 All frames an ECU receives in a given cluster must be defined in the same cluster.
 """
 for ref in _props.get_ecu_rx_frm_refs(self._handle):
 yield _frame.Frame(_handle=ref)

 @rx_frms.setter
 def rx_frms(self, value):
 # type: (typing.Iterable[_frame.Frame]) -> None
 handle_list = [frame._handle for frame in value]
 _props.set_ecu_rx_frm_refs(self._handle, handle_list)

 @property
 def tx_frms(self):
 # type: () -> typing.Iterable[_frame.Frame]
 """list of :any:`Frame<_frame.Frame>`: Get or set a list of frames the ECU transmits.

 This property defines all frames the ECU transmits.
 All frames an ECU transmits in a given cluster must be defined in the same cluster.
 """
 for ref in _props.get_ecu_tx_frm_refs(self._handle):
 yield _frame.Frame(_handle=ref)

 @tx_frms.setter
 def tx_frms(self, value):
 # type: (typing.Iterable[_frame.Frame]) -> None
 frame_handles = [frame._handle for frame in value]
 _props.set_ecu_tx_frm_refs(self._handle, frame_handles)

 @property
 def flex_ray_is_coldstart(self):
 return _props.get_ecu_flex_ray_is_coldstart(self._handle)

 @property
 def flex_ray_startup_frame_ref(self):
 return _props.get_ecu_flex_ray_startup_frame_ref(self._handle)

 @property
 def flex_ray_wakeup_ptrn(self):
 return _props.get_ecu_flex_ray_wakeup_ptrn(self._handle)

 @flex_ray_wakeup_ptrn.setter
 def flex_ray_wakeup_ptrn(self, value):
 _props.set_ecu_flex_ray_wakeup_ptrn(self._handle, value)

 @property
 def flex_ray_wakeup_chs(self):
 return _props.get_ecu_flex_ray_wakeup_chs(self._handle)

 @flex_ray_wakeup_chs.setter
 def flex_ray_wakeup_chs(self, value):
 _props.set_ecu_flex_ray_wakeup_chs(self._handle, value)

 @property
 def flex_ray_connected_chs(self):
 return _props.get_ecu_flex_ray_connected_chs(self._handle)

 @flex_ray_connected_chs.setter
 def flex_ray_connected_chs(self, value):
 _props.set_ecu_flex_ray_connected_chs(self._handle, value)

 @property
 def lin_master(self):
 # type: () -> bool
 """bool: Get or set whether the ECU is a LIN master (``True``) or LIN slave (``False``)."""
 return _props.get_ecu_lin_master(self._handle)

 @lin_master.setter
 def lin_master(self, value):
 # type: (bool) -> None
 _props.set_ecu_lin_master(self._handle, value)

 @property
 def lin_protocol_ver(self):
 # type: () -> constants.LinProtocolVer
 """:any:`LinProtocolVer`: Get or set the version of the LIN standard this ECU uses."""
 return constants.LinProtocolVer(_props.get_ecu_lin_protocol_ver(self._handle))

 @lin_protocol_ver.setter
 def lin_protocol_ver(self, value):
 # type: (constants.LinProtocolVer) -> None
 _props.set_ecu_lin_protocol_ver(self._handle, value.value)

 @property
 def lin_initial_nad(self):
 # type: () -> int
 """int: Get or set the initial NAD of a LIN slave node.

 NAD is the address of a slave node and is used in diagnostic services.
 Initial NAD is replaced by configured NAD with node configuration services.

 .. warning:: This property is not saved in the FIBEX database.
 You can import it only from an LDF file.
 """
 return _props.get_ecu_lin_initial_nad(self._handle)

 @lin_initial_nad.setter
 def lin_initial_nad(self, value):
 # type: (int) -> None
 _props.set_ecu_lin_initial_nad(self._handle, value)

 @property
 def lin_config_nad(self):
 # type: () -> int
 """int: Get or set the configured NAD of a LIN slave node.

 NAD is the address of a slave node and is used in diagnostic services.
 Initial NAD is replaced by configured NAD with node configuration services.

 .. warning:: This property is not saved in the FIBEX database.
 You can import it only from an LDF file.
 """
 return _props.get_ecu_lin_config_nad(self._handle)

 @lin_config_nad.setter
 def lin_config_nad(self, value):
 # type: (int) -> None
 _props.set_ecu_lin_config_nad(self._handle, value)

 @property
 def lin_supplier_id(self):
 # type: () -> int
 """int: Get or set the supplier ID.

 Supplier ID is a 16-bit value identifying the supplier of the LIN node (ECU).

 .. warning:: This property is not saved in the FIBEX database.
 You can import it only from an LDF file.
 """
 return _props.get_ecu_lin_supplier_id(self._handle)

 @lin_supplier_id.setter
 def lin_supplier_id(self, value):
 # type: (int) -> None
 _props.set_ecu_lin_supplier_id(self._handle, value)

 @property
 def lin_function_id(self):
 # type: () -> int
 """int: Get or set the function ID.

 Function ID is a 16-bit value identifying the function of the LIN node (ECU).

 .. warning:: This property is not saved in the FIBEX database.
 You can import it only from an LDF file.
 """
 return _props.get_ecu_lin_function_id(self._handle)

 @lin_function_id.setter
 def lin_function_id(self, value):
 # type: (int) -> None
 _props.set_ecu_lin_function_id(self._handle, value)

 @property
 def lin_p2_min(self):
 # type: () -> float
 """float: Get or set the minimum time in seconds between frame reception and node response.

 This is the minimum time between reception of the last frame
 of the diagnostic request and the response sent by the node.

 .. warning:: This property is not saved in the FIBEX database.
 You can import it only from an LDF file.
 """
 return _props.get_ecu_lin_p2_min(self._handle)

 @lin_p2_min.setter
 def lin_p2_min(self, value):
 # type (float) -> None
 _props.set_ecu_lin_p2_min(self._handle, value)

 @property
 def lin_st_min(self):
 # type: () -> float
 """float: Get or set the minimum time in seconds for node preparation.

 This is the minimum time the node requires to prepare
 for the next frame of the diagnostic service.

 .. warning:: This property is not saved in the FIBEX database.
 You can import it only from an LDF file.
 """
 return _props.get_ecu_lin_st_min(self._handle)

 @lin_st_min.setter
 def lin_st_min(self, value):
 # type (float) -> None
 _props.set_ecu_lin_st_min(self._handle, value)

 @property
 def j1939_preferred_address(self):
 # type: () -> int
 """int: Get or set the preferred J1939 node address to be used when simulating this ECU.

 If you assign this ECU to an XNET session (`j1939.set_ecu`),
 XNET will start address claiming for this address using
 :any:`Ecu.j1939_node_name` and use the address for the session when the address is granted.
 """
 return _props.get_ecu_j1939_preferred_address(self._handle)

 @j1939_preferred_address.setter
 def j1939_preferred_address(self, value):
 # type: (int) -> None
 _props.set_ecu_j1939_preferred_address(self._handle, value)

 @property
 def j1939_node_name(self):
 # type: () -> int
 """int: Get or set the preferred J1939 node address to be used when simulating this ECU.

 If you assign this ECU to an XNET session (`j1939.set_ecu`),
 XNET will start address claiming for this address using
 this node name and :any:`Ecu.j1939_preferred_address`.
 """
 return _props.get_ecu_j1939_node_name(self._handle)

 @j1939_node_name.setter
 def j1939_node_name(self, value):
 # type: (int) -> None
 _props.set_ecu_j1939_node_name(self._handle, value)

 nixnet.database._frame

 Source code for nixnet.database._frame

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import operator
import typing # NOQA: F401

from nixnet import _cconsts
from nixnet import _errors
from nixnet import _props
from nixnet import constants
from nixnet import types

from nixnet.database import _cluster
from nixnet.database import _collection
from nixnet.database import _database_object
from nixnet.database import _dbc_attributes
from nixnet.database import _find_object
from nixnet.database import _signal

[docs]class Frame(_database_object.DatabaseObject):
 """Database frame"""

 def __init__(
 self,
 **kwargs # type: int
):
 # type: (...) -> None
 if not kwargs or '_handle' not in kwargs:
 raise TypeError()

 self._handle = kwargs['_handle']
 self._dbc_attributes = None # type: typing.Optional[_dbc_attributes.DbcAttributeCollection]

 from nixnet.database import _subframe
 self._mux_static_signals = _collection.DbCollection(
 self._handle, constants.ObjectClass.SIGNAL, _cconsts.NX_PROP_FRM_MUX_STATIC_SIG_REFS, _signal.Signal)
 self._mux_subframes = _collection.DbCollection(
 self._handle, constants.ObjectClass.SUBFRAME, _cconsts.NX_PROP_FRM_MUX_SUBFRAME_REFS, _subframe.SubFrame)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == other._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

[docs] def check_config_status(self):
 # type: () -> None
 """Check this frame's configuration status.

 By default, incorrectly configured frames in the database are not returned from
 :any:`Cluster.frames` because they cannot be used in the bus communication.
 You can change this behavior by setting :any:`Database.show_invalid_from_open` to `True`.
 When a frame configuration status becomes invalid after the database is opened,
 the frame still is returned from :any:`Cluster.frames`
 even if :any:`Database.show_invalid_from_open` is `False`.

 Raises:
 :any:`XnetError`: The frame is incorrectly configured.
 """
 status_code = _props.get_frame_config_status(self._handle)
 _errors.check_for_error(status_code)

[docs] def find(
 self,
 object_class, # type: typing.Type[_database_object.DatabaseObject]
 object_name, # type: typing.Text
):
 # type: (...) -> _database_object.DatabaseObject
 """Finds an object in the database.

 This function finds a database object relative to this parent object.
 This object may be a grandparent or great-grandparent.

 If this object is a direct parent
 (for example, :any:`Frame<_frame.Frame>` for :any:`Signal<_signal.Signal>`),
 the ``object_name`` to search for can be short, and the search proceeds quickly.

 If this object is not a direct parent
 (for example, :any:`Database` for :any:`Signal<_signal.Signal>`),
 the ``object_name`` to search for must be qualified such
 that it is unique within the scope of this object.

 For example, if the class of this object is :any:`Cluster`,
 and ``object_class`` is :any:`Signal<_signal.Signal>`,
 you can specify ``object_name`` of ``mySignal``,
 assuming that signal name is unique to the cluster.
 If not, you must include the :any:`Frame<_frame.Frame>` name as a prefix,
 such as ``myFrameA.mySignal``.

 NI-XNET supports the following subclasses of ``DatabaseObject`` as arguments for ``object_class``:

 * :any:`nixnet.database.Cluster<Cluster>`
 * :any:`nixnet.database.Frame<_frame.Frame>`
 * :any:`nixnet.database.Pdu<Pdu>`
 * :any:`nixnet.database.Signal<_signal.Signal>`
 * :any:`nixnet.database.SubFrame<SubFrame>`
 * :any:`nixnet.database.Ecu<Ecu>`
 * :any:`nixnet.database.LinSched<LinSched>`
 * :any:`nixnet.database.LinSchedEntry<LinSchedEntry>`

 Args:
 object_class(``DatabaseObject``): The class of the object to find.
 object_name(str): The name of the object to find.
 Returns:
 An instance of the found object.
 Raises:
 ValueError: Unsupported value provided for argument ``object_class``.
 :any:`XnetError`: The object is not found.
 """
 return _find_object.find_object(self._handle, object_class, object_name)

 @property
 def application_protocol(self):
 # type: () -> constants.AppProtocol
 """:any:`AppProtocol`: Get or set the frame's application protocol."""
 return constants.AppProtocol(_props.get_frame_application_protocol(self._handle))

 @application_protocol.setter
 def application_protocol(self, value):
 # type: (constants.AppProtocol) -> None
 _props.set_frame_application_protocol(self._handle, value.value)

 @property
 def cluster(self):
 # type: () -> _cluster.Cluster
 """:any:`Cluster`: Get the parent cluster in which the frame has been created.

 You cannot change the parent cluster after the frame object has been created.
 """
 handle = _props.get_frame_cluster_ref(self._handle)
 return _cluster.Cluster(_handle=handle)

 @property
 def comment(self):
 # type: () -> typing.Text
 """str: Get or set a comment describing the frame object.

 A comment is a string containing up to 65535 characters.
 """
 return _props.get_frame_comment(self._handle)

 @comment.setter
 def comment(self, value):
 # type: (typing.Text) -> None
 _props.set_frame_comment(self._handle, value)

 @property
 def default_payload(self):
 # type: () -> typing.Iterable[int]
 """list of int: Get or set the frame default payload, specified as a list of ints.

 Each int in the list represents a byte (U8).
 The number of bytes in the list must match the :any:`Frame.payload_len` property.

 This property's initial value is an list of all ``0``,
 except the frame is located in a CAN cluster with J1939 application protocol,
 which uses ``0xFF`` by default.
 For the database formats NI-XNET supports,
 this property is not provided in the database file.

 When you use this frame within an NI-XNET session,
 this property's use varies depending on the session mode.
 The following sections describe this property's behavior for each session mode.

 Frame Output Single-Point and Frame Output Queued Modes:
 Use this property when a frame transmits prior to a call to write.
 This can occur when you set the :any:`SessionBase.auto_start` property to ``False``
 and start a session prior to writing.
 When :any:`SessionBase.auto_start` is ``True`` (default),
 the first frame write also starts frame transmit, so this property is not used.

 The following frame configurations potentially can transmit prior to a call to write:

 * :any:`Frame.can_timing_type` is ``CYCLIC_DATA``.
 * :any:`Frame.can_timing_type` is ``CYCLIC_REMOTE``.
 (for example, a remote frame received prior to a call to writing).
 * :any:`Frame.can_timing_type` is ``EVENT_REMOTE``.
 (for example, a remote frame received prior to a call to writing).
 * :any:`Frame.can_timing_type` is ``CYCLIC_EVENT``.
 * LIN frame in a schedule entry where :any:`LinSchedEntry.type` is ``UNCONDITIONAL``.

 The following frame configurations cannot transmit prior to writing, so this property is not used:

 * :any:`Frame.can_timing_type` is ``EVENT_DATA``..
 * LIN frame in a schedule entry where :any:`LinSchedEntry.type` is ``SPORADIC``
 or ``EVENT_TRIGGERED``.

 Frame Output Stream Mode:
 This property is not used. Transmit is limited to frames provided to write.

 Signal Output Single-Point, Signal Output Waveform, and Signal Output XY Modes:
 Use this property when a frame transmits prior to a call to write.
 Refer to Frame Output Single-Point and Frame Output Queued Modes
 for a list of applicable frame configurations.

 This property is used as the initial payload,
 then each XNET Signal Default Value is mapped into that payload,
 and the result is used for the frame transmit.

 Frame Input Stream and Frame Input Queued Modes:
 This property is not used.
 These modes do not return data prior to receiving frames.

 Frame Input Single-Point Mode:
 This property is used for frames read returns prior to receiving the first frame.

 Signal Input Single-Point, Signal Input Waveform, and Signal Input XY Modes:
 This property is not used.
 Each :any:`Signal.default` is used when
 reading from a session prior to receiving the first frame.
 """
 return _props.get_frame_default_payload(self._handle)

 @default_payload.setter
 def default_payload(self, value):
 # type: (typing.List[int]) -> None
 _props.set_frame_default_payload(self._handle, value)

 @property
 def dbc_attributes(self):
 # type: () -> _dbc_attributes.DbcAttributeCollection
 """:any:`DbcAttributeCollection`: Access the frame's DBC attributes."""
 if self._dbc_attributes is None:
 self._dbc_attributes = _dbc_attributes.DbcAttributeCollection(self._handle)
 return self._dbc_attributes

 @property
 def id(self):
 # type: () -> int
 """int: Get or set the frame identifier.

 This property is required.
 If the property does not contain a valid value,
 and you create an XNET session that uses this frame,
 the session returns an error.
 To ensure that the property contains a valid value,
 you can do one of the following:

 * Use a database file (or alias) to create the session.

 The file formats require a valid value in the text for this property.

 * Set a value at runtime using this property.

 This is needed when you create your own in-memory database (*:memory:*) rather than use a file.
 The property does not contain a default in this case,
 so you must set a valid value prior to creating a session.

 CAN:
 For CAN frames, this is the Arbitration ID.

 When :any:`Frame.can_ext_id` is set to ``False``,
 this is the standard CAN identifier with a size of 11 bits,
 which results in allowed range of 0-2047.
 However, the CAN standard disallows identifiers in which the first 7 bits are all recessive,
 so the working range of identifiers is 0-2031.

 When :any:`Frame.can_ext_id` is set to ``True``,
 this is the extended CAN identifier with a size of 29 bits,
 which results in allowed range of 0-536870911.
 LIN:
 For LIN frames, this is the frame's ID (unprotected).
 The valid range for a LIN frame ID is 0-63 (inclusive)
 """
 return _props.get_frame_id(self._handle)

 @id.setter
 def id(self, value):
 # type: (int) -> None
 _props.set_frame_id(self._handle, value)

 @property
 def name(self):
 # type: () -> typing.Text
 """str: String identifying a frame object.

 Lowercase letters, uppercase letters, numbers,
 and the underscore (_) are valid characters for the short name.
 The space (), period (.), and other special characters are not supported within the name.
 The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
 The short name is limited to 128 characters.

 A frame name must be unique for all frames in a cluster.

 This short name does not include qualifiers to ensure that it is unique,
 such as the database and cluster name.
 It is for display purposes.
 """
 return _props.get_frame_name(self._handle)

 @name.setter
 def name(self, value):
 # type: (typing.Text) -> None
 _props.set_frame_name(self._handle, value)

 @property
 def payload_len(self):
 # type: () -> int
 """int: Get or set the number of bytes of data in the payload.

 For CAN and LIN, this is 0-8.

 This property is required.
 If the property does not contain a valid value,
 and you create an XNET session that uses this frame,
 the session returns an error.
 To ensure that the property contains a valid value,
 you can do one of the following:

 * Use a database file (or alias) to create the session.

 The file formats require a valid value in the text for this property.

 * Set a value at runtime using this property.

 This is needed when you create your own in-memory database (*:memory:*) rather than use a file.
 The property does not contain a default in this case,
 so you must set a valid value prior to creating a session.
 """
 return _props.get_frame_payload_len(self._handle)

 @payload_len.setter
 def payload_len(self, value):
 # type: (int) -> None
 _props.set_frame_payload_len(self._handle, value)

 @property
 def sigs(self):
 # type: () -> typing.Iterable[_signal.Signal]
 """list of :any:`Signal<_signal.Signal>`:Get a list of all :any:`Signal<_signal.Signal>` objects in the frame.

 This property returns a list to all :any:`Signal<_signal.Signal>` objects in the frame,
 including static and dynamic signals and the multiplexer signal.
 """
 for handle in _props.get_frame_sig_refs(self._handle):
 yield _signal.Signal(_handle=handle)

 @property
 def can_ext_id(self):
 # type: () -> bool
 """bool: Get or set whether the :any:`Frame.id` property in a CAN cluster is extended.

 The frame identifier represents a standard 11-bit (``False``) or extended 29-bit (``True``) arbitration ID.
 """
 return _props.get_frame_can_ext_id(self._handle)

 @can_ext_id.setter
 def can_ext_id(self, value):
 # type: (bool) -> None
 _props.set_frame_can_ext_id(self._handle, value)

 @property
 def can_timing_type(self):
 # type: () -> constants.FrmCanTiming
 """:any:`FrmCanTiming`: Get or set the CAN frame timing.

 Because this property specifies the behavior of the frame's transfer within the embedded system
 (for example, a vehicle),
 it describes the transfer between ECUs in the network.
 In the following description,
 transmitting ECU refers to the ECU that transmits the CAN data frame
 (and possibly receives the associated CAN remote frame).
 Receiving ECU refers to an ECU that receives the CAN data frame
 (and possibly transmits the associated CAN remote frame).

 When you use the frame within an NI-XNET session,
 an output session acts as the transmitting ECU,
 and an input session acts as a receiving ECU.
 For a description of how these CAN timing types apply to the NI-XNET session mode,
 refer to `CAN Timing Type and Session Mode`.

 If you are using a FIBEX or AUTOSAR database,
 this property is a required part of the XML schema for a frame,
 so the default (initial) value is obtained from the file.

 If you are using a CANdb (.dbc) database,
 this property is an optional attribute in the file.
 If NI-XNET finds an attribute named GenMsgSendType,
 that attribute is the default value of this property.
 If the GenMsgSendType attribute begins with cyclic,
 this property's default value is ``CYCLIC_DATA``;
 otherwise, it is ``EVENT_DATA``.
 If the CANdb file does not use the GenMsgSendType attribute,
 this property uses a default value of ``EVENT_DATA``,
 which you can change in your application.

 If you are using an .ncd database or an in-memory database,
 this property uses a default value of ``EVENT_DATA``.
 Within your application,
 change this property to the desired timing type.
 """
 return constants.FrmCanTiming(_props.get_frame_can_timing_type(self._handle))

 @can_timing_type.setter
 def can_timing_type(self, value):
 # type: (constants.FrmCanTiming) -> None
 _props.set_frame_can_timing_type(self._handle, value.value)

 @property
 def can_tx_time(self):
 # type: () -> float
 """float: Get or set the time between consecutive frames from the transmitting ECU.

 The units are in seconds.

 Although the fractional part of the float can provide resolution of picoseconds,
 the NI-XNET CAN transmit supports an accuracy of 500 microseconds.
 Therefore, when used within an NI-XNET output session,
 this property is rounded to the nearest 500 microsecond increment (0.0005).

 For a :any:`Frame.can_timing_type` of ``CYCLIC_DATA`` or ``CYCLIC_REMOTE``,
 this property specifies the time between consecutive data/remote frames.
 A time of 0.0 is invalid.

 For a :any:`Frame.can_timing_type` of ``EVENT_DATA`` or ``EVENT_REMOTE``,
 this property specifies the minimum time between consecutive
 data/remote frames when the event occurs quickly.
 This is also known as the debounce time or minimum interval.
 The time is measured from the end of previous frame (acknowledgment) to the start of the next frame.
 A time of 0.0 specifies no minimum (back to back frames allowed).

 If you are using a FIBEX or AUTOSAR database,
 this property is a required part of the XML schema for a frame,
 so the default (initial) value is obtained from the file.

 If you are using a CANdb (.dbc) database,
 this property is an optional attribute in the file.
 If NI-XNET finds an attribute named GenMsgCycleTime,
 that attribute is interpreted as a number of milliseconds and used as the default value of this property.
 If the CANdb file does not use the GenMsgCycleTime attribute,
 this property uses a default value of 0.1 (100 ms),
 which you can change in your application.

 If you are using a .ncd database or an in-memory database,
 this property uses a default value of 0.1 (100 ms).
 Within your application, change this property to the desired time.
 """
 return _props.get_frame_can_tx_time(self._handle)

 @can_tx_time.setter
 def can_tx_time(self, value):
 # type: (float) -> None
 _props.set_frame_can_tx_time(self._handle, value)

 @property
 def flex_ray_base_cycle(self):
 return _props.get_frame_flex_ray_base_cycle(self._handle)

 @flex_ray_base_cycle.setter
 def flex_ray_base_cycle(self, value):
 _props.set_frame_flex_ray_base_cycle(self._handle, value)

 @property
 def flex_ray_ch_assign(self):
 return _props.get_frame_flex_ray_ch_assign(self._handle)

 @flex_ray_ch_assign.setter
 def flex_ray_ch_assign(self, value):
 _props.set_frame_flex_ray_ch_assign(self._handle, value)

 @property
 def flex_ray_cycle_rep(self):
 return _props.get_frame_flex_ray_cycle_rep(self._handle)

 @flex_ray_cycle_rep.setter
 def flex_ray_cycle_rep(self, value):
 _props.set_frame_flex_ray_cycle_rep(self._handle, value)

 @property
 def flex_ray_preamble(self):
 return _props.get_frame_flex_ray_preamble(self._handle)

 @flex_ray_preamble.setter
 def flex_ray_preamble(self, value):
 _props.set_frame_flex_ray_preamble(self._handle, value)

 @property
 def flex_ray_startup(self):
 return _props.get_frame_flex_ray_startup(self._handle)

 @flex_ray_startup.setter
 def flex_ray_startup(self, value):
 _props.set_frame_flex_ray_startup(self._handle, value)

 @property
 def flex_ray_sync(self):
 return _props.get_frame_flex_ray_sync(self._handle)

 @flex_ray_sync.setter
 def flex_ray_sync(self, value):
 _props.set_frame_flex_ray_sync(self._handle, value)

 @property
 def flex_ray_timing_type(self):
 return _props.get_frame_flex_ray_timing_type(self._handle)

 @flex_ray_timing_type.setter
 def flex_ray_timing_type(self, value):
 _props.set_frame_flex_ray_timing_type(self._handle, value)

 @property
 def flex_ray_in_cyc_rep_enabled(self):
 return _props.get_frame_flex_ray_in_cyc_rep_enabled(self._handle)

 @property
 def flex_ray_in_cyc_rep_i_ds(self):
 return _props.get_frame_flex_ray_in_cyc_rep_i_ds(self._handle)

 @flex_ray_in_cyc_rep_i_ds.setter
 def flex_ray_in_cyc_rep_i_ds(self, value):
 _props.set_frame_flex_ray_in_cyc_rep_i_ds(self._handle, value)

 @property
 def flex_ray_in_cyc_rep_ch_assigns(self):
 return _props.get_frame_flex_ray_in_cyc_rep_ch_assigns(self._handle)

 @flex_ray_in_cyc_rep_ch_assigns.setter
 def flex_ray_in_cyc_rep_ch_assigns(self, value):
 _props.set_frame_flex_ray_in_cyc_rep_ch_assigns(self._handle, value)

 @property
 def lin_checksum(self):
 # type: () -> constants.FrmLinChecksum
 """:any:`FrmLinChecksum`: Returns whether the LIN frame transmitted checksum is classic or enhanced.

 The enhanced checksum considers the protected identifier when it is generated.

 The checksum is determined from the :any:`Ecu.lin_protocol_ver` properties
 of the transmitting and receiving the frame.
 The lower version of both ECUs is significant.
 If the LIN version of both ECUs is 2.0 or higher,
 the checksum type is enhanced;
 otherwise, the checksum type is classic.

 Diagnostic frames (with decimal identifier 60 or 61) always use classic checksum,
 even on LIN 2.x.
 """
 return constants.FrmLinChecksum(_props.get_frame_lin_checksum(self._handle))

 @property
 def mux_is_muxed(self):
 # type: () -> bool
 """bool: Returns whether this frame is data multiplexed.

 This property returns ``True`` if the frame contains a multiplexer signal.
 Frames containing a multiplexer contain subframes that allow using bits
 of the frame payload for different information (signals) depending on
 the multiplexer value.
 """
 return _props.get_frame_mux_is_muxed(self._handle)

 @property
 def mux_data_mux_sig(self):
 # type: () -> _signal.Signal
 """:any:`Signal<_signal.Signal>`: Returns a data multiplexer signal object in the frame.

 Use the :any:`Frame.mux_is_muxed` property to determine whether the frame contains a multiplexer signal.

 You can create a data multiplexer signal by creating a signal
 and then setting the :any:`Signal.mux_is_data_mux` property to ``True``.

 A frame can contain only one data multiplexer signal.

 Raises:
 :any:`XnetError`: The data multiplexer signal is not defined in the frame
 """
 ref = _props.get_frame_mux_data_mux_sig_ref(self._handle)
 if ref == 0:
 _errors.raise_xnet_error(_cconsts.NX_ERR_SIGNAL_NOT_FOUND)

 return _signal.Signal(_handle=ref)

 @property
 def mux_static_signals(self):
 # type: () -> _collection.DbCollection
 """:any:`DbCollection`: Collection of static :any:`Signal<_signal.Signal>` objects in this frame.

 Static signals are contained in every frame transmitted,
 as opposed to dynamic signals,
 which are transmitted depending on the multiplexer value.

 If the frame is not multiplexed,
 this property returns the same objects as :any:`Frame.sigs`.
 """
 return self._mux_static_signals

 @property
 def mux_subframes(self):
 # type: () -> _collection.DbCollection
 """:any:`DbCollection`: Collection of :any:`SubFrame` objects in this frame.

 A subframe defines a group of signals transmitted using the same multiplexer value.
 Only one subframe at a time is transmitted in the frame.

 A subframe is defined by creating a subframe object as a child of a frame.
 """
 return self._mux_subframes

 @property
 def pdu_properties(self):
 # type: () -> typing.Iterable[types.PduProperties]
 """list of :any:`PduProperties`: Get or set a list that maps existing PDUs to a frame.

 A mapped PDU is transmitted inside the frame payload when the frame is transmitted.
 You can map one or more PDUs to a frame and one PDU to multiple frames.

 Mapping PDUs to a frame requires setting pdu_properties with a list of PduProperties tuples.
 Each tuple contains the following properties:

 * :any:`PduProperties.pdu`: Defines the sequence of values for the other two properties.
 * :any:`PduProperties.start_bit`: Defines the start bit of the PDU inside the frame.
 * :any:`PduProperties.update_bit`: Defines the update bit for the PDU inside the frame.
 If the update bit is not used, set the value to ``-1``.

 Databases imported from FIBEX prior to version 3.0,
 from DBC, NCD, or LDF files have a strong one-to-one relationship between frames and PDUs.
 Every frame has exactly one PDU mapped, and every PDU is mapped to exactly one frame.

 To unmap PDUs from a frame, set this property to an empty list.
 A frame without mapped PDUs contains no signals.

 For CAN and LIN, NI-XNET supports only a one-to-one relationship between frames and PDUs.
 For those interfaces, advanced PDU configuration returns
 raises an exception when calling :any:`Frame.check_config_status` and when creating a session.
 If you do not use advanced PDU configuration,
 you can avoid using PDUs in the database API
 and create signals and subframes directly on a frame.
 """
 handles = _props.get_frame_pdu_refs(self._handle)
 pdu_tuples = zip(*(handles,
 _props.get_frame_pdu_start_bits(self._handle),
 _props.get_frame_pdu_update_bits(self._handle)))
 for (ref, start_bit, update_bit) in pdu_tuples:
 yield types.PduProperties(ref, start_bit, update_bit)

 @pdu_properties.setter
 def pdu_properties(self, pdus):
 # type: (typing.Iterable[types.PduProperties]) -> None
 _props.set_frame_pdu_refs(self._handle,
 list(map(lambda p: p.pdu._handle, pdus)))
 _props.set_frame_pdu_start_bits(self._handle,
 list(map(operator.attrgetter('start_bit'), pdus)))
 _props.set_frame_pdu_update_bits(self._handle,
 list(map(operator.attrgetter('update_bit'), pdus)))

 @property
 def variable_payload(self):
 # type: () -> bool
 # This property is currently not documented in the C API.
 # If/when we have C API documentation, we should add it here too.
 return _props.get_frame_variable_payload(self._handle)

 @variable_payload.setter
 def variable_payload(self, value):
 # type: (bool) -> None
 _props.set_frame_variable_payload(self._handle, value)

 @property
 def can_io_mode(self):
 # type: () -> constants.CanIoMode
 """:any:`CanIoMode`: Get or set the frame's I/O mode.

 This property is used in ISO CAN FD+BRS mode only.
 In this mode,
 you can specify every frame to be transmitted in CAN 2.0, CAN FD, or CAN FD+BRS mode.
 CAN FD+BRS frames require the interface to be in CAN FD+BRS mode;
 otherwise, it is transmitted in CAN FD mode.

 When the interface is in Non-ISO CAN FD or Legacy ISO CAN FD mode,
 this property is disregarded.
 In Non-ISO CAN FD and Legacy ISO CAN FD mode,
 you must use :any:`Interface.can_tx_io_mode` to switch the transmit mode.

 When the assigned database does not define the property in ISO CAN FD mode,
 the frames are transmitted with :any:`Interface.can_io_mode`.
 """
 return constants.CanIoMode(_props.get_frame_can_io_mode(self._handle))

 @can_io_mode.setter
 def can_io_mode(self, value):
 # type: (constants.CanIoMode) -> None
 _props.set_frame_can_io_mode(self._handle, value.value)

 nixnet.database._lin_sched

 Source code for nixnet.database._lin_sched

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401

from nixnet import _cconsts
from nixnet import _errors
from nixnet import _props
from nixnet import constants

from nixnet.database import _cluster
from nixnet.database import _collection
from nixnet.database import _database_object
from nixnet.database import _find_object

[docs]class LinSched(_database_object.DatabaseObject):
 """Database LIN schedule"""

 def __init__(
 self,
 **kwargs # type: int
):
 # type: (...) -> None
 if not kwargs or '_handle' not in kwargs:
 raise TypeError()

 self._handle = kwargs['_handle']

 from nixnet.database import _lin_sched_entry
 self._entries = _collection.DbCollection(
 self._handle,
 constants.ObjectClass.LIN_SCHED_ENTRY,
 _cconsts.NX_PROP_LIN_SCHED_ENTRIES,
 _lin_sched_entry.LinSchedEntry)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == other._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

[docs] def check_config_status(self):
 # type: () -> None
 """Check this LIN schedule's configuration status.

 By default, incorrectly configured schedules in the database are not returned from
 :any:`Cluster.lin_schedules` because they cannot be used in the bus communication.
 You can change this behavior by setting :any:`Database.show_invalid_from_open` to `True`.
 When a schedule configuration status becomes invalid after the database is opened,
 the schedule still is returned from :any:`Cluster.lin_schedules`
 even if :any:`Database.show_invalid_from_open` is `False`.

 Raises:
 :any:`XnetError`: The LIN schedule is incorrectly configured.
 """
 status_code = _props.get_lin_sched_config_status(self._handle)
 _errors.check_for_error(status_code)

[docs] def find(
 self,
 object_class, # type: typing.Type[_database_object.DatabaseObject]
 object_name, # type: typing.Text
):
 # type: (...) -> _database_object.DatabaseObject
 """Finds an object in the database.

 This function finds a database object relative to this parent object.
 This object may be a grandparent or great-grandparent.

 If this object is a direct parent
 (for example, :any:`Frame<_frame.Frame>` for :any:`Signal<_signal.Signal>`),
 the ``object_name`` to search for can be short, and the search proceeds quickly.

 If this object is not a direct parent
 (for example, :any:`Database` for :any:`Signal<_signal.Signal>`),
 the ``object_name`` to search for must be qualified such
 that it is unique within the scope of this object.

 For example, if the class of this object is :any:`Cluster`,
 and ``object_class`` is :any:`Signal<_signal.Signal>`,
 you can specify ``object_name`` of ``mySignal``,
 assuming that signal name is unique to the cluster.
 If not, you must include the :any:`Frame<_frame.Frame>` name as a prefix,
 such as ``myFrameA.mySignal``.

 NI-XNET supports the following subclasses of ``DatabaseObject`` as arguments for ``object_class``:

 * :any:`nixnet.database.Cluster<Cluster>`
 * :any:`nixnet.database.Frame<_frame.Frame>`
 * :any:`nixnet.database.Pdu<Pdu>`
 * :any:`nixnet.database.Signal<_signal.Signal>`
 * :any:`nixnet.database.SubFrame<SubFrame>`
 * :any:`nixnet.database.Ecu<Ecu>`
 * :any:`nixnet.database.LinSched<LinSched>`
 * :any:`nixnet.database.LinSchedEntry<LinSchedEntry>`

 Args:
 object_class(``DatabaseObject``): The class of the object to find.
 object_name(str): The name of the object to find.
 Returns:
 An instance of the found object.
 Raises:
 ValueError: Unsupported value provided for argument ``object_class``.
 :any:`XnetError`: The object is not found.
 """
 return _find_object.find_object(self._handle, object_class, object_name)

 @property
 def clst(self):
 # type: () -> _cluster.Cluster
 """:any:`Cluster`: Get the parent cluster in which the you created the schedule.

 You cannot change the parent cluster after creating the schedule object.
 """
 handle = _props.get_lin_sched_clst_ref(self._handle)
 return _cluster.Cluster(_handle=handle)

 @property
 def comment(self):
 # type: () -> typing.Text
 """str: Get or set a comment describing the schedule object.

 A comment is a string containing up to 65535 characters.
 """
 return _props.get_lin_sched_comment(self._handle)

 @comment.setter
 def comment(self, value):
 # type: (typing.Text) -> None
 _props.set_lin_sched_comment(self._handle, value)

 @property
 def entries(self):
 # type: () -> _collection.DbCollection
 """:any:`DbCollection`: Collection of :any:`LinSchedEntry` for this LIN schedule.

 The position of each entry in this collection specifies the position in the schedule.
 The database file and/or the order that you create entries at runtime determine the position.
 """
 return self._entries

 @property
 def name(self):
 # type: () -> typing.Text
 """str: Get or set the name of the LIN schedule object.

 Lowercase letters, uppercase letters, numbers,
 and the underscore (_) are valid characters for the short name.
 The space (), period (.),
 and other special characters are not supported within the name.
 The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
 The short name is limited to 128 characters.

 A schedule name must be unique for all schedules in a cluster.
 """
 return _props.get_lin_sched_name(self._handle)

 @name.setter
 def name(self, value):
 # type: (typing.Text) -> None
 _props.set_lin_sched_name(self._handle, value)

 @property
 def priority(self):
 # type: () -> int
 """int: Get or set the priority of a run-once LIN schedule.

 This priority applies when multiple run-once schedules are pending for execution.

 The valid range for this property is 1-254.
 Lower values correspond to higher priority.

 This property applies only when the :any:`LinSched.run_mode` property is ``ONCE``.
 Run-once schedule requests are queued for execution based on this property.
 When all run-once schedules have completed,
 the master returns to the previously running continuous schedule (or null).

 Run-continuous schedule requests are not queued.
 Only the most recent run-continuous schedule is used,
 and it executes only if no run-once schedule is pending.
 Therefore, a run-continuous schedule has an effective priority of ``255``,
 but this property is not used.

 Null schedule requests take effect immediately
 and supercede any running run-once or run-continuous schedule.
 The queue of pending run-once schedule requests
 is flushed (emptied without running them).
 Therefore, a null schedule has an effective priority of ``0``,
 but this property is not used.

 This property is not read from the database,
 but is handled like a database property.
 After opening the database, the default value is returned,
 and you can change the property.
 But similar to database properties,
 you cannot change it after a session is created.
 """
 return _props.get_lin_sched_priority(self._handle)

 @priority.setter
 def priority(self, value):
 # type: (int) -> None
 _props.set_lin_sched_priority(self._handle, value)

 @property
 def run_mode(self):
 # type: () -> constants.LinSchedRunMode
 """:any:`LinSchedRunMode`: Get or set how the master runs this schedule.

 This property is not read from the database,
 but is handled like a database property.
 After opening the database, the default value is returned,
 and you can change the property.
 But similar to database properties,
 you cannot change it after a session is created.

 Usually, the default value for the run mode is ``CONTINUOUS``.
 If the schedule is configured to be a collision resolving table
 for an event-triggered entry, the default is ``ONCE``.
 """
 return constants.LinSchedRunMode(_props.get_lin_sched_run_mode(self._handle))

 @run_mode.setter
 def run_mode(self, value):
 # type: (constants.LinSchedRunMode) -> None
 _props.set_lin_sched_run_mode(self._handle, value.value)

 nixnet.database._lin_sched_entry

 Source code for nixnet.database._lin_sched_entry

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401

from nixnet import _cconsts
from nixnet import _errors
from nixnet import _props
from nixnet import constants

from nixnet.database import _database_object
from nixnet.database import _frame
from nixnet.database import _lin_sched

[docs]class LinSchedEntry(_database_object.DatabaseObject):
 """Database LIN schedule entry"""

 def __init__(
 self,
 **kwargs # type: int
):
 # type: (...) -> None
 if not kwargs or '_handle' not in kwargs:
 raise TypeError()

 self._handle = kwargs['_handle']

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == other._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

 @property
 def collision_res_sched(self):
 # type: () -> typing.Optional[_lin_sched.LinSched]
 """:any:`LinSched`: Get or set a LIN schedule that resolves a collision for this event-triggered entry.

 This property applies only when :any:`LinSchedEntry.type` is ``EVENT_TRIGGERED``.
 When a collision occurs for the event-triggered entry in this schedule,
 the master must switch to the collision resolving schedule to transfer the unconditional frames successfully.

 Raises:
 :any:`XnetError`: The property requires that :any:`LinSchedEntry.type` be set to ``EVENT_TRIGGERED``.
 """
 handle = _props.get_lin_sched_entry_collision_res_sched(self._handle)
 if handle == 0:
 _errors.raise_xnet_error(_cconsts.NX_ERR_DATABASE_OBJECT_NOT_FOUND)

 return _lin_sched.LinSched(_handle=handle)

 @collision_res_sched.setter
 def collision_res_sched(self, value):
 # type: (_lin_sched.LinSched) -> None
 _props.set_lin_sched_entry_collision_res_sched(self._handle, value._handle)

 @property
 def delay(self):
 # type: () -> float
 """float: Get or set the time from the start of this entry (slot) to the start of the next entry.

 The property uses a float value in seconds, with the fractional part used for milliseconds or microseconds.
 """
 return _props.get_lin_sched_entry_delay(self._handle)

 @delay.setter
 def delay(self, value):
 # type: (float) -> None
 _props.set_lin_sched_entry_delay(self._handle, value)

 @property
 def event_id(self):
 # type: () -> int
 """int: Get or set the event-triggered entry identifier.

 This identifier is unprotected (NI-XNET handles the protection).

 This property applies only when :any:`LinSchedEntry.type` is ``EVENT_TRIGGERED``.
 This identifier is for the event triggered entry itself,
 and the first payload byte is for the protected identifier of the contained unconditional frame.
 """
 return _props.get_lin_sched_entry_event_id(self._handle)

 @event_id.setter
 def event_id(self, value):
 # type: (int) -> None
 _props.set_lin_sched_entry_event_id(self._handle, value)

 @property
 def frames(self):
 # type: () -> typing.Iterable[_frame.Frame]
 """list of :any:`Frame<_frame.Frame>`: Get or set a list of frames for this LIN schedule entry.

 If :any:`LinSchedEntry.type` is ``UNCONDITIONAL``,
 this list contains one frame,
 which is the single unconditional frame for this entry.

 If :any:`LinSchedEntry.type` is ``SPORADIC``,
 this list contains one or more unconditional frames for this entry.
 When multiple frames are pending for this entry,
 the order in the list determines the priority to transmit.

 If :any:`LinSchedEntry.type` is ``EVENT_TRIGGERED``,
 this list contains one or more unconditional frames for this entry.
 When multiple frames for this entry are pending to be sent by distinct slaves,
 this property uses the :any:`LinSchedEntry.collision_res_sched` to process the frames.
 """
 for ref in _props.get_lin_sched_entry_frames(self._handle):
 yield _frame.Frame(_handle=ref)

 @frames.setter
 def frames(self, value):
 # type: (typing.Iterable[_frame.Frame]) -> None
 frame_handles = [frame._handle for frame in value]
 _props.set_lin_sched_entry_frames(self._handle, frame_handles)

 @property
 def name(self):
 # type: () -> typing.Text
 """str: Get or set the name of the LIN schedule entry object.

 Lowercase letters, uppercase letters, numbers,
 and the underscore (_) are valid characters for the short name.
 The space (), period (.), and other special characters are not supported within the name.
 The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
 The short name is limited to 128 characters.

 A schedule entry name must be unique for all entries in the same schedule.
 """
 return _props.get_lin_sched_entry_name(self._handle)

 @name.setter
 def name(self, value):
 # type: (typing.Text) -> None
 _props.set_lin_sched_entry_name(self._handle, value)

 @property
 def name_unique_to_cluster(self):
 # type: () -> typing.Text
 """str: Returns a LIN schedule entry name unique to the cluster that contains the object.

 If the single name is not unique within the cluster,
 the name is <schedule-name>.<schedule-entry-name>.

 You can pass the name to the `find` function to retrieve the reference to the object,
 while the single name is not guaranteed success in `find`
 because it may be not unique in the cluster.
 """
 return _props.get_lin_sched_entry_name_unique_to_cluster(self._handle)

 @property
 def sched(self):
 # type: () -> _lin_sched.LinSched
 """:any:`LinSched`: Returns the LIN schedule that uses this entry.

 This LIN schedule is considered this entry's parent.
 You define the parent schedule when you create the entry object.
 You cannot change it afterwards.
 """
 handle = _props.get_lin_sched_entry_sched(self._handle)
 lin_sched = _lin_sched.LinSched(_handle=handle)
 return lin_sched

 @property
 def type(self):
 # type: () -> constants.LinSchedEntryType
 """:any:`LinSchedEntryType`: Get or set the LIN schedule entry type.

 All frames that contain a payload are ``UNCONDITIONAL``.
 The LIN schedule entry type determines the mechanism for transferring frames in this entry (slot).
 """
 return constants.LinSchedEntryType(_props.get_lin_sched_entry_type(self._handle))

 @type.setter
 def type(self, value):
 # type: (constants.LinSchedEntryType) -> None
 _props.set_lin_sched_entry_type(self._handle, value.value)

 @property
 def nc_ff_data_bytes(self):
 # type: () -> typing.Iterable[int]
 """list of int: Get or set a list of 8 ints containing raw data for LIN node configuration.

 Node configuration defines a set of services used to configure slave nodes in the cluster.
 Every service has a specific set of parameters coded in this int list.
 In the LDF, file those parameters are stored, for example, in the node (ECU) or the frame object.
 NI-XNET LDF reader composes those parameters to the byte values like they are sent on the bus.
 The LIN specification document describes the node configuration services
 and the mapping of the parameters to the free format bytes.

 The node configuration service is executed only if
 :any:`LinSchedEntry.type` is set to ``NODE_CONFIG_SERVICE``.

 .. warning:: This property is not saved to the FIBEX file.
 If you write this property, save the database, and reopen it,
 the node configuration services are not contained in the database.
 Writing this property is useful only in the NI-XNET session immediately following.
 """
 return _props.get_lin_sched_entry_nc_ff_data_bytes(self._handle)

 @nc_ff_data_bytes.setter
 def nc_ff_data_bytes(self, value):
 # type: (typing.List[int]) -> None
 _props.set_lin_sched_entry_nc_ff_data_bytes(self._handle, value)

 nixnet.database._pdu

 Source code for nixnet.database._pdu

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401

from nixnet import _cconsts
from nixnet import _errors
from nixnet import _props
from nixnet import constants

from nixnet.database import _cluster
from nixnet.database import _collection
from nixnet.database import _database_object
from nixnet.database import _find_object
from nixnet.database import _frame
from nixnet.database import _signal

[docs]class Pdu(_database_object.DatabaseObject):
 """Database PDU"""

 def __init__(
 self,
 **kwargs # type: int
):
 # type: (...) -> None
 if not kwargs or '_handle' not in kwargs:
 raise TypeError()

 self._handle = kwargs['_handle']

 from nixnet.database import _signal
 from nixnet.database import _subframe
 self._signals = _collection.DbCollection(
 self._handle, constants.ObjectClass.SIGNAL, _cconsts.NX_PROP_PDU_SIG_REFS, _signal.Signal)
 self._mux_subframes = _collection.DbCollection(
 self._handle, constants.ObjectClass.SUBFRAME, _cconsts.NX_PROP_PDU_MUX_SUBFRAME_REFS, _subframe.SubFrame)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == other._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

[docs] def check_config_status(self):
 # type: () -> None
 """Check this PDU's configuration status.

 By default, incorrectly configured PDUs in the database are not returned from
 :any:`Cluster.pdus` because they cannot be used in the bus communication.
 You can change this behavior by setting :any:`Database.show_invalid_from_open` to `True`.
 When a PDU configuration status becomes invalid after the database is opened,
 the PDU still is returned from :any:`Cluster.pdus`
 even if :any:`Database.show_invalid_from_open` is `False`.

 Raises:
 :any:`XnetError`: The PDU is incorrectly configured.
 """
 status_code = _props.get_pdu_config_status(self._handle)
 _errors.check_for_error(status_code)

[docs] def find(
 self,
 object_class, # type: typing.Type[_database_object.DatabaseObject]
 object_name, # type: typing.Text
):
 # type: (...) -> _database_object.DatabaseObject
 """Finds an object in the database.

 This function finds a database object relative to this parent object.
 This object may be a grandparent or great-grandparent.

 If this object is a direct parent
 (for example, :any:`Frame<_frame.Frame>` for :any:`Signal<_signal.Signal>`),
 the ``object_name`` to search for can be short, and the search proceeds quickly.

 If this object is not a direct parent
 (for example, :any:`Database` for :any:`Signal<_signal.Signal>`),
 the ``object_name`` to search for must be qualified such
 that it is unique within the scope of this object.

 For example, if the class of this object is :any:`Cluster`,
 and ``object_class`` is :any:`Signal<_signal.Signal>`,
 you can specify ``object_name`` of ``mySignal``,
 assuming that signal name is unique to the cluster.
 If not, you must include the :any:`Frame<_frame.Frame>` name as a prefix,
 such as ``myFrameA.mySignal``.

 NI-XNET supports the following subclasses of ``DatabaseObject`` as arguments for ``object_class``:

 * :any:`nixnet.database.Cluster<Cluster>`
 * :any:`nixnet.database.Frame<_frame.Frame>`
 * :any:`nixnet.database.Pdu<Pdu>`
 * :any:`nixnet.database.Signal<_signal.Signal>`
 * :any:`nixnet.database.SubFrame<SubFrame>`
 * :any:`nixnet.database.Ecu<Ecu>`
 * :any:`nixnet.database.LinSched<LinSched>`
 * :any:`nixnet.database.LinSchedEntry<LinSchedEntry>`

 Args:
 object_class(``DatabaseObject``): The class of the object to find.
 object_name(str): The name of the object to find.
 Returns:
 An instance of the found object.
 Raises:
 ValueError: Unsupported value provided for argument ``object_class``.
 :any:`XnetError`: The object is not found.
 """
 return _find_object.find_object(self._handle, object_class, object_name)

 @property
 def cluster(self):
 # type: () -> _cluster.Cluster
 """:any:`Cluster`: Get the parent cluster in which the PDU has been created.

 You cannot change the parent cluster after creating the PDU object.
 """
 handle = _props.get_pdu_cluster_ref(self._handle)
 return _cluster.Cluster(_handle=handle)

 @property
 def default_payload(self):
 return _props.get_pdu_default_payload(self._handle)

 @default_payload.setter
 def default_payload(self, value):
 _props.set_pdu_default_payload(self._handle, value)

 @property
 def comment(self):
 # type: () -> typing.Text
 """str: Get or set a comment describing the PDU object.

 A comment is a string containing up to 65535 characters.
 """
 return _props.get_pdu_comment(self._handle)

 @comment.setter
 def comment(self, value):
 # type: (typing.Text) -> None
 _props.set_pdu_comment(self._handle, value)

 @property
 def frms(self):
 # type: () -> typing.Iterable[_frame.Frame]
 """list of :any:`Frame<_frame.Frame>`: Returns a list of all frames to which the PDU is mapped.

 A PDU is transmitted within the frames to which it is mapped.

 To map a PDU to a frame,
 use the :any:`Frame.pdu_properties` property.
 You can map one PDU to multiple frames.
 """
 for handle in _props.get_pdu_frm_refs(self._handle):
 yield _frame.Frame(_handle=handle)

 @property
 def name(self):
 # type: () -> typing.Text
 """str: Get or set the name of the PDU object.

 Lowercase letters, uppercase letters, numbers,
 and the underscore (_) are valid characters for the short name.
 The space (), period (.), and other special characters are not supported within the name.
 The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
 The short name is limited to 128 characters.

 A PDU name must be unique for all PDUs in a cluster.
 """
 return _props.get_pdu_name(self._handle)

 @name.setter
 def name(self, value):
 # type: (typing.Text) -> None
 _props.set_pdu_name(self._handle, value)

 @property
 def payload_len(self):
 # type: () -> int
 """int: Get or set the size of the PDU data in bytes.

 This property is required.
 If the property does not contain a valid value,
 and you create an XNET session that uses this PDU,
 the session returns an error.
 To ensure that the property contains a valid value,
 you can do one of the following:

 * Use a database file (or alias) to create the session.

 The file formats require a valid value in the text for this property.

 * Set a value at runtime using this property.

 This is needed when you create your own in-memory database (*:memory:*) rather than use a file.
 The property does not contain a default in this case,
 so you must set a valid value prior to creating a session.
 """
 return _props.get_pdu_payload_len(self._handle)

 @payload_len.setter
 def payload_len(self, value):
 # type: (int) -> None
 _props.set_pdu_payload_len(self._handle, value)

 @property
 def signals(self):
 # type: () -> _collection.DbCollection
 """:any:`DbCollection`: Collection of all :any:`Signal<_signal.Signal>` objects in this PDU.

 The collection includes all signals in the PDU,
 including static and dynamic signals and the multiplexer signal.
 """
 return self._signals

 @property
 def mux_is_muxed(self):
 # type: () -> bool
 """bool: Returns ``True`` if the PDU contains a multiplexer signal.

 PDUs containing a multiplexer contain subframes that allow
 using bits of the payload for different information (signals),
 depending on the value of the :any:`SubFrame.mux_value` property.
 """
 return _props.get_pdu_mux_is_muxed(self._handle)

 @property
 def mux_data_mux_sig(self):
 # type: () -> _signal.Signal
 """:any:`Signal<_signal.Signal>`: Data multiplexer signal in the PDU.

 This property returns the reference to the data multiplexer signal.
 If data multiplexer is not defined in the PDU, the property raises an :any:`XnetError` exception.
 Use the :any:`Pdu.mux_is_muxed` property to determine whether the PDU contains a multiplexer signal.

 You can create a data multiplexer signal by creating a signal
 and then setting the :any:`Signal.mux_is_data_mux` property to ``True``.

 A PDU can contain only one data multiplexer signal.

 Raises:
 :any:`XnetError`: The data multiplexer is not defined in the PDU.
 """
 handle = _props.get_pdu_mux_data_mux_sig_ref(self._handle)
 if handle == 0:
 _errors.raise_xnet_error(_cconsts.NX_ERR_SIGNAL_NOT_FOUND)

 return _signal.Signal(_handle=handle)

 @property
 def mux_static_sigs(self):
 # type: () -> typing.Iterable[_signal.Signal]
 """list of :any:`Signal<_signal.Signal>`: Returns a list of static signals in the PDU.

 Returns an list of signal objects in the PDU that do not depend
 on value of the :any:`SubFrame.mux_value` property.
 Static signals are contained in every PDU transmitted,
 as opposed to dynamic signals,
 which are transmitted depending on the value of the :any:`SubFrame.mux_value` property.

 You can create static signals by specifying the PDU as the parent object.
 You can create dynamic signals by specifying a subframe as the parent.

 If the PDU is not multiplexed,
 this property returns the same list as the :any:`Pdu.signals` property.
 """
 for handle in _props.get_pdu_mux_static_sig_refs(self._handle):
 yield _signal.Signal(_handle=handle)

 @property
 def mux_subframes(self):
 # type: () -> _collection.DbCollection
 """:any:`DbCollection`: Collection of :any:`SubFrame` objects in this PDU.

 A subframe defines a group of signals transmitted using the same value of the :any:`SubFrame.mux_value`.
 Only one subframe is transmitted in the PDU at a time.
 """
 return self._mux_subframes

 nixnet.database._signal

 Source code for nixnet.database._signal

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401

from nixnet import _cconsts
from nixnet import _errors
from nixnet import _props
from nixnet import constants

from nixnet.database import _database_object
from nixnet.database import _dbc_attributes
from nixnet.database import _dbc_signal_value_table

workaround to avoid circular imports caused by mypy type annotations
MYPY = False
if MYPY:
 from nixnet.database import _frame # NOQA: F401
 from nixnet.database import _pdu # NOQA: F401
 from nixnet.database import _subframe # NOQA: F401

[docs]class Signal(_database_object.DatabaseObject):
 """Database signal"""

 def __init__(
 self,
 **kwargs # type: int
):
 # type: (...) -> None
 if not kwargs or '_handle' not in kwargs:
 raise TypeError()

 self._handle = kwargs['_handle']
 self._dbc_attributes = None # type: typing.Optional[_dbc_attributes.DbcAttributeCollection]
 self._dbc_signal_value_table = _dbc_signal_value_table.DbcSignalValueTable(self._handle)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == other._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

[docs] def check_config_status(self):
 # type: () -> None
 """Check this signal's configuration status.

 By default, incorrectly configured signals in the database are not returned from
 :any:`Frame.sigs` because they cannot be used in the bus communication.
 You can change this behavior by setting :any:`Database.show_invalid_from_open` to `True`.
 When a signal configuration status becomes invalid after the database is opened,
 the signal still is returned from :any:`Frame.sigs`
 even if :any:`Database.show_invalid_from_open` is `False`.

 Examples of invalid signal configuration:

 * The signal is specified using bits outside the frame payload.
 * The signal overlaps another signal in the frame.
 For example,
 two multiplexed signals with the same multiplexer value are using the same bit in the frame payload.
 * The signal with integer data type (signed or unsigned) is specified with more than 52 bits.
 This is not allowed due to internal limitation of the double data type that NI-XNET uses for signal values.
 * The frame containing the signal is invalid
 (for example, a CAN frame is defined with more than 8 payload bytes).

 Raises:
 :any:`XnetError`: The signal is incorrectly configured.
 """
 status_code = _props.get_signal_config_status(self._handle)
 _errors.check_for_error(status_code)

 @property
 def byte_ordr(self):
 # type: () -> constants.SigByteOrdr
 """:any:`SigByteOrdr`: Signal byte order in the frame payload.

 This property defines how signal bytes are ordered in the frame payload when the frame is loaded in memory.

 This property is required.
 If the property does not contain a valid value,
 and you create an XNET session that uses this signal,
 the session returns an error.
 To ensure that the property contains a valid value,
 you can do one of the following:

 * Use a database file (or alias) to create the session.

 The file formats require a valid value in the text for this property.
 * Set a value using the nxdbSetProperty function.

 This is needed when you create your own in-memory database (*:memory:*) rather than use a file.
 The property does not contain a default in this case,
 so you must set a valid value prior to creating a session.
 """
 return constants.SigByteOrdr(_props.get_signal_byte_ordr(self._handle))

 @byte_ordr.setter
 def byte_ordr(self, value):
 # type: (constants.SigByteOrdr) -> None
 _props.set_signal_byte_ordr(self._handle, value.value)

 @property
 def comment(self):
 # type: () -> typing.Text
 """str: Get or set a comment describing the signal object.

 A comment is a string containing up to 65535 characters.
 """
 return _props.get_signal_comment(self._handle)

 @comment.setter
 def comment(self, value):
 # type: (typing.Text) -> None
 _props.set_signal_comment(self._handle, value)

 @property
 def data_type(self):
 # type: () -> constants.SigDataType
 """:any:`SigDataType`: Get or set the signal data type.

 This property determines how the bits of a signal in a frame must be interpreted to build a value.

 This property is required.
 If the property does not contain a valid value,
 and you create an XNET session that uses this signal,
 the session returns an error.
 To ensure that the property contains a valid value,
 you can do one of the following:

 * Use a database file (or alias) to create the session.

 The file formats require a valid value in the text for this property.
 * Set a value at runtime using this property.

 This is needed when you create your own in-memory database (*:memory:*) rather than use a file.
 The property does not contain a default in this case,
 so you must set a valid value prior to creating a session.
 """
 return constants.SigDataType(_props.get_signal_data_type(self._handle))

 @data_type.setter
 def data_type(self, value):
 # type: (constants.SigDataType) -> None
 _props.set_signal_data_type(self._handle, value.value)

 @property
 def dbc_attributes(self):
 # type: () -> _dbc_attributes.DbcAttributeCollection
 """:any:`DbcAttributeCollection`: Access the signal's DBC attributes."""
 if self._dbc_attributes is None:
 self._dbc_attributes = _dbc_attributes.DbcAttributeCollection(self._handle)
 return self._dbc_attributes

 @property
 def dbc_signal_value_table(self):
 # type: () -> _dbc_signal_value_table.DbcSignalValueTable
 """:any:`DbcSignalValueTable`: Access the signal's DBC value table."""
 return self._dbc_signal_value_table

 @property
 def default(self):
 # type: () -> float
 """float: Get or set the signal default value, specified as scaled floating-point units.

 The initial value of this property comes from the database.
 If the database does not provide a value, this property uses a default value of 0.0.

 For all three signal output sessions,
 this property is used when a frame transmits prior to writing to a session.
 The :any:`Frame.default_payload` property is used as the initial payload,
 then the default value of each signal is mapped into that payload using this property,
 and the result is used for the frame transmit.

 For all three signal input sessions,
 this property is returned for each signal when reading a session prior to receiving the first frame.

 For more information about when this property is used,
 refer to the discussion of read and write for each session mode.
 """
 return _props.get_signal_default(self._handle)

 @default.setter
 def default(self, value):
 # type: (float) -> None
 _props.set_signal_default(self._handle, value)

 @property
 def frame(self):
 # type: () -> _frame.Frame
 """:any:`Frame<_frame.Frame>`: Returns the signal parent frame object.

 The parent frame is defined when the signal object is created. You cannot change it afterwards.
 """
 from nixnet.database import _frame # NOQA: F811
 ref = _props.get_signal_frame_ref(self._handle)
 return _frame.Frame(_handle=ref)

 @property
 def max(self):
 # type: () -> float
 """float: Get or set the scaled signal value maximum.

 Session read and write methods do not limit the signal value to a maximum value.
 Use this database property to set the maximum value.
 """
 return _props.get_signal_max(self._handle)

 @max.setter
 def max(self, value):
 # type: (float) -> None
 _props.set_signal_max(self._handle, value)

 @property
 def min(self):
 # type: () -> float
 """float: The scaled signal value minimum.

 Session read and write methods do not limit the signal value to a minimum value.
 Use this database property to set the minimum value.
 """
 return _props.get_signal_min(self._handle)

 @min.setter
 def min(self, value):
 # type: (float) -> None
 _props.set_signal_min(self._handle, value)

 @property
 def name(self):
 # type: () -> typing.Text
 """str: Get or set a string identifying a signal object.

 Lowercase letters, uppercase letters, numbers,
 and the underscore (_) are valid characters for the short name.
 The space (), period (.), and other special characters are not supported within the name.
 The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
 The short name is limited to 128 characters.

 A signal name must be unique for all signals in a frame.

 This short name does not include qualifiers to ensure that it is unique,
 such as the database, cluster, and frame name.
 It is for display purposes.
 """
 return _props.get_signal_name(self._handle)

 @name.setter
 def name(self, value):
 # type: (typing.Text) -> None
 _props.set_signal_name(self._handle, value)

 @property
 def name_unique_to_cluster(self):
 # type: () -> typing.Text
 """str: Returns a signal name unique to the cluster that contains the signal.

 If the single name is not unique within the cluster,
 the name is <frame-name>.<signal-name>.

 You can pass the name to the `find` function to retrieve the reference to the object,
 while the single name is not guaranteed success in `find` because it may be not unique in the cluster.
 """
 return _props.get_signal_name_unique_to_cluster(self._handle)

 @property
 def num_bits(self):
 # type: () -> int
 """int: The number of bits the signal uses in the frame payload.

 IEEE Float numbers are limited to 32 bit or 64 bit.

 Integer (signed and unsigned) numbers are limited to 1-52 bits.
 NI-XNET converts all integers to doubles (64-bit IEEE Float).
 Integer numbers with more than 52 bits
 (the size of the mantissa in a 64-bit IEEE Float)
 cannot be converted exactly to double, and vice versa; therefore,
 NI-XNET does not support this.

 This property is required.
 If the property does not contain a valid value,
 and you create an XNET session that uses this signal,
 the session returns an error.
 To ensure that the property contains a valid value,
 you can do one of the following:

 * Use a database file (or alias) to create the session.

 The file formats require a valid value in the text for this property.
 * Set a value at runtime using this property.

 This is needed when you create your own in-memory database (*:memory:*) rather than use a file.
 The property does not contain a default in this case,
 so you must set a valid value prior to creating a session.
 """
 return _props.get_signal_num_bits(self._handle)

 @num_bits.setter
 def num_bits(self, value):
 # type: (int) -> None
 _props.set_signal_num_bits(self._handle, value)

 @property
 def pdu(self):
 # type: () -> _pdu.Pdu
 """:any:`Pdu`: Returns to the signal's parent PDU.

 The parent PDU is defined when the signal object is created.
 You cannot change it afterwards.
 """
 from nixnet.database import _pdu # NOQA: F811
 ref = _props.get_signal_pdu_ref(self._handle)
 return _pdu.Pdu(_handle=ref)

 @property
 def scale_fac(self):
 # type: () -> float
 """float: Get or set factor `a` for linear scaling `ax+b`.

 Linear scaling is applied to all signals with the IEEE Float data type,
 unsigned and signed.
 For identical scaling 1.0x+0.0,
 NI-XNET optimized scaling routines do not perform the multiplication and addition
 """
 return _props.get_signal_scale_fac(self._handle)

 @scale_fac.setter
 def scale_fac(self, value):
 # type: (float) -> None
 _props.set_signal_scale_fac(self._handle, value)

 @property
 def scale_off(self):
 # type: () -> float
 """float: Get or set offset `b` for linear scaling `ax+b`.

 Linear scaling is applied to all signals with the IEEE Float data type,
 unsigned and signed.
 For identical scaling 1.0x+0.0,
 NI-XNET optimized scaling routines do not perform the multiplication and addition
 """
 return _props.get_signal_scale_off(self._handle)

 @scale_off.setter
 def scale_off(self, value):
 # type: (float) -> None
 _props.set_signal_scale_off(self._handle, value)

 @property
 def start_bit(self):
 """int: Get or set the least significant signal bit position in the frame payload.

 This property determines the signal starting point in the frame.
 For the integer data type (signed and unsigned),
 it means the binary signal representation least significant bit position.
 For IEEE Float signals, it means the mantissa least significant bit.

 The NI-XNET Database Editor shows a graphical overview of the frame.
 It enumerates the frame bytes on the left and the byte bits on top.
 The bit number in the frame is calculated as byte number x 8 + bit number.
 The maximum bit number in a CAN or LIN frame is 63 (7 x 8 + 7);
 the maximum bit number in a FlexRay frame is 2031 (253 x 8 + 7).

 .. image:: frameoverviewsignalstartingbit12.gif

 Frame Overview in the NI-XNET Database Editor with a Signal Starting in Bit 12

 This property is required.
 If the property does not contain a valid value,
 and you create an XNET session that uses this signal,
 the session returns an error.
 To ensure that the property contains a valid value,
 you can do one of the following:

 * Use a database file (or alias) to create the session.

 The file formats require a valid value in the text for this property.

 * Set a value at runtime using this property.

 This is needed when you create your own in-memory database (*:memory:*) rather than use a file.
 The property does not contain a default in this case,
 so you must set a valid value prior to creating a session.
 """
 return _props.get_signal_start_bit(self._handle)

 @start_bit.setter
 def start_bit(self, value):
 # type: (typing.Any) -> typing.Any
 _props.set_signal_start_bit(self._handle, value)

 @property
 def unit(self):
 # type: () -> typing.Text
 """str: Get or set the signal value unit.

 NI-XNET does not use the unit internally for calculations.
 You can use the string to display the signal value along with the unit.
 """
 return _props.get_signal_unit(self._handle)

 @unit.setter
 def unit(self, value):
 # type: (typing.Text) -> None
 _props.set_signal_unit(self._handle, value)

 @property
 def mux_is_data_mux(self):
 # type: () -> bool
 """bool: Get or set whether this signal is a multiplexer signal.

 A frame containing a multiplexer value is called a multiplexed frame.

 A multiplexer defines an area within the frame to contain different information
 (dynamic signals) depending on the multiplexer signal value.
 Dynamic signals with a different multiplexer value
 (defined in a different subframe)
 can share bits in the frame payload.
 The multiplexer signal value determines which dynamic signals are transmitted in the given frame.

 To define dynamic signals in the frame transmitted with a given multiplexer value,
 you first must create a subframe in this frame and set the multiplexer value in the subframe.
 Then you must create dynamic signals using
 :any:`SubFrame.dyn_signals` to create child signals of this subframe.

 Multiplexer signals may not overlap other static or dynamic signals in the frame.

 Dynamic signals may overlap other dynamic signals when they have a different multiplexer value.

 A frame may contain only one multiplexer signal.

 The multiplexer signal is not scaled.
 Scaling factor and offset do not apply.

 In NI-CAN, the multiplexer signal was called mode channel.
 """
 return _props.get_signal_mux_is_data_mux(self._handle)

 @mux_is_data_mux.setter
 def mux_is_data_mux(self, value):
 # type: (bool) -> None
 _props.set_signal_mux_is_data_mux(self._handle, value)

 @property
 def mux_is_dynamic(self):
 # type: () -> bool
 """bool: returns whether this signal is a dynamic signal.

 Use this property to determine if a signal is static or dynamic.
 Dynamic signals are transmitted in the frame when the multiplexer signal
 in the frame has a given value specified in the subframe.
 Use the :any:`Signal.mux_value` property to determine with which
 multiplexer value the dynamic signal is transmitted.

 This property is read only.
 To create a dynamic signal,
 create the signal object as a child of a subframe instead of a frame.
 The dynamic signal cannot be changed to a static signal afterwards.

 In NI-CAN, dynamic signals were called mode-dependent signals.
 """
 return _props.get_signal_mux_is_dynamic(self._handle)

 @property
 def mux_value(self):
 # type: () -> int
 """int: Returns the multiplexer value of a dynamic signal.

 The multiplexer value applies to dynamic signals only
 (when :any:`Signal.mux_is_dynamic` is ``True``).
 This property defines which multiplexer value is transmitted in the
 multiplexer signal when this dynamic signal is transmitted in the frame.

 The multiplexer value is determined in the subframe.
 All dynamic signals that are children of the same subframe object use the same multiplexer value.

 Dynamic signals with the same multiplexer value may not overlap each other,
 the multiplexer signal, or static signals.
 """
 return _props.get_signal_mux_value(self._handle)

 @property
 def mux_subfrm(self):
 # type: () -> _subframe.SubFrame
 """:any:`SubFrame`: Returns the subframe parent.

 This property is valid only for dynamic signals that have a subframe parent.
 For static signals or the multiplexer signal,
 this property raises an :any:`XnetError` exception.

 Raises:
 :any:`XnetError`: The signal does not have a subframe parent.
 """
 from nixnet.database import _subframe # NOQA: F811
 ref = _props.get_signal_mux_subfrm_ref(self._handle)
 if ref == 0:
 _errors.raise_xnet_error(_cconsts.NX_ERR_FRAME_NOT_FOUND)

 return _subframe.SubFrame(_handle=ref)

 nixnet.database._subframe

 Source code for nixnet.database._subframe

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401

from nixnet import _cconsts
from nixnet import _errors
from nixnet import _props
from nixnet import constants

from nixnet.database import _collection
from nixnet.database import _database_object
from nixnet.database import _find_object
from nixnet.database import _frame

workaround to avoid circular imports caused by mypy type annotations
MYPY = False
if MYPY:
 from nixnet.database import _pdu # NOQA: F401

[docs]class SubFrame(_database_object.DatabaseObject):
 """Database subframe"""

 def __init__(
 self,
 **kwargs # type: int
):
 # type: (...) -> None
 if not kwargs or '_handle' not in kwargs:
 raise TypeError()

 self._handle = kwargs['_handle']

 from nixnet.database import _signal
 self._dyn_signals = _collection.DbCollection(
 self._handle, constants.ObjectClass.SIGNAL, _cconsts.NX_PROP_SUBFRM_DYN_SIG_REFS, _signal.Signal)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == other._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

[docs] def check_config_status(self):
 # type: () -> None
 """Check this subframe's configuration status.

 By default, incorrectly configured subframes in the database are not returned from
 :any:`Frame.mux_subframes` because they cannot be used in the bus communication.
 You can change this behavior by setting :any:`Database.show_invalid_from_open` to `True`.
 When a subframe configuration status becomes invalid after the database is opened,
 the subframe still is returned from :any:`Frame.mux_subframes`
 even if :any:`Database.show_invalid_from_open` is `False`.

 Raises:
 :any:`XnetError`: The subframe is incorrectly configured.
 """
 status_code = _props.get_subframe_config_status(self._handle)
 _errors.check_for_error(status_code)

[docs] def find(
 self,
 object_class, # type: typing.Type[_database_object.DatabaseObject]
 object_name, # type: typing.Text
):
 # type: (...) -> _database_object.DatabaseObject
 """Finds an object in the database.

 This function finds a database object relative to this parent object.
 This object may be a grandparent or great-grandparent.

 If this object is a direct parent
 (for example, :any:`Frame<_frame.Frame>` for :any:`Signal<_signal.Signal>`),
 the ``object_name`` to search for can be short, and the search proceeds quickly.

 If this object is not a direct parent
 (for example, :any:`Database` for :any:`Signal<_signal.Signal>`),
 the ``object_name`` to search for must be qualified such
 that it is unique within the scope of this object.

 For example, if the class of this object is :any:`Cluster`,
 and ``object_class`` is :any:`Signal<_signal.Signal>`,
 you can specify ``object_name`` of ``mySignal``,
 assuming that signal name is unique to the cluster.
 If not, you must include the :any:`Frame<_frame.Frame>` name as a prefix,
 such as ``myFrameA.mySignal``.

 NI-XNET supports the following subclasses of ``DatabaseObject`` as arguments for ``object_class``:

 * :any:`nixnet.database.Cluster<Cluster>`
 * :any:`nixnet.database.Frame<_frame.Frame>`
 * :any:`nixnet.database.Pdu<Pdu>`
 * :any:`nixnet.database.Signal<_signal.Signal>`
 * :any:`nixnet.database.SubFrame<SubFrame>`
 * :any:`nixnet.database.Ecu<Ecu>`
 * :any:`nixnet.database.LinSched<LinSched>`
 * :any:`nixnet.database.LinSchedEntry<LinSchedEntry>`

 Args:
 object_class(``DatabaseObject``): The class of the object to find.
 object_name(str): The name of the object to find.
 Returns:
 An instance of the found object.
 Raises:
 ValueError: Unsupported value provided for argument ``object_class``.
 :any:`XnetError`: The object is not found.
 """
 return _find_object.find_object(self._handle, object_class, object_name)

 @property
 def dyn_signals(self):
 # type: () -> _collection.DbCollection
 """:any:`DbCollection`: Returns a collection of dynamic :any:`Signal<_signal.Signal>` objects in the subframe.

 Those signals are transmitted when the multiplexer signal
 in the frame has the multiplexer value defined in the subframe.
 """
 return self._dyn_signals

 @property
 def frm(self):
 # type: () -> _frame.Frame
 """:any:`Frame<_frame.Frame>`: Returns the reference to the parent frame.

 The parent frame is defined when the subframe is created,
 and you cannot change it afterwards.
 """
 handle = _props.get_subframe_frm_ref(self._handle)
 return _frame.Frame(_handle=handle)

 @property
 def mux_value(self):
 # type: () -> int
 """int: Get or set the multiplexer value for this subframe.

 This property specifies the multiplexer signal value used when the
 dynamic signals in this subframe are transmitted in the frame.
 Only one subframe is transmitted at a time in the frame.

 There also is a multiplexer value for a signal object as a read-only property.
 It reflects the value set on the parent subframe object.

 This property is required. If the property does not contain a valid value,
 and you create an XNET session that uses this subframe,
 the session returns an error.
 To ensure that the property contains a valid value,
 you can do one of the following:

 * Use a database file (or alias) to create the session.

 The file formats require a valid value in the text for this property.

 * Set a value at runtime using this property.

 This is needed when you create your own in-memory database (*:memory:*) rather than use a file.
 The property does not contain a default in this case,
 so you must set a valid value prior to creating a session.
 """
 return _props.get_subframe_mux_value(self._handle)

 @mux_value.setter
 def mux_value(self, value):
 # type: (int) -> None
 _props.set_subframe_mux_value(self._handle, value)

 @property
 def name(self):
 # type: () -> typing.Text
 """str: Get or set the name of the subframe object.

 Lowercase letters, uppercase letters, numbers,
 and the underscore (_) are valid characters for the short name.
 The space (), period (.), and other special characters are not supported within the name.
 The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number.
 The short name is limited to 128 characters.

 A subframe name must be unique for all subframes in a frame.

 This short name does not include qualifiers to ensure that it is unique,
 such as the database, cluster, and frame name. It is for display purposes.
 """
 return _props.get_subframe_name(self._handle)

 @name.setter
 def name(self, value):
 # type: (typing.Text) -> None
 _props.set_subframe_name(self._handle, value)

 @property
 def pdu(self):
 # type: () -> _pdu.Pdu
 """:any:`Pdu`: Returns the subframe's parent PDU.

 This property returns the reference to the subframe's parent PDU.
 The parent PDU is defined when the subframe object is created.
 You cannot change it afterwards.
 """
 from nixnet.database import _pdu # NOQA: F811
 handle = _props.get_subframe_pdu_ref(self._handle)
 return _pdu.Pdu(_handle=handle)

 @property
 def name_unique_to_cluster(self):
 # type: () -> typing.Text
 """str: Returns a subframe name unique to the cluster that contains the subframe.

 If the single name is not unique within the cluster, the name is <frame-name>.<subframe-name>.

 You can pass the name to the `find` function to retrieve the reference to the object,
 while the single name is not guaranteed success in `find`
 because it may be not unique in the cluster.
 """
 return _props.get_subframe_name_unique_to_cluster(self._handle)

 nixnet.database.database

 Source code for nixnet.database.database

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401
import warnings

from nixnet import _cconsts
from nixnet import _funcs
from nixnet import _props
from nixnet import constants
from nixnet import errors

from nixnet.database import _collection
from nixnet.database import _database_object
from nixnet.database import _find_object

[docs]class Database(_database_object.DatabaseObject):
 """Opens a database file.

 When an already open database is opened,
 this class grants access to the same database and increases an internal reference counter.
 A multiple referenced (open) database must be closed as many times as it has been opened.
 Until it is completely closed, the access to this database remains granted,
 and the database uses computer resources (memory and handles).
 For more information, refer to :any:`Database.close`.

 Args:
 database_name(str): The database alias or file pathname to open.
 """
 def __init__(self, database_name):
 # type: (typing.Text) -> None
 self._handle = None # To satisfy `__del__` in case nxdb_open_database throws
 self._handle = _funcs.nxdb_open_database(database_name)

 from nixnet.database import _cluster
 self._clusters = _collection.DbCollection(
 self._handle, constants.ObjectClass.CLUSTER, _cconsts.NX_PROP_DATABASE_CLST_REFS, _cluster.Cluster)

 def __del__(self):
 if self._handle is not None:
 warnings.warn(
 'Database was not explicitly closed before it was destructed. '
 'Resources on the device may still be reserved.',
 errors.XnetResourceWarning)

 def __enter__(self):
 return self

 def __exit__(self, exception_type, exception_value, traceback):
 self.close()

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == other._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

[docs] def close(self, close_all_refs=False):
 # type: (bool) -> None
 """Closes the database.

 For the case that different threads of an application are using the same database,
 :any:`Database` and :any:`Database.close`
 maintain a reference counter indicating how many times the database is open.
 Every thread can open the database, work with it,
 and close the database independently using ``close_all_refs`` set to ``False``.
 Only the last call to :any:`Database.close` actually closes access to the database.

 .. note:: ``Database.__exit__`` calls :any:`Database.close` with ``close_all_refs`` set to ``False``.
 See examples of this in :ref:`can_dynamic_database_creation_label`
 and :ref:`lin_dynamic_database_creation_label`.

 Another option is that only one thread executes :any:`Database.close` once,
 using ``close_all_refs`` set to ``True``, which closes access for all other threads.
 This may be convenient when, for example,
 the main program needs to stop all running threads
 and be sure the database is closed properly,
 even if some threads could not execute :any:`Database.close`.

 Args:
 close_all_refs(bool): Indicates that a database open multiple times
 (refer to :any:`Database`) should be closed completely
 (``close_all_refs`` is ``True``),
 or just the reference counter should be decremented
 (``close_all_refs`` is ``False``),
 and the database remains open.
 When the database is closed completely,
 all references to objects in this database become invalid.
 """
 if self._handle is None:
 warnings.warn(
 'Attempting to close NI-XNET database but database was already '
 'closed', errors.XnetResourceWarning)
 return

 _funcs.nxdb_close_database(self._handle, close_all_refs)
 self._handle = None

[docs] def find(
 self,
 object_class, # type: typing.Type[_database_object.DatabaseObject]
 object_name, # type: typing.Text
):
 # type: (...) -> _database_object.DatabaseObject
 """Finds an object in the database.

 This function finds a database object relative to this parent object.
 This object may be a grandparent or great-grandparent.

 If this object is a direct parent
 (for example, :any:`Frame<_frame.Frame>` for :any:`Signal<_signal.Signal>`),
 the ``object_name`` to search for can be short, and the search proceeds quickly.

 If this object is not a direct parent
 (for example, :any:`Database` for :any:`Signal<_signal.Signal>`),
 the ``object_name`` to search for must be qualified such
 that it is unique within the scope of this object.

 For example, if the class of this object is :any:`Cluster`,
 and ``object_class`` is :any:`Signal<_signal.Signal>`,
 you can specify ``object_name`` of ``mySignal``,
 assuming that signal name is unique to the cluster.
 If not, you must include the :any:`Frame<_frame.Frame>` name as a prefix,
 such as ``myFrameA.mySignal``.

 NI-XNET supports the following subclasses of ``DatabaseObject`` as arguments for ``object_class``:

 * :any:`nixnet.database.Cluster<Cluster>`
 * :any:`nixnet.database.Frame<_frame.Frame>`
 * :any:`nixnet.database.Pdu<Pdu>`
 * :any:`nixnet.database.Signal<_signal.Signal>`
 * :any:`nixnet.database.SubFrame<SubFrame>`
 * :any:`nixnet.database.Ecu<Ecu>`
 * :any:`nixnet.database.LinSched<LinSched>`
 * :any:`nixnet.database.LinSchedEntry<LinSchedEntry>`

 Args:
 object_class(``DatabaseObject``): The class of the object to find.
 object_name(str): The name of the object to find.
 Returns:
 An instance of the found object.
 Raises:
 ValueError: Unsupported value provided for argument ``object_class``.
 :any:`XnetError`: The object is not found.
 """
 return _find_object.find_object(self._handle, object_class, object_name)

[docs] def save(self, db_filepath=""):
 # type: (typing.Text) -> None
 """Saves the open database to a FIBEX 3.1.0 file.

 The file extension must be .xml. If the target file exists, it is overwritten.

 XNET saves to the FIBEX file only features that XNET sessions use to communicate on the network.
 If the original file was created using non-XNET software,
 the target file may be missing details from the original file.
 For example, NI-XNET supports only linear scaling.
 If the original FIBEX file used a rational equation that cannot be expressed as a linear scaling,
 XNET converts this to a linear scaling with factor 1.0 and offset 0.0.

 If ``db_filepath`` is empty, the file is saved to the same FIBEX file specified when opened.
 If opened as a file path, it uses that file path.
 If opened as an alias, it uses the file path registered for that alias.

 Saving a database is not supported under Real-Time (RT),
 but you can deploy and use a database saved on Windows on a Real-Time (RT) target (refer to `Database.deploy`).

 Args:
 db_filepath(str): Contains the pathname to the database file or is
 empty (saves to the original filepath).
 """
 _funcs.nxdb_save_database(self._handle, db_filepath)

 @property
 def name(self):
 # type: () -> typing.Text
 return _props.get_database_name(self._handle)

 @property
 def clusters(self):
 # type: () -> _collection.DbCollection
 """:any:`DbCollection`: Returns a collection of :any:`Cluster` objects in this database.

 A cluster is assigned to a database when the cluster object is created.
 You cannot change this assignment afterwards.

 FIBEX and AUTOSAR files can contain any number of clusters,
 and each cluster uses a unique name.

 For CANdb (.dbc), LDF (.ldf), or NI-CAN (.ncd) files,
 the file contains only one cluster, and no cluster name is stored in the file.
 For these database formats, NI-XNET uses the name Cluster for the single cluster.
 """
 return self._clusters

 @property
 def show_invalid_from_open(self):
 # type: () -> bool
 """bool: Show or hide :any:`Frame<_frame.Frame>` and :any:`Signal<_signal.Signal>` objects that are invalid.

 After opening a database, this property always is set to ``False``,
 meaning that invalid :any:`Cluster`, :any:`Frame<_frame.Frame>`,
 and :any:`Signal<_signal.Signal>` objects
 are not returned in properties that return a :any:`DbCollection` for the database
 (for example, :any:`Cluster.frames` and :any:`Frame.mux_static_signals`).
 Invalid :any:`Cluster`, :any:`Frame<_frame.Frame>`,
 and :any:`Signal<_signal.Signal>` objects are incorrectly defined
 and therefore cannot be used in the bus communication.
 The ``False`` setting is recommended when you use the database to create XNET sessions.

 In case the database was opened to correct invalid configuration
 (for example, in a database editor),
 you must set the property to ``True`` prior to reading properties that return
 a :any:`DbCollection` for the database
 (for example, :any:`Cluster.frames` and :any:`Frame.mux_static_signals`).

 For invalid objects,
 the :any:`Cluster.check_config_status`,
 :any:`Frame.check_config_status`,
 and :any:`Signal.check_config_status` methods raise an exception if there is a problem.
 For valid objects, no error is raised.

 :any:`Cluster`, :any:`Frame<_frame.Frame>`, and :any:`Signal<_signal.Signal>` objects that became
 invalid after the database is opened are still returned from the
 :any:`Database.clusters`, :any:`Cluster.frames`, and :any:`Frame.mux_static_signals`,
 even if :any:`Database.show_invalid_from_open` is ``False``
 and Configuration Status returns an error code.
 For example, if you open a :any:`Frame<_frame.Frame>` with valid properties,
 then you set :any:`Signal.start_bit` beyond the :any:`Frame.payload_len`,
 :any:`Frame.check_config_status` raises an exception,
 but the frame is returned from :any:`Cluster.frames`.
 """
 return _props.get_database_show_invalid_from_open(self._handle)

 @show_invalid_from_open.setter
 def show_invalid_from_open(self, value):
 # type: (bool) -> None
 _props.set_database_show_invalid_from_open(self._handle, value)

 nixnet.system._databases

 Source code for nixnet.system._databases

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import typing # NOQA: F401

import six

from nixnet import _funcs

[docs]class AliasCollection(collections.Mapping):
 """Alias aliases."""

 def __init__(self, handle):
 # type: (int) -> None
 self._handle = handle

 def __repr__(self):
 return '{}(handle={})'.format(type(self).__name__, self._handle)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == typing.cast(AliasCollection, other)._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __len__(self):
 return self._get_database_len('')

 def __iter__(self):
 return self.keys()

 def __getitem__(self, index):
 # type: (typing.Text) -> Alias
 """Return the Alias object associated with the specified alias.

 Args:
 index(str): The value of the index (alias name).
 """
 if isinstance(index, six.string_types):
 for alias, filepath in self._get_database_list(''):
 if alias == index:
 return self._create_item(alias, filepath)
 else:
 raise KeyError('Alias alias %s not found in the system' % index)
 else:
 raise TypeError(index)

 def __delitem__(self, index):
 # type: (typing.Text) -> None
 """Delete/Remove a database alias from the system.

 This function removes the alias from NI-XNET, but does not affect the
 database text file. It just removes the alias association to the
 database file path.

 This function is supported on Windows only, and the alias is removed
 from Windows only (not RT targets). Use 'undeploy' to remove an alias
 from a Real-Time (RT) target.

 Args:
 index(str): The name of the alias to delete.
 """
 _funcs.nxdb_remove_alias(index)

[docs] def keys(self):
 """Return all keys (alias names) used in the AliasCollection object.

 Yields:
 An iterator to all the keys in the Alias object.
 """
 for alias, _ in self._get_database_list(''):
 yield alias

[docs] def values(self):
 """Return all Alias objects in the system.

 Yields:
 An iterator to all the values in the AliasCollection object.
 """
 for alias, filepath in self._get_database_list(''):
 yield self._create_item(alias, filepath)

[docs] def items(self):
 """Return all aliases and database objects associated with those aliases in the system.

 Yields:
 An iterator to tuple pairs of alias and database objects in the system.
 """
 for alias, filepath in self._get_database_list(''):
 yield alias, self._create_item(alias, filepath)

[docs] def add_alias(self, database_alias, database_filepath, default_baud_rate=None):
 # type: (typing.Text, typing.Text, typing.Optional[int]) -> None
 """Add a new alias with baud rate size of up to 64 bits to a database file.

 NI-XNET uses alias names for database files. The alias names provide a
 shorter name for display, allow for changes to the file system without
 changing the application.

 This function is supported on Windows only.

 Args:
 database_alias(str): Provides the desired alias name. Unlike the names of
 other XNET database objects, the alias name can use special
 characters such as space and dash. Commas are not allowed in the
 alias name. If the alias name already exists, this function
 changes the previous filepath to the specified filepath.
 database_filepath(str): Provides the path to the CANdb, FIBEX, or LDF
 file. Commas are not allowed in the filepath name.
 default_baud_rate(int): Provides the default baud rate, used when
 filepath refers to a CANdb database (.dbc) or an NI-CAN database
 (.ncd). These database formats are specific to CAN and do not
 specify a cluster baud rate. Use this default baud rate to
 specify a default CAN baud rate to use with this alias. If
 database_filepath refers to a FIBEX database (.xml) or LIN LDF
 file, the default_baud_rate parameter is ignored. The FIBEX and
 LDF database formats require a valid baud rate for every
 cluster, and NI-XNET uses that baud rate as the default.
 """
 if default_baud_rate is None:
 default_baud_rate = 0

 _funcs.nxdb_add_alias64(database_alias, database_filepath, default_baud_rate)

 def _create_item(self, database_alias, database_filepath):
 # type: (typing.Text, typing.Text) -> Alias
 return Alias(database_alias, database_filepath)

 @staticmethod
 def _get_database_len(ip_address):
 # type: (typing.Text) -> int
 alias_buffer_size, filepath_buffer_size = _funcs.nxdb_get_database_list_sizes(ip_address)
 _, _, number_of_databases = _funcs.nxdb_get_database_list(ip_address, alias_buffer_size, filepath_buffer_size)
 return number_of_databases

 @staticmethod
 def _get_database_list(ip_address):
 # type: (typing.Text) -> typing.List[typing.Tuple[typing.Text, typing.Text]]
 alias_buffer_size, filepath_buffer_size = _funcs.nxdb_get_database_list_sizes(ip_address)
 aliases, filepaths, _ = _funcs.nxdb_get_database_list(ip_address, alias_buffer_size, filepath_buffer_size)
 return list(zip(aliases.split(","), filepaths.split(",")))

[docs]class Alias(object):
 """Alias alias."""

 def __init__(
 self,
 database_alias,
 database_filepath,
):
 # type: (typing.Text, typing.Text) -> None
 self._database_alias = database_alias
 self._database_filepath = database_filepath

 def __repr__(self):
 return '{}(alias={}, filepath={})'.format(
 type(self).__name__, self._database_alias, self._database_filepath)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 other_db = typing.cast(Alias, other)
 return self.alias == other_db.alias and self.filepath == other_db.filepath
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self.alias)

 @property
 def alias(self):
 return self._database_alias

 @property
 def filepath(self):
 # type: () -> typing.Text
 """str: Get the filepath associated with the Alias object"""
 return self._database_filepath

 nixnet.system._device

 Source code for nixnet.system._device

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401

from nixnet import _cconsts
from nixnet import _props
from nixnet import constants

from nixnet.system import _collection
from nixnet.system import _interface

[docs]class Device(object):
 '''Physical XNET devices in the system.'''

 def __init__(self, handle):
 # type: (int) -> None
 self._handle = handle
 self._intfs = _collection.SystemCollection(
 self._handle, _cconsts.NX_PROP_DEV_INTF_REFS, _interface.Interface)
 self._intfs_all = _collection.SystemCollection(
 self._handle, _cconsts.NX_PROP_DEV_INTF_REFS_ALL, _interface.Interface)

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == typing.cast(Device, other)._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __repr__(self):
 # type: () -> typing.Text
 return '{}(handle={})'.format(type(self).__name__, self._handle)

 @property
 def form_fac(self):
 # type: () -> constants.DevForm
 ''':any:`nixnet._enums.DevForm`: XNET board form factor.'''
 return constants.DevForm(_props.get_device_form_fac(self._handle))

 @property
 def intf_refs(self):
 # type: () -> _collection.SystemCollection
 '''iter of :any:`nixnet.system._interface.Interface`: Interfaces associated with this device.'''
 return self._intfs

 @property
 def intf_refs_all(self):
 # type: () -> _collection.SystemCollection
 '''iter of :any:`nixnet.system._interface.Interface`: Interfaces associated with this device.

 This Includes those not equipped with a Transceiver Cable.
 '''
 return self._intfs_all

 @property
 def num_ports(self):
 # type: () -> int
 '''int: The number of physical port connectors on the XNET board.'''
 return _props.get_device_num_ports(self._handle)

 @property
 def num_ports_all(self):
 # type: () -> int
 '''int: The number of physical port connectors on the XNET board.

 This Includes those not equipped with a Transceiver Cable.
 '''
 return _props.get_device_num_ports_all(self._handle)

 @property
 def product_num(self):
 # type: () -> int
 '''int: The numeric portion of the XNET device product name.'''
 return _props.get_device_product_num(self._handle)

 @property
 def product_name(self):
 # type: () -> typing.Text
 '''str: The XNET device product name.'''
 return _props.get_device_name(self._handle)

 @property
 def ser_num(self):
 # type: () -> int
 '''int: Serial number associated with the XNET device.'''
 return _props.get_device_ser_num(self._handle)

 @property
 def slot_num(self):
 # type: () -> int
 '''int: Physical slot where the module is located within a chassis.'''
 return _props.get_device_slot_num(self._handle)

 nixnet.system._interface

 Source code for nixnet.system._interface

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401

import six

from nixnet import _funcs
from nixnet import _props
from nixnet import constants

[docs]class Interface(object):
 '''Interfaces associated with a physical hardware device.'''

 def __init__(self, handle):
 # type: (int) -> None
 self._handle = handle

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == typing.cast(Interface, other)._handle
 elif isinstance(other, six.string_types):
 return self._name == typing.cast(typing.Text, other)
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __str__(self):
 # type: () -> typing.Text
 return self._name

 def __repr__(self):
 # type: () -> typing.Text
 return '{}(handle={})'.format(type(self).__name__, self._handle)

 # `dev_ref`: Intentionally not exposed to avoid circular imports

 @property
 def num(self):
 # type: () -> int
 '''int: The unique number associated with the XNET interface.

 The XNET driver assigns each port connector in the system a unique
 number XNET driver. This number, plus its protocol name, is the
 interface name.
 '''
 return _props.get_interface_num(self._handle)

 @property
 def port_num(self):
 # type: () -> int
 '''int: Physical port number printed near the connector on the XNET device.

 The port numbers on an XNET board are physically identified with
 numbering. Use this property, along with the XNET Device Serial Number
 property, to associate an XNET interface with a physical (XNET board
 and port) combination.
 '''
 return _props.get_interface_port_num(self._handle)

 @property
 def protocol(self):
 # type: () -> constants.Protocol
 ''':any:`nixnet._enums.Protocol`: Protocol supported by the interface.'''
 return constants.Protocol(_props.get_interface_protocol(self._handle))

 @property
 def can_term_cap(self):
 # type: () -> constants.CanTermCap
 ''':any:`nixnet._enums.CanTermCap`: Indicates whether the XNET interface can terminate the CAN bus.

 Signal reflections on the CAN bus can cause communication failure. To
 prevent reflections, termination can be present as external resistance
 or resistance the XNET board applies internally. This property
 determines whether the XNET board can add termination to the bus.
 '''
 return constants.CanTermCap(_props.get_interface_can_term_cap(self._handle))

 @property
 def can_tcvr_cap(self):
 # type: () -> constants.CanTcvrCap
 ''':any:`nixnet._enums.CanTcvrCap`: Indicates the CAN bus physical transceiver support.'''
 return constants.CanTcvrCap(_props.get_interface_can_tcvr_cap(self._handle))

 @property
 def dongle_state(self):
 # type: () -> constants.DongleState
 ''':any:`nixnet._enums.DongleState`: Indicates the connected Transceiver Cable's state.

 Some Transceiver Cable types require external power from the network
 connector for operation. Refer to the hardware-specific manual for more
 information.
 '''
 return constants.DongleState(_props.get_interface_dongle_state(self._handle))

 @property
 def dongle_id(self):
 # type: () -> constants.DongleId
 ''':any:`nixnet._enums.DongleId`: Indicates the connected Transceiver Cable's type.

 Dongle-Less Design indicates this interface is not a Transceiver Cable
 but a regular XNET expansion card, cDAQ Module, and so on.
 '''
 return constants.DongleId(_props.get_interface_dongle_id(self._handle))

 @property
 def dongle_revision(self):
 # type: () -> int
 '''int: The connected Transceiver Cable's hardware revision number.'''
 return _props.get_interface_dongle_revision(self._handle)

 @property
 def dongle_firmware_version(self):
 # type: () -> int
 '''int: The connected Transceiver Cable's firmware revision number.'''
 return _props.get_interface_dongle_firmware_version(self._handle)

 @property
 def dongle_compatible_revision(self):
 # type: () -> int
 '''int: The oldest driver version compatible with the connected Transceiver Cable's hardware revision.

 The number is relative to the first driver version that supported the
 particular Transceiver Cable model, starting with 1 for the original
 revision.

 .. note:: A Transceiver Cable hardware revision might require a later
 XNET driver than the version that introduced support for this model for
 operation.
 '''
 return _props.get_interface_dongle_compatible_revision(self._handle)

 @property
 def dongle_compatible_firmware_version(self):
 # type: () -> int
 '''int: The oldest driver version compatible with the connected Transceiver Cable's firmware.

 The number is relative to the first driver version that supported the
 Transceiver Cable, starting with 1 for the original revision.

 ..note:: A Transceiver Cable running an updated firmware version may
 require a later XNET driver than the version it shipped with for
 operation.
 '''
 return _props.get_interface_dongle_compatible_firmware_version(self._handle)

[docs] def blink(self, modifier):
 # type: (constants.BlinkMode) -> None
 '''Blinks LEDs for the XNET interface to identify its physical port in the system.

 Each XNET device contains one or two physical ports. Each port is
 labeled on the hardware as Port 1 or Port 2. The XNET device also
 provides two LEDs per port. For a two-port board, LEDs 1 and 2 are
 assigned to Port 1, and LEDs 3 and 4 are assigned to physical Port 2.

 When your application uses multiple XNET devices, this function helps
 to identify each interface to associate its software behavior to its
 hardware connection (port). Prior to running your XNET sessions, you
 can call this function to blink the interface LEDs.

 For example, if you have a system with three PCI CAN cards, each with
 two ports, you can use this function to blink the LEDs for interface
 CAN4, to identify it among the six CAN ports.

 The LEDs of each port support two states:
 Identification:
 Blink LEDs to identify the physical port assigned to the interface.
 In Use:
 LED behavior that XNET sessions control.

 Identification LED State

 You can use the ``blink`` function only in the Identification state. If
 you call this function while one or more XNET sessions for the
 interface are open (created), it returns an error, because the port's
 LEDs are in the In Use state.

 In Use LED State

 When you create an XNET session for the interface, the LEDs for that
 physical port transition to the In Use state. If you called the ``blink``
 function previously to enable blinking for identification, that LED
 behavior no longer applies. The In Use LED state remains until all XNET
 sessions are cleared. This typically occurs when the application
 terminates. The patterns that appear on the LEDs while In Use are
 documented in LEDs.

 Args:
 moodifier (:any:`nixnet._enums.BlinkMode`): Controls LED blinking

 Both LEDs blink green (not red). The blinking rate is approximately
 three times per second.
 '''
 _funcs.nx_blink(self._handle, modifier)

 @property
 def _name(self):
 # type: () -> typing.Text
 return _props.get_interface_name(self._handle)

 nixnet.system.system

 Source code for nixnet.system.system

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import typing # NOQA: F401
import warnings

from nixnet import _cconsts
from nixnet import _funcs
from nixnet import _props
from nixnet import constants
from nixnet import errors
from nixnet import types

from nixnet.system import _collection
from nixnet.system import _databases
from nixnet.system import _device
from nixnet.system import _interface

[docs]class System(object):
 '''Interact with the NI driver and interface hardware.'''

 def __init__(self):
 # type: () -> None
 self._handle = None # To satisfy `__del__` in case nx_system_open throws
 self._handle = _funcs.nx_system_open()
 self._databases = _databases.AliasCollection(self._handle)
 self._devices = _collection.SystemCollection(
 self._handle, _cconsts.NX_PROP_SYS_DEV_REFS, _device.Device)
 self._intfs = _collection.SystemCollection(
 self._handle, _cconsts.NX_PROP_SYS_INTF_REFS, _interface.Interface)
 self._intfs_all = _collection.SystemCollection(
 self._handle, _cconsts.NX_PROP_SYS_INTF_REFS_ALL, _interface.Interface)
 self._intfs_can = _collection.SystemCollection(
 self._handle, _cconsts.NX_PROP_SYS_INTF_REFS_CAN, _interface.Interface)
 self._intfs_flex_ray = _collection.SystemCollection(
 self._handle, _cconsts.NX_PROP_SYS_INTF_REFS_FLEX_RAY, _interface.Interface)
 self._intfs_lin = _collection.SystemCollection(
 self._handle, _cconsts.NX_PROP_SYS_INTF_REFS_LIN, _interface.Interface)

 def __del__(self):
 if self._handle is not None:
 warnings.warn(
 'System was not explicitly closed before it was destructed. '
 'Resources on the device may still be reserved.',
 errors.XnetResourceWarning)

 def __enter__(self):
 return self

 def __exit__(self, exception_type, exception_value, traceback):
 self.close()

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self._handle == typing.cast(System, other)._handle
 else:
 return NotImplemented

 def __ne__(self, other):
 result = self.__eq__(other)
 if result is NotImplemented:
 return result
 else:
 return not result

 def __hash__(self):
 return hash(self._handle)

 def __repr__(self):
 # type: () -> typing.Text
 return '{}(handle={})'.format(type(self).__name__, self._handle)

 def close(self):
 # type: () -> None
 if self._handle is None:
 warnings.warn(
 'Attempting to close NI-XNET system but system was already '
 'closed', errors.XnetResourceWarning)
 return

 _funcs.nx_system_close(self._handle)

 self._handle = None

 @property
 def databases(self):
 # type: () -> _databases.AliasCollection
 """:any:`nixnet.system._databases.AliasCollection`: Operate on systems's database's aliases"""
 return self._databases

 @property
 def dev_refs(self):
 # type: () -> _collection.SystemCollection
 '''iter of :any:`nixnet.system._device.Device`: Physical XNET devices in the system.'''
 return self._devices

 @property
 def intf_refs(self):
 # type: () -> _collection.SystemCollection
 '''iter of :any:`nixnet.system._interface.Interface`: Available interfaces on the system.'''
 return self._intfs

 @property
 def intf_refs_all(self):
 # type: () -> _collection.SystemCollection
 '''iter of :any:`nixnet.system._interface.Interface`: Available interfaces on the system.

 This Includes those not equipped with a Transceiver Cable.
 '''
 return self._intfs_all

 @property
 def intf_refs_can(self):
 # type: () -> _collection.SystemCollection
 '''iter of :any:`nixnet.system._interface.Interface`: Available interfaces on the system (CAN Protocol).'''
 return self._intfs_can

 @property
 def intf_refs_flex_ray(self):
 # type: () -> _collection.SystemCollection
 return self._intfs_flex_ray

 @property
 def intf_refs_lin(self):
 # type: () -> _collection.SystemCollection
 '''iter of :any:`nixnet.system._interface.Interface`: Available interfaces on the system (LIN Protocol).'''
 return self._intfs_lin

 @property
 def ver(self):
 # type: () -> types.DriverVersion
 ''':any:`nixnet.types.DriverVersion`: The driver version (larger numbers imply a newer version).

 Use this for:

 * Determining the driver functionality or release date
 * Determining upgrade availability
 '''
 return types.DriverVersion(
 self._ver_major,
 self._ver_minor,
 self._ver_update,
 self._ver_phase,
 self._ver_build)

 @property
 def _ver_build(self):
 # type: () -> int
 return _props.get_system_ver_build(self._handle)

 @property
 def _ver_major(self):
 # type: () -> int
 return _props.get_system_ver_major(self._handle)

 @property
 def _ver_minor(self):
 # type: () -> int
 return _props.get_system_ver_minor(self._handle)

 @property
 def _ver_phase(self):
 # type: () -> constants.Phase
 return constants.Phase(_props.get_system_ver_phase(self._handle))

 @property
 def _ver_update(self):
 # type: () -> int
 return _props.get_system_ver_update(self._handle)

_images/frameoverviewsignalstartingbit12.gif
Frame Overview

_images/littleendianstartbit12.gif

_images/pdusrequired.gif
Frame1

PDU1

Signalt ‘

Signal2

nav.xhtml

 Table of Contents

 		
 NI-XNET Python Documentation

 		
 Installation

 		
 API Reference

 		
 nixnet.session

 		
 nixnet.session.frames

 		
 nixnet.session.signals

 		
 nixnet.session.intf

 		
 nixnet.session.j1939

 		
 nixnet.session.base

 		
 nixnet.convert

 		
 nixnet.session.signals

 		
 nixnet.session.j1939

 		
 nixnet.system

 		
 nixnet.system.system

 		
 nixnet.system.databases

 		
 nixnet.system.device

 		
 nixnet.system.interface

 		
 nixnet.database

 		
 nixnet.database.cluster

 		
 nixnet.database.database

 		
 nixnet.database.ecu

 		
 nixnet.database.frame

 		
 nixnet.database.lin_sched

 		
 nixnet.database.lin_sched_entry

 		
 nixnet.database.pdu

 		
 nixnet.database.signal

 		
 nixnet.database.subframe

 		
 nixnet.database.collection

 		
 nixnet.database.dbc_attributes

 		
 nixnet.database.dbc_signal_value_table

 		
 nixnet.constants

 		
 nixnet.types

 		
 nixnet.errors

 		
 Examples

 		
 Queued I/O Example

 		
 CAN Queued I/O

 		
 Stream I/O Example

 		
 CAN Stream I/O

 		
 LIN Stream I/O

 		
 Single-Point I/O Example

 		
 CAN Single-Point I/O

 		
 Signal/Frame Conversion Example

 		
 Adapting CAN examples to LIN

 		
 Programmatic Database Usage

 		
 Dynamic Database Creation

 		
 CAN Dynamic Database Creation

 		
 LIN Dynamic Database Creation

 		
 Contributing to nixnet

 		
 Getting Started

 		
