
NI-XNET Python API Documentation
Release 0.3.1

National Instruments

Sep 10, 2021

Table of Contents:

1 Quick Start 3

2 Resources 5
2.1 Product Support . 5
2.2 Bugs / Feature Requests . 5

3 Status 7

4 License 9
4.1 Installation . 9
4.2 API Reference . 9

4.2.1 nixnet.session . 9
4.2.2 nixnet.convert . 86
4.2.3 nixnet.system . 88
4.2.4 nixnet.database . 92
4.2.5 nixnet.constants . 123
4.2.6 nixnet.types . 136
4.2.7 nixnet.errors . 146

4.3 Examples . 146
4.3.1 Queued I/O Example . 146
4.3.2 Stream I/O Example . 148
4.3.3 Single-Point I/O Example . 152
4.3.4 Signal/Frame Conversion Example . 154
4.3.5 Adapting CAN examples to LIN . 154
4.3.6 Programmatic Database Usage . 156
4.3.7 Dynamic Database Creation . 157

4.4 Contributing to nixnet . 161
4.4.1 Getting Started . 161
4.4.2 Testing . 161
4.4.3 Developer Certificate of Origin (DCO) . 162

5 Indices and Tables 163

Python Module Index 165

Index 167

i

ii

NI-XNET Python API Documentation, Release 0.3.1

Info Communicate over CAN or LIN via NI-XNET hardware with Python.
Author National Instruments

>>> import nixnet
>>> with nixnet.FrameInStreamSession('CAN1') as input_session:
>>> input_session.intf.can_term = constants.CanTerm.ON
>>> input_session.intf.baud_rate = 125000

>>> frames = input_session.frames.read(count)
>>> for frame in frames:
>>> print('Received frame:')
>>> print(frame)

Table of Contents: 1

https://pypi.python.org/pypi/nixnet
http://nixnet.readthedocs.io/en/latest/?badge=latest
https://github.com/ni/nixnet-python/blob/main/LICENSE
https://pypi.python.org/pypi/nixnet
https://travis-ci.org/ni/nixnet-python
https://coveralls.io/github/ni/nixnet-python?branch=main

NI-XNET Python API Documentation, Release 0.3.1

2 Table of Contents:

CHAPTER 1

Quick Start

Running nixnet requires NI-XNET or NI-XNET Runtime. Visit the ni.com/downloads to download the latest version
of NI-XNET.

nixnet can be installed with pip:

$ python -m pip install nixnet~=0.3.1

Now you should be able to move onto the Examples.

3

http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
https://github.com/ni/nixnet-python/tree/main/nixnet_examples

NI-XNET Python API Documentation, Release 0.3.1

4 Chapter 1. Quick Start

CHAPTER 2

Resources

• Documentation.

• Source.

2.1 Product Support

The nixnet package and NI-XNET are supported by NI. For support, open a request through the NI support portal at
ni.com.

2.2 Bugs / Feature Requests

We welcome all kinds of contributions. If you have a bug to report or a feature request for nixnet, feel free to open an
issue on Github or contribute the change yourself.

5

http://nixnet.readthedocs.io
https://github.com/ni/nixnet-python
http://www.ni.com
https://github.com/ni/nixnet-python/issues
https://github.com/ni/nixnet-python/issues
https://github.com/ni/nixnet-python/blob/main/CONTRIBUTING.rst

NI-XNET Python API Documentation, Release 0.3.1

6 Chapter 2. Resources

CHAPTER 3

Status

nixnet package is created and maintained by National Instruments.

• The following support is included:

– CAN and LIN protocol

– Frames, Signals, and frame/signal conversion

– Database APIs

– For a complete list of supported features and functions, see the documentation.

• See the enhancement issues for potential future work.

• Breaking API changes will be kept to a minimum. If a breaking change is made, it will be planned through
breaking-change isssues and communicated via semver and the release notes.

• Known issues.

nixnet currently supports

• Windows operating system.

• CPython 2.7.0+, 3.4+, PyPy2, and PyPy3.

• NI-XNET 15.5+

7

http://nixnet.readthedocs.io
https://github.com/ni/nixnet-python/issues?q=is%3Aissue+is%3Aopen+label%3Aenhancement
https://github.com/ni/nixnet-python/issues?q=is%3Aissue+is%3Aopen+label%3Abreaking-change
http://semver.org/
https://github.com/ni/nixnet-python/releases
https://github.com/ni/nixnet-python/issues?q=is%3Aissue+is%3Aopen+label%3Abug

NI-XNET Python API Documentation, Release 0.3.1

8 Chapter 3. Status

CHAPTER 4

License

nixnet is licensed under an MIT-style license (see LICENSE). Other incorporated projects may be licensed under
different licenses. All licenses allow for non-commercial and commercial use.

4.1 Installation

Running nixnet requires NI-XNET or NI-XNET Runtime. Visit the ni.com/downloads to download the latest version
of NI-XNET.

nixnet can be installed with pip:

$ python -m pip install nixnet

Or easy_install from setuptools:

$ python -m easy_install nixnet

You also can download the project source and run:

$ python setup.py install

4.2 API Reference

4.2.1 nixnet.session

class nixnet.session.FrameInStreamSession(interface_name, database_name=’:memory:’,
cluster_name=”)

Bases: nixnet._session.base.SessionBase

Frame Input Stream session.

This session reads all frames received from the network using a single stream.

9

https://github.com/ni/nixnet-python/blob/main/LICENSE
http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

NI-XNET Python API Documentation, Release 0.3.1

The input data is returned as a list of frames. Because all frames are returned, your application must evaluate
identification in each frame (such as a CAN identifier or FlexRay slot/cycle/channel) to interpret the frame
payload data.

Previously, you could use only one Frame Input Stream session for a given interface. Now, multiple Frame Input
Stream sessions can be open at the same time on CAN and LIN interfaces.

While using one or more Frame Input Stream sessions, you can use other sessions with different input modes.
Received frames are copied to Frame Input Stream sessions in addition to any other applicable input session.
For example, if you create a Frame Input Single-Point session for frame_a, then create a Frame Input Stream
session, when frame_a is received, its data is returned from the call to read function of both sessions. This
duplication of incoming frames enables you to analyze overall traffic while running a higher level application
that uses specific frame or signal data.

When used with a FlexRay interface, frames from both channels are returned. For example, if a frame is received
in a static slot on both channel A and channel B, two frames are returned from the read function.

Note: Typical use case: Analyzing and/or logging all frame traffic in the network.

application_protocol
This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

Type nixnet._enums.AppProtocol

auto_start
Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to the appropriate read function (if not al-
ready started using nixnet._session.base.SessionBase.start). This is done because there
is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write function contains valid data, you can
leave this property at its default value of true. If you need to call the appropriate write function multiple
times prior to starting the session, or if you are starting multiple sessions simultaneously, you can set
this property to false. After calling the appropriate write function as desired, you can call nixnet.
_session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to nixnet._session.base.SessionBase.
start with scope set to Normal. This starts the session itself, and if the interface is not already started, it
starts the interface also.

Type bool

can_comm
CAN Communication state

Type nixnet.types.CanComm

change_lin_diagnostic_schedule(schedule)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the diagnostic schedule.

Parameters schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic
schedule that the LIN master executes.

change_lin_schedule(sched_index)
Writes communication states of an XNET session.

10 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

This function writes a request for the LIN interface to change the running schedule.

According to the LIN protocol, only the master executes schedules, not slaves. If the nixnet.
_session.intf.Interface.lin_master property is false (slave), this write function implicitly
sets that property to true (master). If the interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

Parameters sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the database with the
nixnet.database._cluster.Cluster.lin_schedules property.

check_fault()
Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET application calls. The fault cause may be
related to network communication, but it also can be related to XNET hardware, such as a fault in the
onboard processor. Although faults are extremely rare, nxReadState provides a detection method distinct
from the status of NI-XNET function calls, yet easy to use alongside the common practice of checking the
communication state.

close()
Close (clear) the XNET session.

This function stops communication for the session and releases all resources the session uses. It inter-
nally calls nixnet._session.base.SessionBase.stop with normal scope, so if this is the last
session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to create a new session that uses the
same objects. For example, if you create a session for a frame named frame_a using Frame Output Single-
Point mode, then you create a second session for frame_a using Frame Output Queued mode, the second
call to the session constructor returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can close the previous use of frame_a to
create the new session.

cluster_name
This property returns the cluster (network) name used with the session.

Type str

connect_terminals(source, destination)
Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on the interface hardware. The XNET
terminal represents an external or internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI card, RTSI terminals for a PCI
card, or the single external terminal for a C Series module. Internal terminals include timebases (clocks)
and logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the pair is an internal and the other an
external.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

database_name
This property returns the database name used with the session.

Type str

4.2. API Reference 11

NI-XNET Python API Documentation, Release 0.3.1

disconnect_terminals(source, destination)
Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals previously connected with
nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET automatically disconnects all terminal
connections for that interface. Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections dynamically while an application is
running. To disconnect a terminal, you first must stop the interface using nixnet._session.
base.SessionBase.stop with the Interface Only scope. Then you can call ‘disconnect_terminals’
and nixnet._session.base.SessionBase.connect_terminals to adjust terminal connec-
tions. Finally, you can call nixnet._session.base.SessionBase.start with the Interface
Only scope to restart the interface.

You can disconnect only a terminal that has been previously connected. Attempting to disconnect a non-
connected terminal results in an error.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

flush()
Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to store frames. For input modes, the
queues store frame values (or corresponding signal values) that have been received, but not obtained by
calling the read function. For output sessions, the queues store frame values provided to write function,
but not transmitted successfully.

nixnet._session.base.SessionBase.start and nixnet._session.base.
SessionBase.stop have no effect on these queues. Use ‘flush’ to discard all values in the
session’s queues.

For example, if you call a write function to write three frames, then immediately call nixnet.
_session.base.SessionBase.stop, then call nixnet._session.base.SessionBase.
start a few seconds later, the three frames transmit. If you call ‘flush’ between nixnet._session.
base.SessionBase.stop and nixnet._session.base.SessionBase.start, no frames
transmit.

As another example, if you receive three frames, then call nixnet._session.base.
SessionBase.stop, the three frames remains in the queue. If you call nixnet._session.base.
SessionBase.start a few seconds later, then call a read function, you obtain the three frames re-
ceived earlier, potentially followed by other frames received after calling nixnet._session.base.
SessionBase.start. If you call ‘flush’ between nixnet._session.base.SessionBase.
stop and nixnet._session.base.SessionBase.start, read function returns only frames re-
ceived after the calling nixnet._session.base.SessionBase.start.

frames
Operate on session’s frames

Type nixnet._session.frames.InFrames

intf
Returns the Interface configuration object for the session.

Type nixnet._session.intf.Interface

12 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

j1939
Returns the J1939 configuration object for the session.

Type nixnet._session.j1939.J1939

lin_comm
LIN Communication state

Type nixnet.types.LinComm

mode
This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

Type nixnet._enums.CreateSessionMode

num_pend
This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available to the appropriate read function.
If you call the appropriate read function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided to the appropriate write function
but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

num_unused
This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the size of the underlying queue(s). Contrary
to the Queue Size property, this value is in number of frames for Frame I/O, not number of bytes; for Signal
I/O, it is the number of signal values in both cases. After start, this property returns the queue size minus
the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the underlying queue(s).

For output sessions, this is the number of frame/signal values you can provide to a subsequent call to
the appropriate write function. If you call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

4.2. API Reference 13

NI-XNET Python API Documentation, Release 0.3.1

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

protocol
This property returns the protocol that the interface in the session uses.

Type nixnet._enums.Protocol

queue_size
Get or set queue size.

For output sessions, queues store data passed to the appropriate write function and not yet transmitted onto
the network. For input sessions, queues store data received from the network and not yet obtained using
the appropriate read function.

For most applications, the default queue sizes are sufficient. You can write to this property to override the
default. When you write (set) this property, you must do so prior to the first session start. You cannot set
this property again after calling nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values stored. This is analogous to the number
of values you use with the appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24 bytes. You can use this number
to convert the Queue Size (in bytes) to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can vary depending on the payload
length. For more information, refer to Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame. Within the implementation,
each frame uses a dedicated queue. According to the formulas below, the default queue sizes can be
different for each frame. If you read the default Queue Size property for a Signal Input XY session, the
largest queue size is returned, so that a call to the appropriate read function of that size can empty all
queues. If you read the default Queue Size property for a Signal Output XY session, the smallest queue
size is returned, so that a call to the appropriate write function of that size can succeed when all queues are
empty. If you write the Queue Size property for a Signal I/O XY session, that size is used for all frames,
so you must ensure that it is sufficient for the frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one frame. Within the implemen-
tation, each frame uses a dedicated queue. The Queue Size property does not represent the memory in
these queues, but rather the amount of time stored. The default queue allocations store Application Time
worth of resampled signal values. If you read the default Queue Size property for a Signal I/O Waveform
session, it returns Application Time multiplied by the time Resample Rate. If you write the Queue Size
property for a Signal I/O Waveform session, that value is translated from a number of samples to a time,
and that time is used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored. Single-Point sessions always use a
value of 1 as the effective queue size.

Type int

start(scope=<StartStopScope.NORMAL: 0>)
Start communication for the XNET session.

Because the session is started automatically by default, this function is optional. This function is for
more advanced applications to start multiple sessions in a specific order. For more information about

14 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

the automatic start feature, refer to the nixnet._session.base.SessionBase.auto_start
property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can start each logical unit separately. When a session is started, all contained frames or signals are
placed in a state where they are ready to communicate. When the interface is started, it takes data from all
started sessions to communicate with other nodes on the bus. For a specification of the state models for
the session and interface, refer to State Models.

If an output session starts before you write data, or you read an input session before it receives a frame,
default data is used. For more information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

state
Session running state.

Type nixnet._enums.SessionInfoState

stop(scope=<StartStopScope.NORMAL: 0>)
Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared), this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can stop each logical unit separately. When a session is stopped, all contained frames or signals are
placed in a state where they are no longer ready to communicate. When the interface is stopped, it no
longer takes data from sessions to communicate with other nodes on the bus. For a specification of the
state models for the session and interface, refer to State Models.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

time_communicating
Time the interface started communicating.

The time is usually later than time_start because the interface must undergo a communication startup
procedure.

Type int

time_current
Current interface time.

Type int

time_start
Time the interface was started.

4.2. API Reference 15

NI-XNET Python API Documentation, Release 0.3.1

Type int

wait_for_intf_communicating(timeout=10)
Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for the trigger. Once the interface is started,
this waits for the protocol’s communication state to transition to a value that indicates communication with
remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for communication (invalid time
of 0 prior)

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_intf_remote_wakeup(timeout=10)
Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the network. This wait is used
for CAN, when you set the ‘can_tcvr_state’ property to ‘constants.CanTcvrState.SLEEP’. Although the
interface itself is ready to communicate, this places the transceiver into a sleep state. When a remote CAN
node transmits a frame, the transceiver wakes up, and communication is restored. This wait detects that
remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to ‘constants.LinSleep.REMOTE_SLEEP’ or
‘constants.LinSleep.LOCAL_SLEEP’. When asleep, if a remote LIN ECU transmits the wakeup pattern
(break), the XNET LIN interface detects this transmission and wakes up. This wait detects that remote
wakeup.

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_transmit_complete(timeout=10)
Wait for transmition to complete.

All frames written for the session have been transmitted on the bus. This condition applies to CAN, LIN,
and FlexRay. This condition is state based, and the state is Boolean (true/false).

Parameters timeout (float) – The maximum amount of time to wait in seconds.

class nixnet.session.FrameOutStreamSession(interface_name, database_name=’:memory:’,
cluster_name=”)

Bases: nixnet._session.base.SessionBase

Frame Output Stream session.

This session transmits an arbitrary sequence of frame values using a single stream. The values are not limited to
a single frame in the database, but can transmit any frame.

The data passed to the write frame function is a list of frame values, each of which transmits as soon as possible.
Frames transmit sequentially (one after another).

Like Frame Input Stream sessions, you can create more than one Frame Output Stream session for a given
interface.

For CAN, frame values transmit on the network based entirely on the time when you call the write frame
function. The timing of each frame as specified in the database is ignored. For example, if you provide four
frame values to the the write frame function, the first frame value transmits immediately, followed by the next

16 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

three values transmitted back to back. For this session, the CAN frame payload length in the database is ignored,
and the write frame function is always used.

Similarly for LIN, frame values transmit on the network based entirely on the time when you call the write frame
function. The timing of each frame as specified in the database is ignored. The LIN frame payload length in the
database is ignored, and the write frame function is always used. For LIN, this session/mode is allowed only on
the interface as master. If the payload for a frame is empty, only the header part of the frame is transmitted. For
a nonempty payload, the header + response for the frame is transmitted. If a frame for transmit is defined in the
database (in-memory or otherwise), it is transmitted using its database checksum type. If the frame for transmit
is not defined in the database, it is transmitted using enhanced checksum.

This session is not supported for FlexRay.

The frame values for this session are stored in a queue, such that every value provided is transmitted.

application_protocol
This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

Type nixnet._enums.AppProtocol

auto_start
Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to the appropriate read function (if not al-
ready started using nixnet._session.base.SessionBase.start). This is done because there
is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write function contains valid data, you can
leave this property at its default value of true. If you need to call the appropriate write function multiple
times prior to starting the session, or if you are starting multiple sessions simultaneously, you can set
this property to false. After calling the appropriate write function as desired, you can call nixnet.
_session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to nixnet._session.base.SessionBase.
start with scope set to Normal. This starts the session itself, and if the interface is not already started, it
starts the interface also.

Type bool

can_comm
CAN Communication state

Type nixnet.types.CanComm

change_lin_diagnostic_schedule(schedule)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the diagnostic schedule.

Parameters schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic
schedule that the LIN master executes.

change_lin_schedule(sched_index)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the running schedule.

According to the LIN protocol, only the master executes schedules, not slaves. If the nixnet.
_session.intf.Interface.lin_master property is false (slave), this write function implicitly
sets that property to true (master). If the interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

4.2. API Reference 17

NI-XNET Python API Documentation, Release 0.3.1

Parameters sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the database with the
nixnet.database._cluster.Cluster.lin_schedules property.

check_fault()
Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET application calls. The fault cause may be
related to network communication, but it also can be related to XNET hardware, such as a fault in the
onboard processor. Although faults are extremely rare, nxReadState provides a detection method distinct
from the status of NI-XNET function calls, yet easy to use alongside the common practice of checking the
communication state.

close()
Close (clear) the XNET session.

This function stops communication for the session and releases all resources the session uses. It inter-
nally calls nixnet._session.base.SessionBase.stop with normal scope, so if this is the last
session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to create a new session that uses the
same objects. For example, if you create a session for a frame named frame_a using Frame Output Single-
Point mode, then you create a second session for frame_a using Frame Output Queued mode, the second
call to the session constructor returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can close the previous use of frame_a to
create the new session.

cluster_name
This property returns the cluster (network) name used with the session.

Type str

connect_terminals(source, destination)
Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on the interface hardware. The XNET
terminal represents an external or internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI card, RTSI terminals for a PCI
card, or the single external terminal for a C Series module. Internal terminals include timebases (clocks)
and logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the pair is an internal and the other an
external.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

database_name
This property returns the database name used with the session.

Type str

disconnect_terminals(source, destination)
Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals previously connected with
nixnet._session.base.SessionBase.connect_terminals.

18 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

When the final session for a given interface is cleared, NI-XNET automatically disconnects all terminal
connections for that interface. Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections dynamically while an application is
running. To disconnect a terminal, you first must stop the interface using nixnet._session.
base.SessionBase.stop with the Interface Only scope. Then you can call ‘disconnect_terminals’
and nixnet._session.base.SessionBase.connect_terminals to adjust terminal connec-
tions. Finally, you can call nixnet._session.base.SessionBase.start with the Interface
Only scope to restart the interface.

You can disconnect only a terminal that has been previously connected. Attempting to disconnect a non-
connected terminal results in an error.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

flush()
Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to store frames. For input modes, the
queues store frame values (or corresponding signal values) that have been received, but not obtained by
calling the read function. For output sessions, the queues store frame values provided to write function,
but not transmitted successfully.

nixnet._session.base.SessionBase.start and nixnet._session.base.
SessionBase.stop have no effect on these queues. Use ‘flush’ to discard all values in the
session’s queues.

For example, if you call a write function to write three frames, then immediately call nixnet.
_session.base.SessionBase.stop, then call nixnet._session.base.SessionBase.
start a few seconds later, the three frames transmit. If you call ‘flush’ between nixnet._session.
base.SessionBase.stop and nixnet._session.base.SessionBase.start, no frames
transmit.

As another example, if you receive three frames, then call nixnet._session.base.
SessionBase.stop, the three frames remains in the queue. If you call nixnet._session.base.
SessionBase.start a few seconds later, then call a read function, you obtain the three frames re-
ceived earlier, potentially followed by other frames received after calling nixnet._session.base.
SessionBase.start. If you call ‘flush’ between nixnet._session.base.SessionBase.
stop and nixnet._session.base.SessionBase.start, read function returns only frames re-
ceived after the calling nixnet._session.base.SessionBase.start.

frames
Operate on session’s frames

Type nixnet._session.frames.InFrames

intf
Returns the Interface configuration object for the session.

Type nixnet._session.intf.Interface

j1939
Returns the J1939 configuration object for the session.

Type nixnet._session.j1939.J1939

lin_comm
LIN Communication state

4.2. API Reference 19

NI-XNET Python API Documentation, Release 0.3.1

Type nixnet.types.LinComm

mode
This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

Type nixnet._enums.CreateSessionMode

num_pend
This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available to the appropriate read function.
If you call the appropriate read function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided to the appropriate write function
but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

num_unused
This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the size of the underlying queue(s). Contrary
to the Queue Size property, this value is in number of frames for Frame I/O, not number of bytes; for Signal
I/O, it is the number of signal values in both cases. After start, this property returns the queue size minus
the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the underlying queue(s).

For output sessions, this is the number of frame/signal values you can provide to a subsequent call to
the appropriate write function. If you call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

20 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

protocol
This property returns the protocol that the interface in the session uses.

Type nixnet._enums.Protocol

queue_size
Get or set queue size.

For output sessions, queues store data passed to the appropriate write function and not yet transmitted onto
the network. For input sessions, queues store data received from the network and not yet obtained using
the appropriate read function.

For most applications, the default queue sizes are sufficient. You can write to this property to override the
default. When you write (set) this property, you must do so prior to the first session start. You cannot set
this property again after calling nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values stored. This is analogous to the number
of values you use with the appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24 bytes. You can use this number
to convert the Queue Size (in bytes) to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can vary depending on the payload
length. For more information, refer to Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame. Within the implementation,
each frame uses a dedicated queue. According to the formulas below, the default queue sizes can be
different for each frame. If you read the default Queue Size property for a Signal Input XY session, the
largest queue size is returned, so that a call to the appropriate read function of that size can empty all
queues. If you read the default Queue Size property for a Signal Output XY session, the smallest queue
size is returned, so that a call to the appropriate write function of that size can succeed when all queues are
empty. If you write the Queue Size property for a Signal I/O XY session, that size is used for all frames,
so you must ensure that it is sufficient for the frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one frame. Within the implemen-
tation, each frame uses a dedicated queue. The Queue Size property does not represent the memory in
these queues, but rather the amount of time stored. The default queue allocations store Application Time
worth of resampled signal values. If you read the default Queue Size property for a Signal I/O Waveform
session, it returns Application Time multiplied by the time Resample Rate. If you write the Queue Size
property for a Signal I/O Waveform session, that value is translated from a number of samples to a time,
and that time is used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored. Single-Point sessions always use a
value of 1 as the effective queue size.

Type int

start(scope=<StartStopScope.NORMAL: 0>)
Start communication for the XNET session.

Because the session is started automatically by default, this function is optional. This function is for
more advanced applications to start multiple sessions in a specific order. For more information about
the automatic start feature, refer to the nixnet._session.base.SessionBase.auto_start
property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

4.2. API Reference 21

NI-XNET Python API Documentation, Release 0.3.1

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can start each logical unit separately. When a session is started, all contained frames or signals are
placed in a state where they are ready to communicate. When the interface is started, it takes data from all
started sessions to communicate with other nodes on the bus. For a specification of the state models for
the session and interface, refer to State Models.

If an output session starts before you write data, or you read an input session before it receives a frame,
default data is used. For more information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

state
Session running state.

Type nixnet._enums.SessionInfoState

stop(scope=<StartStopScope.NORMAL: 0>)
Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared), this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can stop each logical unit separately. When a session is stopped, all contained frames or signals are
placed in a state where they are no longer ready to communicate. When the interface is stopped, it no
longer takes data from sessions to communicate with other nodes on the bus. For a specification of the
state models for the session and interface, refer to State Models.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

time_communicating
Time the interface started communicating.

The time is usually later than time_start because the interface must undergo a communication startup
procedure.

Type int

time_current
Current interface time.

Type int

time_start
Time the interface was started.

Type int

wait_for_intf_communicating(timeout=10)
Wait for the interface to begin communication on the network.

22 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

If a start trigger is configured for the interface, this first waits for the trigger. Once the interface is started,
this waits for the protocol’s communication state to transition to a value that indicates communication with
remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for communication (invalid time
of 0 prior)

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_intf_remote_wakeup(timeout=10)
Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the network. This wait is used
for CAN, when you set the ‘can_tcvr_state’ property to ‘constants.CanTcvrState.SLEEP’. Although the
interface itself is ready to communicate, this places the transceiver into a sleep state. When a remote CAN
node transmits a frame, the transceiver wakes up, and communication is restored. This wait detects that
remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to ‘constants.LinSleep.REMOTE_SLEEP’ or
‘constants.LinSleep.LOCAL_SLEEP’. When asleep, if a remote LIN ECU transmits the wakeup pattern
(break), the XNET LIN interface detects this transmission and wakes up. This wait detects that remote
wakeup.

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_transmit_complete(timeout=10)
Wait for transmition to complete.

All frames written for the session have been transmitted on the bus. This condition applies to CAN, LIN,
and FlexRay. This condition is state based, and the state is Boolean (true/false).

Parameters timeout (float) – The maximum amount of time to wait in seconds.

class nixnet.session.FrameInQueuedSession(interface_name, database_name, cluster_name,
frame)

Bases: nixnet._session.base.SessionBase

Frame Input Queued session.

This session reads data from a dedicated queue per frame. It enables your application to read a sequence of data
specific to a frame (for example, a CAN identifier).

You specify only one frame for the session, and the read frame function returns values for that frame only. If
you need sequential data for multiple frames, create multiple sessions, one per frame.

The input data is returned as a list of frame values. These values represent all values received for the frame since
the previous call to the read frame function.

application_protocol
This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

Type nixnet._enums.AppProtocol

auto_start
Automatically starts the output session on the first call to the appropriate write function.

4.2. API Reference 23

NI-XNET Python API Documentation, Release 0.3.1

For input sessions, start always is performed within the first call to the appropriate read function (if not al-
ready started using nixnet._session.base.SessionBase.start). This is done because there
is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write function contains valid data, you can
leave this property at its default value of true. If you need to call the appropriate write function multiple
times prior to starting the session, or if you are starting multiple sessions simultaneously, you can set
this property to false. After calling the appropriate write function as desired, you can call nixnet.
_session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to nixnet._session.base.SessionBase.
start with scope set to Normal. This starts the session itself, and if the interface is not already started, it
starts the interface also.

Type bool

can_comm
CAN Communication state

Type nixnet.types.CanComm

change_lin_diagnostic_schedule(schedule)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the diagnostic schedule.

Parameters schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic
schedule that the LIN master executes.

change_lin_schedule(sched_index)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the running schedule.

According to the LIN protocol, only the master executes schedules, not slaves. If the nixnet.
_session.intf.Interface.lin_master property is false (slave), this write function implicitly
sets that property to true (master). If the interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

Parameters sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the database with the
nixnet.database._cluster.Cluster.lin_schedules property.

check_fault()
Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET application calls. The fault cause may be
related to network communication, but it also can be related to XNET hardware, such as a fault in the
onboard processor. Although faults are extremely rare, nxReadState provides a detection method distinct
from the status of NI-XNET function calls, yet easy to use alongside the common practice of checking the
communication state.

close()
Close (clear) the XNET session.

This function stops communication for the session and releases all resources the session uses. It inter-
nally calls nixnet._session.base.SessionBase.stop with normal scope, so if this is the last
session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to create a new session that uses the
same objects. For example, if you create a session for a frame named frame_a using Frame Output Single-
Point mode, then you create a second session for frame_a using Frame Output Queued mode, the second

24 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

call to the session constructor returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can close the previous use of frame_a to
create the new session.

cluster_name
This property returns the cluster (network) name used with the session.

Type str

connect_terminals(source, destination)
Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on the interface hardware. The XNET
terminal represents an external or internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI card, RTSI terminals for a PCI
card, or the single external terminal for a C Series module. Internal terminals include timebases (clocks)
and logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the pair is an internal and the other an
external.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

database_name
This property returns the database name used with the session.

Type str

disconnect_terminals(source, destination)
Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals previously connected with
nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET automatically disconnects all terminal
connections for that interface. Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections dynamically while an application is
running. To disconnect a terminal, you first must stop the interface using nixnet._session.
base.SessionBase.stop with the Interface Only scope. Then you can call ‘disconnect_terminals’
and nixnet._session.base.SessionBase.connect_terminals to adjust terminal connec-
tions. Finally, you can call nixnet._session.base.SessionBase.start with the Interface
Only scope to restart the interface.

You can disconnect only a terminal that has been previously connected. Attempting to disconnect a non-
connected terminal results in an error.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

flush()
Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to store frames. For input modes, the
queues store frame values (or corresponding signal values) that have been received, but not obtained by
calling the read function. For output sessions, the queues store frame values provided to write function,
but not transmitted successfully.

4.2. API Reference 25

NI-XNET Python API Documentation, Release 0.3.1

nixnet._session.base.SessionBase.start and nixnet._session.base.
SessionBase.stop have no effect on these queues. Use ‘flush’ to discard all values in the
session’s queues.

For example, if you call a write function to write three frames, then immediately call nixnet.
_session.base.SessionBase.stop, then call nixnet._session.base.SessionBase.
start a few seconds later, the three frames transmit. If you call ‘flush’ between nixnet._session.
base.SessionBase.stop and nixnet._session.base.SessionBase.start, no frames
transmit.

As another example, if you receive three frames, then call nixnet._session.base.
SessionBase.stop, the three frames remains in the queue. If you call nixnet._session.base.
SessionBase.start a few seconds later, then call a read function, you obtain the three frames re-
ceived earlier, potentially followed by other frames received after calling nixnet._session.base.
SessionBase.start. If you call ‘flush’ between nixnet._session.base.SessionBase.
stop and nixnet._session.base.SessionBase.start, read function returns only frames re-
ceived after the calling nixnet._session.base.SessionBase.start.

frames
Operate on session’s frames

Type nixnet._session.frames.InFrames

intf
Returns the Interface configuration object for the session.

Type nixnet._session.intf.Interface

j1939
Returns the J1939 configuration object for the session.

Type nixnet._session.j1939.J1939

lin_comm
LIN Communication state

Type nixnet.types.LinComm

mode
This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

Type nixnet._enums.CreateSessionMode

num_pend
This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available to the appropriate read function.
If you call the appropriate read function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided to the appropriate write function
but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

26 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

num_unused
This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the size of the underlying queue(s). Contrary
to the Queue Size property, this value is in number of frames for Frame I/O, not number of bytes; for Signal
I/O, it is the number of signal values in both cases. After start, this property returns the queue size minus
the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the underlying queue(s).

For output sessions, this is the number of frame/signal values you can provide to a subsequent call to
the appropriate write function. If you call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

protocol
This property returns the protocol that the interface in the session uses.

Type nixnet._enums.Protocol

queue_size
Get or set queue size.

For output sessions, queues store data passed to the appropriate write function and not yet transmitted onto
the network. For input sessions, queues store data received from the network and not yet obtained using
the appropriate read function.

For most applications, the default queue sizes are sufficient. You can write to this property to override the
default. When you write (set) this property, you must do so prior to the first session start. You cannot set
this property again after calling nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values stored. This is analogous to the number
of values you use with the appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24 bytes. You can use this number
to convert the Queue Size (in bytes) to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can vary depending on the payload
length. For more information, refer to Raw Frame Format.

4.2. API Reference 27

NI-XNET Python API Documentation, Release 0.3.1

For Signal I/O XY sessions, you can use signals from more than one frame. Within the implementation,
each frame uses a dedicated queue. According to the formulas below, the default queue sizes can be
different for each frame. If you read the default Queue Size property for a Signal Input XY session, the
largest queue size is returned, so that a call to the appropriate read function of that size can empty all
queues. If you read the default Queue Size property for a Signal Output XY session, the smallest queue
size is returned, so that a call to the appropriate write function of that size can succeed when all queues are
empty. If you write the Queue Size property for a Signal I/O XY session, that size is used for all frames,
so you must ensure that it is sufficient for the frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one frame. Within the implemen-
tation, each frame uses a dedicated queue. The Queue Size property does not represent the memory in
these queues, but rather the amount of time stored. The default queue allocations store Application Time
worth of resampled signal values. If you read the default Queue Size property for a Signal I/O Waveform
session, it returns Application Time multiplied by the time Resample Rate. If you write the Queue Size
property for a Signal I/O Waveform session, that value is translated from a number of samples to a time,
and that time is used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored. Single-Point sessions always use a
value of 1 as the effective queue size.

Type int

start(scope=<StartStopScope.NORMAL: 0>)
Start communication for the XNET session.

Because the session is started automatically by default, this function is optional. This function is for
more advanced applications to start multiple sessions in a specific order. For more information about
the automatic start feature, refer to the nixnet._session.base.SessionBase.auto_start
property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can start each logical unit separately. When a session is started, all contained frames or signals are
placed in a state where they are ready to communicate. When the interface is started, it takes data from all
started sessions to communicate with other nodes on the bus. For a specification of the state models for
the session and interface, refer to State Models.

If an output session starts before you write data, or you read an input session before it receives a frame,
default data is used. For more information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

state
Session running state.

Type nixnet._enums.SessionInfoState

stop(scope=<StartStopScope.NORMAL: 0>)
Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared), this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

28 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can stop each logical unit separately. When a session is stopped, all contained frames or signals are
placed in a state where they are no longer ready to communicate. When the interface is stopped, it no
longer takes data from sessions to communicate with other nodes on the bus. For a specification of the
state models for the session and interface, refer to State Models.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

time_communicating
Time the interface started communicating.

The time is usually later than time_start because the interface must undergo a communication startup
procedure.

Type int

time_current
Current interface time.

Type int

time_start
Time the interface was started.

Type int

wait_for_intf_communicating(timeout=10)
Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for the trigger. Once the interface is started,
this waits for the protocol’s communication state to transition to a value that indicates communication with
remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for communication (invalid time
of 0 prior)

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_intf_remote_wakeup(timeout=10)
Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the network. This wait is used
for CAN, when you set the ‘can_tcvr_state’ property to ‘constants.CanTcvrState.SLEEP’. Although the
interface itself is ready to communicate, this places the transceiver into a sleep state. When a remote CAN
node transmits a frame, the transceiver wakes up, and communication is restored. This wait detects that
remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to ‘constants.LinSleep.REMOTE_SLEEP’ or
‘constants.LinSleep.LOCAL_SLEEP’. When asleep, if a remote LIN ECU transmits the wakeup pattern
(break), the XNET LIN interface detects this transmission and wakes up. This wait detects that remote
wakeup.

4.2. API Reference 29

NI-XNET Python API Documentation, Release 0.3.1

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_transmit_complete(timeout=10)
Wait for transmition to complete.

All frames written for the session have been transmitted on the bus. This condition applies to CAN, LIN,
and FlexRay. This condition is state based, and the state is Boolean (true/false).

Parameters timeout (float) – The maximum amount of time to wait in seconds.

class nixnet.session.FrameOutQueuedSession(interface_name, database_name, clus-
ter_name, frame)

Bases: nixnet._session.base.SessionBase

Frame Output Queued session.

This session provides a sequence of values for a single frame, for transmit using that frame’s timing as specified
in the database.

The output data is provided as a list of frame values, to be transmitted sequentially for the frame specified in the
session.

You can only specify one frame for this session. To transmit sequential values for multiple frames, use a different
Frame Output Queued session for each frame or use the Frame Output Stream session.

The frame values for this session are stored in a queue, such that every value provided is transmitted.

For this session, NI-XNET transmits each frame according to its properties in the database. Therefore, when
you call the write frame function, the number of payload bytes in each frame value must match that frame’s
Payload Length property. The other frame value elements are ignored, so you can leave them uninitialized. For
CAN interfaces, if the number of payload bytes you write is smaller than the Payload Length configured in the
database, the requested number of bytes transmits. If the number of payload bytes is larger than the Payload
Length configured in the database, the queue is flushed and no frames transmit. For other interfaces, transmitting
a number of payload bytes different than the frame’s payload may cause unexpected results on the bus.

application_protocol
This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

Type nixnet._enums.AppProtocol

auto_start
Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to the appropriate read function (if not al-
ready started using nixnet._session.base.SessionBase.start). This is done because there
is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write function contains valid data, you can
leave this property at its default value of true. If you need to call the appropriate write function multiple
times prior to starting the session, or if you are starting multiple sessions simultaneously, you can set
this property to false. After calling the appropriate write function as desired, you can call nixnet.
_session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to nixnet._session.base.SessionBase.
start with scope set to Normal. This starts the session itself, and if the interface is not already started, it
starts the interface also.

Type bool

can_comm
CAN Communication state

30 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

Type nixnet.types.CanComm

change_lin_diagnostic_schedule(schedule)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the diagnostic schedule.

Parameters schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic
schedule that the LIN master executes.

change_lin_schedule(sched_index)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the running schedule.

According to the LIN protocol, only the master executes schedules, not slaves. If the nixnet.
_session.intf.Interface.lin_master property is false (slave), this write function implicitly
sets that property to true (master). If the interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

Parameters sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the database with the
nixnet.database._cluster.Cluster.lin_schedules property.

check_fault()
Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET application calls. The fault cause may be
related to network communication, but it also can be related to XNET hardware, such as a fault in the
onboard processor. Although faults are extremely rare, nxReadState provides a detection method distinct
from the status of NI-XNET function calls, yet easy to use alongside the common practice of checking the
communication state.

close()
Close (clear) the XNET session.

This function stops communication for the session and releases all resources the session uses. It inter-
nally calls nixnet._session.base.SessionBase.stop with normal scope, so if this is the last
session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to create a new session that uses the
same objects. For example, if you create a session for a frame named frame_a using Frame Output Single-
Point mode, then you create a second session for frame_a using Frame Output Queued mode, the second
call to the session constructor returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can close the previous use of frame_a to
create the new session.

cluster_name
This property returns the cluster (network) name used with the session.

Type str

connect_terminals(source, destination)
Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on the interface hardware. The XNET
terminal represents an external or internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI card, RTSI terminals for a PCI
card, or the single external terminal for a C Series module. Internal terminals include timebases (clocks)
and logical entities such as a start trigger.

4.2. API Reference 31

NI-XNET Python API Documentation, Release 0.3.1

The terminal inputs use the Terminal I/O names. Typically, one of the pair is an internal and the other an
external.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

database_name
This property returns the database name used with the session.

Type str

disconnect_terminals(source, destination)
Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals previously connected with
nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET automatically disconnects all terminal
connections for that interface. Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections dynamically while an application is
running. To disconnect a terminal, you first must stop the interface using nixnet._session.
base.SessionBase.stop with the Interface Only scope. Then you can call ‘disconnect_terminals’
and nixnet._session.base.SessionBase.connect_terminals to adjust terminal connec-
tions. Finally, you can call nixnet._session.base.SessionBase.start with the Interface
Only scope to restart the interface.

You can disconnect only a terminal that has been previously connected. Attempting to disconnect a non-
connected terminal results in an error.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

flush()
Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to store frames. For input modes, the
queues store frame values (or corresponding signal values) that have been received, but not obtained by
calling the read function. For output sessions, the queues store frame values provided to write function,
but not transmitted successfully.

nixnet._session.base.SessionBase.start and nixnet._session.base.
SessionBase.stop have no effect on these queues. Use ‘flush’ to discard all values in the
session’s queues.

For example, if you call a write function to write three frames, then immediately call nixnet.
_session.base.SessionBase.stop, then call nixnet._session.base.SessionBase.
start a few seconds later, the three frames transmit. If you call ‘flush’ between nixnet._session.
base.SessionBase.stop and nixnet._session.base.SessionBase.start, no frames
transmit.

As another example, if you receive three frames, then call nixnet._session.base.
SessionBase.stop, the three frames remains in the queue. If you call nixnet._session.base.
SessionBase.start a few seconds later, then call a read function, you obtain the three frames re-
ceived earlier, potentially followed by other frames received after calling nixnet._session.base.
SessionBase.start. If you call ‘flush’ between nixnet._session.base.SessionBase.

32 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

stop and nixnet._session.base.SessionBase.start, read function returns only frames re-
ceived after the calling nixnet._session.base.SessionBase.start.

frames
Operate on session’s frames

Type nixnet._session.frames.OutFrames

intf
Returns the Interface configuration object for the session.

Type nixnet._session.intf.Interface

j1939
Returns the J1939 configuration object for the session.

Type nixnet._session.j1939.J1939

lin_comm
LIN Communication state

Type nixnet.types.LinComm

mode
This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

Type nixnet._enums.CreateSessionMode

num_pend
This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available to the appropriate read function.
If you call the appropriate read function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided to the appropriate write function
but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

num_unused
This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the size of the underlying queue(s). Contrary
to the Queue Size property, this value is in number of frames for Frame I/O, not number of bytes; for Signal
I/O, it is the number of signal values in both cases. After start, this property returns the queue size minus
the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the underlying queue(s).

4.2. API Reference 33

NI-XNET Python API Documentation, Release 0.3.1

For output sessions, this is the number of frame/signal values you can provide to a subsequent call to
the appropriate write function. If you call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

protocol
This property returns the protocol that the interface in the session uses.

Type nixnet._enums.Protocol

queue_size
Get or set queue size.

For output sessions, queues store data passed to the appropriate write function and not yet transmitted onto
the network. For input sessions, queues store data received from the network and not yet obtained using
the appropriate read function.

For most applications, the default queue sizes are sufficient. You can write to this property to override the
default. When you write (set) this property, you must do so prior to the first session start. You cannot set
this property again after calling nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values stored. This is analogous to the number
of values you use with the appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24 bytes. You can use this number
to convert the Queue Size (in bytes) to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can vary depending on the payload
length. For more information, refer to Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame. Within the implementation,
each frame uses a dedicated queue. According to the formulas below, the default queue sizes can be
different for each frame. If you read the default Queue Size property for a Signal Input XY session, the
largest queue size is returned, so that a call to the appropriate read function of that size can empty all
queues. If you read the default Queue Size property for a Signal Output XY session, the smallest queue
size is returned, so that a call to the appropriate write function of that size can succeed when all queues are
empty. If you write the Queue Size property for a Signal I/O XY session, that size is used for all frames,
so you must ensure that it is sufficient for the frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one frame. Within the implemen-
tation, each frame uses a dedicated queue. The Queue Size property does not represent the memory in
these queues, but rather the amount of time stored. The default queue allocations store Application Time
worth of resampled signal values. If you read the default Queue Size property for a Signal I/O Waveform
session, it returns Application Time multiplied by the time Resample Rate. If you write the Queue Size
property for a Signal I/O Waveform session, that value is translated from a number of samples to a time,
and that time is used to allocate memory for each queue.

34 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

For Single-Point sessions (signal or frame), this property is ignored. Single-Point sessions always use a
value of 1 as the effective queue size.

Type int

start(scope=<StartStopScope.NORMAL: 0>)
Start communication for the XNET session.

Because the session is started automatically by default, this function is optional. This function is for
more advanced applications to start multiple sessions in a specific order. For more information about
the automatic start feature, refer to the nixnet._session.base.SessionBase.auto_start
property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can start each logical unit separately. When a session is started, all contained frames or signals are
placed in a state where they are ready to communicate. When the interface is started, it takes data from all
started sessions to communicate with other nodes on the bus. For a specification of the state models for
the session and interface, refer to State Models.

If an output session starts before you write data, or you read an input session before it receives a frame,
default data is used. For more information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

state
Session running state.

Type nixnet._enums.SessionInfoState

stop(scope=<StartStopScope.NORMAL: 0>)
Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared), this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can stop each logical unit separately. When a session is stopped, all contained frames or signals are
placed in a state where they are no longer ready to communicate. When the interface is stopped, it no
longer takes data from sessions to communicate with other nodes on the bus. For a specification of the
state models for the session and interface, refer to State Models.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

time_communicating
Time the interface started communicating.

The time is usually later than time_start because the interface must undergo a communication startup
procedure.

4.2. API Reference 35

NI-XNET Python API Documentation, Release 0.3.1

Type int

time_current
Current interface time.

Type int

time_start
Time the interface was started.

Type int

wait_for_intf_communicating(timeout=10)
Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for the trigger. Once the interface is started,
this waits for the protocol’s communication state to transition to a value that indicates communication with
remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for communication (invalid time
of 0 prior)

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_intf_remote_wakeup(timeout=10)
Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the network. This wait is used
for CAN, when you set the ‘can_tcvr_state’ property to ‘constants.CanTcvrState.SLEEP’. Although the
interface itself is ready to communicate, this places the transceiver into a sleep state. When a remote CAN
node transmits a frame, the transceiver wakes up, and communication is restored. This wait detects that
remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to ‘constants.LinSleep.REMOTE_SLEEP’ or
‘constants.LinSleep.LOCAL_SLEEP’. When asleep, if a remote LIN ECU transmits the wakeup pattern
(break), the XNET LIN interface detects this transmission and wakes up. This wait detects that remote
wakeup.

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_transmit_complete(timeout=10)
Wait for transmition to complete.

All frames written for the session have been transmitted on the bus. This condition applies to CAN, LIN,
and FlexRay. This condition is state based, and the state is Boolean (true/false).

Parameters timeout (float) – The maximum amount of time to wait in seconds.

class nixnet.session.FrameInSinglePointSession(interface_name, database_name, clus-
ter_name, frames)

Bases: nixnet._session.base.SessionBase

Frame Input Single-Point session.

This session reads the most recent value received for each frame.

This session does not use queues to store each received frame. If the interface receives two frames prior to
calling the read frame function, that read returns signals for the second frame.

36 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

The input data is returned as a list of frames, one for each frame specified for the session.

Note: Typical use case: Control or simulation applications that require lower level access to frames (not
signals).

application_protocol
This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

Type nixnet._enums.AppProtocol

auto_start
Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to the appropriate read function (if not al-
ready started using nixnet._session.base.SessionBase.start). This is done because there
is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write function contains valid data, you can
leave this property at its default value of true. If you need to call the appropriate write function multiple
times prior to starting the session, or if you are starting multiple sessions simultaneously, you can set
this property to false. After calling the appropriate write function as desired, you can call nixnet.
_session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to nixnet._session.base.SessionBase.
start with scope set to Normal. This starts the session itself, and if the interface is not already started, it
starts the interface also.

Type bool

can_comm
CAN Communication state

Type nixnet.types.CanComm

change_lin_diagnostic_schedule(schedule)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the diagnostic schedule.

Parameters schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic
schedule that the LIN master executes.

change_lin_schedule(sched_index)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the running schedule.

According to the LIN protocol, only the master executes schedules, not slaves. If the nixnet.
_session.intf.Interface.lin_master property is false (slave), this write function implicitly
sets that property to true (master). If the interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

Parameters sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the database with the
nixnet.database._cluster.Cluster.lin_schedules property.

check_fault()
Check for an asynchronous fault.

4.2. API Reference 37

NI-XNET Python API Documentation, Release 0.3.1

A fault is an error that occurs asynchronously to the NI-XNET application calls. The fault cause may be
related to network communication, but it also can be related to XNET hardware, such as a fault in the
onboard processor. Although faults are extremely rare, nxReadState provides a detection method distinct
from the status of NI-XNET function calls, yet easy to use alongside the common practice of checking the
communication state.

close()
Close (clear) the XNET session.

This function stops communication for the session and releases all resources the session uses. It inter-
nally calls nixnet._session.base.SessionBase.stop with normal scope, so if this is the last
session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to create a new session that uses the
same objects. For example, if you create a session for a frame named frame_a using Frame Output Single-
Point mode, then you create a second session for frame_a using Frame Output Queued mode, the second
call to the session constructor returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can close the previous use of frame_a to
create the new session.

cluster_name
This property returns the cluster (network) name used with the session.

Type str

connect_terminals(source, destination)
Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on the interface hardware. The XNET
terminal represents an external or internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI card, RTSI terminals for a PCI
card, or the single external terminal for a C Series module. Internal terminals include timebases (clocks)
and logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the pair is an internal and the other an
external.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

database_name
This property returns the database name used with the session.

Type str

disconnect_terminals(source, destination)
Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals previously connected with
nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET automatically disconnects all terminal
connections for that interface. Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections dynamically while an application is
running. To disconnect a terminal, you first must stop the interface using nixnet._session.
base.SessionBase.stop with the Interface Only scope. Then you can call ‘disconnect_terminals’

38 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

and nixnet._session.base.SessionBase.connect_terminals to adjust terminal connec-
tions. Finally, you can call nixnet._session.base.SessionBase.start with the Interface
Only scope to restart the interface.

You can disconnect only a terminal that has been previously connected. Attempting to disconnect a non-
connected terminal results in an error.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

flush()
Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to store frames. For input modes, the
queues store frame values (or corresponding signal values) that have been received, but not obtained by
calling the read function. For output sessions, the queues store frame values provided to write function,
but not transmitted successfully.

nixnet._session.base.SessionBase.start and nixnet._session.base.
SessionBase.stop have no effect on these queues. Use ‘flush’ to discard all values in the
session’s queues.

For example, if you call a write function to write three frames, then immediately call nixnet.
_session.base.SessionBase.stop, then call nixnet._session.base.SessionBase.
start a few seconds later, the three frames transmit. If you call ‘flush’ between nixnet._session.
base.SessionBase.stop and nixnet._session.base.SessionBase.start, no frames
transmit.

As another example, if you receive three frames, then call nixnet._session.base.
SessionBase.stop, the three frames remains in the queue. If you call nixnet._session.base.
SessionBase.start a few seconds later, then call a read function, you obtain the three frames re-
ceived earlier, potentially followed by other frames received after calling nixnet._session.base.
SessionBase.start. If you call ‘flush’ between nixnet._session.base.SessionBase.
stop and nixnet._session.base.SessionBase.start, read function returns only frames re-
ceived after the calling nixnet._session.base.SessionBase.start.

frames
Operate on session’s frames

Type nixnet._session.frames.InFrames

intf
Returns the Interface configuration object for the session.

Type nixnet._session.intf.Interface

j1939
Returns the J1939 configuration object for the session.

Type nixnet._session.j1939.J1939

lin_comm
LIN Communication state

Type nixnet.types.LinComm

mode
This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

4.2. API Reference 39

NI-XNET Python API Documentation, Release 0.3.1

Type nixnet._enums.CreateSessionMode

num_pend
This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available to the appropriate read function.
If you call the appropriate read function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided to the appropriate write function
but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

num_unused
This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the size of the underlying queue(s). Contrary
to the Queue Size property, this value is in number of frames for Frame I/O, not number of bytes; for Signal
I/O, it is the number of signal values in both cases. After start, this property returns the queue size minus
the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the underlying queue(s).

For output sessions, this is the number of frame/signal values you can provide to a subsequent call to
the appropriate write function. If you call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

protocol
This property returns the protocol that the interface in the session uses.

Type nixnet._enums.Protocol

queue_size
Get or set queue size.

40 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

For output sessions, queues store data passed to the appropriate write function and not yet transmitted onto
the network. For input sessions, queues store data received from the network and not yet obtained using
the appropriate read function.

For most applications, the default queue sizes are sufficient. You can write to this property to override the
default. When you write (set) this property, you must do so prior to the first session start. You cannot set
this property again after calling nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values stored. This is analogous to the number
of values you use with the appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24 bytes. You can use this number
to convert the Queue Size (in bytes) to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can vary depending on the payload
length. For more information, refer to Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame. Within the implementation,
each frame uses a dedicated queue. According to the formulas below, the default queue sizes can be
different for each frame. If you read the default Queue Size property for a Signal Input XY session, the
largest queue size is returned, so that a call to the appropriate read function of that size can empty all
queues. If you read the default Queue Size property for a Signal Output XY session, the smallest queue
size is returned, so that a call to the appropriate write function of that size can succeed when all queues are
empty. If you write the Queue Size property for a Signal I/O XY session, that size is used for all frames,
so you must ensure that it is sufficient for the frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one frame. Within the implemen-
tation, each frame uses a dedicated queue. The Queue Size property does not represent the memory in
these queues, but rather the amount of time stored. The default queue allocations store Application Time
worth of resampled signal values. If you read the default Queue Size property for a Signal I/O Waveform
session, it returns Application Time multiplied by the time Resample Rate. If you write the Queue Size
property for a Signal I/O Waveform session, that value is translated from a number of samples to a time,
and that time is used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored. Single-Point sessions always use a
value of 1 as the effective queue size.

Type int

start(scope=<StartStopScope.NORMAL: 0>)
Start communication for the XNET session.

Because the session is started automatically by default, this function is optional. This function is for
more advanced applications to start multiple sessions in a specific order. For more information about
the automatic start feature, refer to the nixnet._session.base.SessionBase.auto_start
property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can start each logical unit separately. When a session is started, all contained frames or signals are
placed in a state where they are ready to communicate. When the interface is started, it takes data from all
started sessions to communicate with other nodes on the bus. For a specification of the state models for
the session and interface, refer to State Models.

4.2. API Reference 41

NI-XNET Python API Documentation, Release 0.3.1

If an output session starts before you write data, or you read an input session before it receives a frame,
default data is used. For more information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

state
Session running state.

Type nixnet._enums.SessionInfoState

stop(scope=<StartStopScope.NORMAL: 0>)
Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared), this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can stop each logical unit separately. When a session is stopped, all contained frames or signals are
placed in a state where they are no longer ready to communicate. When the interface is stopped, it no
longer takes data from sessions to communicate with other nodes on the bus. For a specification of the
state models for the session and interface, refer to State Models.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

time_communicating
Time the interface started communicating.

The time is usually later than time_start because the interface must undergo a communication startup
procedure.

Type int

time_current
Current interface time.

Type int

time_start
Time the interface was started.

Type int

wait_for_intf_communicating(timeout=10)
Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for the trigger. Once the interface is started,
this waits for the protocol’s communication state to transition to a value that indicates communication with
remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

42 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for communication (invalid time
of 0 prior)

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_intf_remote_wakeup(timeout=10)
Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the network. This wait is used
for CAN, when you set the ‘can_tcvr_state’ property to ‘constants.CanTcvrState.SLEEP’. Although the
interface itself is ready to communicate, this places the transceiver into a sleep state. When a remote CAN
node transmits a frame, the transceiver wakes up, and communication is restored. This wait detects that
remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to ‘constants.LinSleep.REMOTE_SLEEP’ or
‘constants.LinSleep.LOCAL_SLEEP’. When asleep, if a remote LIN ECU transmits the wakeup pattern
(break), the XNET LIN interface detects this transmission and wakes up. This wait detects that remote
wakeup.

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_transmit_complete(timeout=10)
Wait for transmition to complete.

All frames written for the session have been transmitted on the bus. This condition applies to CAN, LIN,
and FlexRay. This condition is state based, and the state is Boolean (true/false).

Parameters timeout (float) – The maximum amount of time to wait in seconds.

class nixnet.session.FrameOutSinglePointSession(interface_name, database_name, clus-
ter_name, frames)

Bases: nixnet._session.base.SessionBase

Frame Output Single-Point session.

This session writes frame values for the next transmit.

This session does not use queues to store frame values. If the write frame function is called twice before the
next transmit, the transmitted frame uses the value from the second call to the write frame function.

The output data is provided as a list of frames, one for each frame specified for the session.

For this session, NI-XNET transmits each frame according to its properties in the database. Therefore, when
you call the write frame function, the number of payload bytes in each frame value must match that frame’s
Payload Length property. The other frame value elements are ignored, so you can leave them uninitialized. For
CAN interfaces, if the number of payload bytes you write is smaller than the Payload Length configured in
the database, the requested number of bytes transmit. If the number of payload bytes is larger than the Payload
Length configured in the database, the queue is flushed and no frames transmit. For other interfaces, transmitting
a number of payload bytes different than the frame payload may cause unexpected results on the bus.

Note: Typical use case: Control or simulation applications that require lower level access to frames (not
signals).

application_protocol
This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

Type nixnet._enums.AppProtocol

4.2. API Reference 43

NI-XNET Python API Documentation, Release 0.3.1

auto_start
Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to the appropriate read function (if not al-
ready started using nixnet._session.base.SessionBase.start). This is done because there
is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write function contains valid data, you can
leave this property at its default value of true. If you need to call the appropriate write function multiple
times prior to starting the session, or if you are starting multiple sessions simultaneously, you can set
this property to false. After calling the appropriate write function as desired, you can call nixnet.
_session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to nixnet._session.base.SessionBase.
start with scope set to Normal. This starts the session itself, and if the interface is not already started, it
starts the interface also.

Type bool

can_comm
CAN Communication state

Type nixnet.types.CanComm

change_lin_diagnostic_schedule(schedule)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the diagnostic schedule.

Parameters schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic
schedule that the LIN master executes.

change_lin_schedule(sched_index)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the running schedule.

According to the LIN protocol, only the master executes schedules, not slaves. If the nixnet.
_session.intf.Interface.lin_master property is false (slave), this write function implicitly
sets that property to true (master). If the interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

Parameters sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the database with the
nixnet.database._cluster.Cluster.lin_schedules property.

check_fault()
Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET application calls. The fault cause may be
related to network communication, but it also can be related to XNET hardware, such as a fault in the
onboard processor. Although faults are extremely rare, nxReadState provides a detection method distinct
from the status of NI-XNET function calls, yet easy to use alongside the common practice of checking the
communication state.

close()
Close (clear) the XNET session.

This function stops communication for the session and releases all resources the session uses. It inter-
nally calls nixnet._session.base.SessionBase.stop with normal scope, so if this is the last
session using the interface, communication stops.

44 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

You typically use ‘close’ when you need to close the existing session to create a new session that uses the
same objects. For example, if you create a session for a frame named frame_a using Frame Output Single-
Point mode, then you create a second session for frame_a using Frame Output Queued mode, the second
call to the session constructor returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can close the previous use of frame_a to
create the new session.

cluster_name
This property returns the cluster (network) name used with the session.

Type str

connect_terminals(source, destination)
Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on the interface hardware. The XNET
terminal represents an external or internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI card, RTSI terminals for a PCI
card, or the single external terminal for a C Series module. Internal terminals include timebases (clocks)
and logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the pair is an internal and the other an
external.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

database_name
This property returns the database name used with the session.

Type str

disconnect_terminals(source, destination)
Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals previously connected with
nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET automatically disconnects all terminal
connections for that interface. Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections dynamically while an application is
running. To disconnect a terminal, you first must stop the interface using nixnet._session.
base.SessionBase.stop with the Interface Only scope. Then you can call ‘disconnect_terminals’
and nixnet._session.base.SessionBase.connect_terminals to adjust terminal connec-
tions. Finally, you can call nixnet._session.base.SessionBase.start with the Interface
Only scope to restart the interface.

You can disconnect only a terminal that has been previously connected. Attempting to disconnect a non-
connected terminal results in an error.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

flush()
Flushes (empties) all XNET session queues.

4.2. API Reference 45

NI-XNET Python API Documentation, Release 0.3.1

With the exception of single-point modes, all sessions use queues to store frames. For input modes, the
queues store frame values (or corresponding signal values) that have been received, but not obtained by
calling the read function. For output sessions, the queues store frame values provided to write function,
but not transmitted successfully.

nixnet._session.base.SessionBase.start and nixnet._session.base.
SessionBase.stop have no effect on these queues. Use ‘flush’ to discard all values in the
session’s queues.

For example, if you call a write function to write three frames, then immediately call nixnet.
_session.base.SessionBase.stop, then call nixnet._session.base.SessionBase.
start a few seconds later, the three frames transmit. If you call ‘flush’ between nixnet._session.
base.SessionBase.stop and nixnet._session.base.SessionBase.start, no frames
transmit.

As another example, if you receive three frames, then call nixnet._session.base.
SessionBase.stop, the three frames remains in the queue. If you call nixnet._session.base.
SessionBase.start a few seconds later, then call a read function, you obtain the three frames re-
ceived earlier, potentially followed by other frames received after calling nixnet._session.base.
SessionBase.start. If you call ‘flush’ between nixnet._session.base.SessionBase.
stop and nixnet._session.base.SessionBase.start, read function returns only frames re-
ceived after the calling nixnet._session.base.SessionBase.start.

frames
Operate on session’s frames

Type nixnet._session.frames.InFrames

intf
Returns the Interface configuration object for the session.

Type nixnet._session.intf.Interface

j1939
Returns the J1939 configuration object for the session.

Type nixnet._session.j1939.J1939

lin_comm
LIN Communication state

Type nixnet.types.LinComm

mode
This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

Type nixnet._enums.CreateSessionMode

num_pend
This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available to the appropriate read function.
If you call the appropriate read function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided to the appropriate write function
but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

46 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

num_unused
This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the size of the underlying queue(s). Contrary
to the Queue Size property, this value is in number of frames for Frame I/O, not number of bytes; for Signal
I/O, it is the number of signal values in both cases. After start, this property returns the queue size minus
the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the underlying queue(s).

For output sessions, this is the number of frame/signal values you can provide to a subsequent call to
the appropriate write function. If you call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

protocol
This property returns the protocol that the interface in the session uses.

Type nixnet._enums.Protocol

queue_size
Get or set queue size.

For output sessions, queues store data passed to the appropriate write function and not yet transmitted onto
the network. For input sessions, queues store data received from the network and not yet obtained using
the appropriate read function.

For most applications, the default queue sizes are sufficient. You can write to this property to override the
default. When you write (set) this property, you must do so prior to the first session start. You cannot set
this property again after calling nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values stored. This is analogous to the number
of values you use with the appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24 bytes. You can use this number
to convert the Queue Size (in bytes) to/from the number of frame values.

4.2. API Reference 47

NI-XNET Python API Documentation, Release 0.3.1

For CAN FD and FlexRay frame I/O sessions, each frame value size can vary depending on the payload
length. For more information, refer to Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame. Within the implementation,
each frame uses a dedicated queue. According to the formulas below, the default queue sizes can be
different for each frame. If you read the default Queue Size property for a Signal Input XY session, the
largest queue size is returned, so that a call to the appropriate read function of that size can empty all
queues. If you read the default Queue Size property for a Signal Output XY session, the smallest queue
size is returned, so that a call to the appropriate write function of that size can succeed when all queues are
empty. If you write the Queue Size property for a Signal I/O XY session, that size is used for all frames,
so you must ensure that it is sufficient for the frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one frame. Within the implemen-
tation, each frame uses a dedicated queue. The Queue Size property does not represent the memory in
these queues, but rather the amount of time stored. The default queue allocations store Application Time
worth of resampled signal values. If you read the default Queue Size property for a Signal I/O Waveform
session, it returns Application Time multiplied by the time Resample Rate. If you write the Queue Size
property for a Signal I/O Waveform session, that value is translated from a number of samples to a time,
and that time is used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored. Single-Point sessions always use a
value of 1 as the effective queue size.

Type int

start(scope=<StartStopScope.NORMAL: 0>)
Start communication for the XNET session.

Because the session is started automatically by default, this function is optional. This function is for
more advanced applications to start multiple sessions in a specific order. For more information about
the automatic start feature, refer to the nixnet._session.base.SessionBase.auto_start
property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can start each logical unit separately. When a session is started, all contained frames or signals are
placed in a state where they are ready to communicate. When the interface is started, it takes data from all
started sessions to communicate with other nodes on the bus. For a specification of the state models for
the session and interface, refer to State Models.

If an output session starts before you write data, or you read an input session before it receives a frame,
default data is used. For more information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

state
Session running state.

Type nixnet._enums.SessionInfoState

stop(scope=<StartStopScope.NORMAL: 0>)
Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared), this function is optional.

48 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can stop each logical unit separately. When a session is stopped, all contained frames or signals are
placed in a state where they are no longer ready to communicate. When the interface is stopped, it no
longer takes data from sessions to communicate with other nodes on the bus. For a specification of the
state models for the session and interface, refer to State Models.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

time_communicating
Time the interface started communicating.

The time is usually later than time_start because the interface must undergo a communication startup
procedure.

Type int

time_current
Current interface time.

Type int

time_start
Time the interface was started.

Type int

wait_for_intf_communicating(timeout=10)
Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for the trigger. Once the interface is started,
this waits for the protocol’s communication state to transition to a value that indicates communication with
remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for communication (invalid time
of 0 prior)

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_intf_remote_wakeup(timeout=10)
Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the network. This wait is used
for CAN, when you set the ‘can_tcvr_state’ property to ‘constants.CanTcvrState.SLEEP’. Although the
interface itself is ready to communicate, this places the transceiver into a sleep state. When a remote CAN
node transmits a frame, the transceiver wakes up, and communication is restored. This wait detects that
remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to ‘constants.LinSleep.REMOTE_SLEEP’ or
‘constants.LinSleep.LOCAL_SLEEP’. When asleep, if a remote LIN ECU transmits the wakeup pattern

4.2. API Reference 49

NI-XNET Python API Documentation, Release 0.3.1

(break), the XNET LIN interface detects this transmission and wakes up. This wait detects that remote
wakeup.

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_transmit_complete(timeout=10)
Wait for transmition to complete.

All frames written for the session have been transmitted on the bus. This condition applies to CAN, LIN,
and FlexRay. This condition is state based, and the state is Boolean (true/false).

Parameters timeout (float) – The maximum amount of time to wait in seconds.

class nixnet.session.SignalInSinglePointSession(interface_name, database_name, clus-
ter_name, signals)

Bases: nixnet._session.base.SessionBase

Signal Input Single-Point session.

This session reads the most recent value received for each signal.

This session does not use queues to store each received frame. If the interface receives two frames prior to calling
nixnet._session.signals.SinglePointInSignals.read, that call to nixnet._session.
signals.SinglePointInSignals.read returns signals for the second frame.

Use nixnet._session.signals.SinglePointInSignals.read for this session.

You also can specify a trigger signal for a frame. This signal name is :trigger:.<frame name>, and once it is
specified in the __init__ signals list, it returns a value of 0.0 if the frame did not arrive since the last Read
(or Start), and 1.0 if at least one frame of this ID arrived. You can specify multiple trigger signals for different
frames in the same session. For multiplexed signals, a signal may or may not be contained in a received frame.
To define a trigger signal for a multiplexed signal, use the signal name :trigger:.<frame name>.<signal name>.
This signal returns 1.0 only if a frame with appropriate set multiplexer bit has been received since the last Read
or Start.

Note: Typical use case: Control or simulation applications, such as Hardware In the Loop (HIL).

application_protocol
This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

Type nixnet._enums.AppProtocol

auto_start
Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to the appropriate read function (if not al-
ready started using nixnet._session.base.SessionBase.start). This is done because there
is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write function contains valid data, you can
leave this property at its default value of true. If you need to call the appropriate write function multiple
times prior to starting the session, or if you are starting multiple sessions simultaneously, you can set
this property to false. After calling the appropriate write function as desired, you can call nixnet.
_session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to nixnet._session.base.SessionBase.
start with scope set to Normal. This starts the session itself, and if the interface is not already started, it
starts the interface also.

Type bool

50 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

can_comm
CAN Communication state

Type nixnet.types.CanComm

change_lin_diagnostic_schedule(schedule)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the diagnostic schedule.

Parameters schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic
schedule that the LIN master executes.

change_lin_schedule(sched_index)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the running schedule.

According to the LIN protocol, only the master executes schedules, not slaves. If the nixnet.
_session.intf.Interface.lin_master property is false (slave), this write function implicitly
sets that property to true (master). If the interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

Parameters sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the database with the
nixnet.database._cluster.Cluster.lin_schedules property.

check_fault()
Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET application calls. The fault cause may be
related to network communication, but it also can be related to XNET hardware, such as a fault in the
onboard processor. Although faults are extremely rare, nxReadState provides a detection method distinct
from the status of NI-XNET function calls, yet easy to use alongside the common practice of checking the
communication state.

close()
Close (clear) the XNET session.

This function stops communication for the session and releases all resources the session uses. It inter-
nally calls nixnet._session.base.SessionBase.stop with normal scope, so if this is the last
session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to create a new session that uses the
same objects. For example, if you create a session for a frame named frame_a using Frame Output Single-
Point mode, then you create a second session for frame_a using Frame Output Queued mode, the second
call to the session constructor returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can close the previous use of frame_a to
create the new session.

cluster_name
This property returns the cluster (network) name used with the session.

Type str

connect_terminals(source, destination)
Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on the interface hardware. The XNET
terminal represents an external or internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI card, RTSI terminals for a PCI

4.2. API Reference 51

NI-XNET Python API Documentation, Release 0.3.1

card, or the single external terminal for a C Series module. Internal terminals include timebases (clocks)
and logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the pair is an internal and the other an
external.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

database_name
This property returns the database name used with the session.

Type str

disconnect_terminals(source, destination)
Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals previously connected with
nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET automatically disconnects all terminal
connections for that interface. Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections dynamically while an application is
running. To disconnect a terminal, you first must stop the interface using nixnet._session.
base.SessionBase.stop with the Interface Only scope. Then you can call ‘disconnect_terminals’
and nixnet._session.base.SessionBase.connect_terminals to adjust terminal connec-
tions. Finally, you can call nixnet._session.base.SessionBase.start with the Interface
Only scope to restart the interface.

You can disconnect only a terminal that has been previously connected. Attempting to disconnect a non-
connected terminal results in an error.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

flush()
Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to store frames. For input modes, the
queues store frame values (or corresponding signal values) that have been received, but not obtained by
calling the read function. For output sessions, the queues store frame values provided to write function,
but not transmitted successfully.

nixnet._session.base.SessionBase.start and nixnet._session.base.
SessionBase.stop have no effect on these queues. Use ‘flush’ to discard all values in the
session’s queues.

For example, if you call a write function to write three frames, then immediately call nixnet.
_session.base.SessionBase.stop, then call nixnet._session.base.SessionBase.
start a few seconds later, the three frames transmit. If you call ‘flush’ between nixnet._session.
base.SessionBase.stop and nixnet._session.base.SessionBase.start, no frames
transmit.

As another example, if you receive three frames, then call nixnet._session.base.
SessionBase.stop, the three frames remains in the queue. If you call nixnet._session.base.
SessionBase.start a few seconds later, then call a read function, you obtain the three frames re-

52 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

ceived earlier, potentially followed by other frames received after calling nixnet._session.base.
SessionBase.start. If you call ‘flush’ between nixnet._session.base.SessionBase.
stop and nixnet._session.base.SessionBase.start, read function returns only frames re-
ceived after the calling nixnet._session.base.SessionBase.start.

intf
Returns the Interface configuration object for the session.

Type nixnet._session.intf.Interface

j1939
Returns the J1939 configuration object for the session.

Type nixnet._session.j1939.J1939

lin_comm
LIN Communication state

Type nixnet.types.LinComm

mode
This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

Type nixnet._enums.CreateSessionMode

num_pend
This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available to the appropriate read function.
If you call the appropriate read function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided to the appropriate write function
but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

num_unused
This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the size of the underlying queue(s). Contrary
to the Queue Size property, this value is in number of frames for Frame I/O, not number of bytes; for Signal
I/O, it is the number of signal values in both cases. After start, this property returns the queue size minus
the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the underlying queue(s).

4.2. API Reference 53

NI-XNET Python API Documentation, Release 0.3.1

For output sessions, this is the number of frame/signal values you can provide to a subsequent call to
the appropriate write function. If you call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

protocol
This property returns the protocol that the interface in the session uses.

Type nixnet._enums.Protocol

queue_size
Get or set queue size.

For output sessions, queues store data passed to the appropriate write function and not yet transmitted onto
the network. For input sessions, queues store data received from the network and not yet obtained using
the appropriate read function.

For most applications, the default queue sizes are sufficient. You can write to this property to override the
default. When you write (set) this property, you must do so prior to the first session start. You cannot set
this property again after calling nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values stored. This is analogous to the number
of values you use with the appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24 bytes. You can use this number
to convert the Queue Size (in bytes) to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can vary depending on the payload
length. For more information, refer to Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame. Within the implementation,
each frame uses a dedicated queue. According to the formulas below, the default queue sizes can be
different for each frame. If you read the default Queue Size property for a Signal Input XY session, the
largest queue size is returned, so that a call to the appropriate read function of that size can empty all
queues. If you read the default Queue Size property for a Signal Output XY session, the smallest queue
size is returned, so that a call to the appropriate write function of that size can succeed when all queues are
empty. If you write the Queue Size property for a Signal I/O XY session, that size is used for all frames,
so you must ensure that it is sufficient for the frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one frame. Within the implemen-
tation, each frame uses a dedicated queue. The Queue Size property does not represent the memory in
these queues, but rather the amount of time stored. The default queue allocations store Application Time
worth of resampled signal values. If you read the default Queue Size property for a Signal I/O Waveform
session, it returns Application Time multiplied by the time Resample Rate. If you write the Queue Size
property for a Signal I/O Waveform session, that value is translated from a number of samples to a time,
and that time is used to allocate memory for each queue.

54 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

For Single-Point sessions (signal or frame), this property is ignored. Single-Point sessions always use a
value of 1 as the effective queue size.

Type int

signals
Operate on session’s signals

Type nixnet._session.signals.SinglePointInSignals

start(scope=<StartStopScope.NORMAL: 0>)
Start communication for the XNET session.

Because the session is started automatically by default, this function is optional. This function is for
more advanced applications to start multiple sessions in a specific order. For more information about
the automatic start feature, refer to the nixnet._session.base.SessionBase.auto_start
property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can start each logical unit separately. When a session is started, all contained frames or signals are
placed in a state where they are ready to communicate. When the interface is started, it takes data from all
started sessions to communicate with other nodes on the bus. For a specification of the state models for
the session and interface, refer to State Models.

If an output session starts before you write data, or you read an input session before it receives a frame,
default data is used. For more information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

state
Session running state.

Type nixnet._enums.SessionInfoState

stop(scope=<StartStopScope.NORMAL: 0>)
Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared), this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can stop each logical unit separately. When a session is stopped, all contained frames or signals are
placed in a state where they are no longer ready to communicate. When the interface is stopped, it no
longer takes data from sessions to communicate with other nodes on the bus. For a specification of the
state models for the session and interface, refer to State Models.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

4.2. API Reference 55

NI-XNET Python API Documentation, Release 0.3.1

time_communicating
Time the interface started communicating.

The time is usually later than time_start because the interface must undergo a communication startup
procedure.

Type int

time_current
Current interface time.

Type int

time_start
Time the interface was started.

Type int

wait_for_intf_communicating(timeout=10)
Wait for the interface to begin communication on the network.

If a start trigger is configured for the interface, this first waits for the trigger. Once the interface is started,
this waits for the protocol’s communication state to transition to a value that indicates communication with
remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for communication (invalid time
of 0 prior)

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_intf_remote_wakeup(timeout=10)
Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the network. This wait is used
for CAN, when you set the ‘can_tcvr_state’ property to ‘constants.CanTcvrState.SLEEP’. Although the
interface itself is ready to communicate, this places the transceiver into a sleep state. When a remote CAN
node transmits a frame, the transceiver wakes up, and communication is restored. This wait detects that
remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to ‘constants.LinSleep.REMOTE_SLEEP’ or
‘constants.LinSleep.LOCAL_SLEEP’. When asleep, if a remote LIN ECU transmits the wakeup pattern
(break), the XNET LIN interface detects this transmission and wakes up. This wait detects that remote
wakeup.

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_transmit_complete(timeout=10)
Wait for transmition to complete.

All frames written for the session have been transmitted on the bus. This condition applies to CAN, LIN,
and FlexRay. This condition is state based, and the state is Boolean (true/false).

Parameters timeout (float) – The maximum amount of time to wait in seconds.

class nixnet.session.SignalOutSinglePointSession(interface_name, database_name,
cluster_name, signals)

Bases: nixnet._session.base.SessionBase

56 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

Signal Out Single-Point session.

This session writes signal values for the next frame transmit.

This session does not use queues to store signal values. If nixnet._session.signals.
SinglePointOutSignals.write is called twice before the next transmit, the transmitted frame uses sig-
nal values from the second call to nixnet._session.signals.SinglePointOutSignals.write.

Use nixnet._session.signals.SinglePointOutSignals.write for this session.

You also can specify a trigger signal for a frame. This signal name is :trigger:.<frame name>, and once it is
specified in the __init__ signals list, you can write a value of 0.0 to suppress writing of that frame, or any
value not equal to 0.0 to write the frame. You can specify multiple trigger signals for different frames in the
same session.

Note: Typical use case: Control or simulation applications, such as Hardware In the Loop (HIL).

application_protocol
This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

Type nixnet._enums.AppProtocol

auto_start
Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to the appropriate read function (if not al-
ready started using nixnet._session.base.SessionBase.start). This is done because there
is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write function contains valid data, you can
leave this property at its default value of true. If you need to call the appropriate write function multiple
times prior to starting the session, or if you are starting multiple sessions simultaneously, you can set
this property to false. After calling the appropriate write function as desired, you can call nixnet.
_session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to nixnet._session.base.SessionBase.
start with scope set to Normal. This starts the session itself, and if the interface is not already started, it
starts the interface also.

Type bool

can_comm
CAN Communication state

Type nixnet.types.CanComm

change_lin_diagnostic_schedule(schedule)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the diagnostic schedule.

Parameters schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic
schedule that the LIN master executes.

change_lin_schedule(sched_index)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the running schedule.

4.2. API Reference 57

NI-XNET Python API Documentation, Release 0.3.1

According to the LIN protocol, only the master executes schedules, not slaves. If the nixnet.
_session.intf.Interface.lin_master property is false (slave), this write function implicitly
sets that property to true (master). If the interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

Parameters sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the database with the
nixnet.database._cluster.Cluster.lin_schedules property.

check_fault()
Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET application calls. The fault cause may be
related to network communication, but it also can be related to XNET hardware, such as a fault in the
onboard processor. Although faults are extremely rare, nxReadState provides a detection method distinct
from the status of NI-XNET function calls, yet easy to use alongside the common practice of checking the
communication state.

close()
Close (clear) the XNET session.

This function stops communication for the session and releases all resources the session uses. It inter-
nally calls nixnet._session.base.SessionBase.stop with normal scope, so if this is the last
session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to create a new session that uses the
same objects. For example, if you create a session for a frame named frame_a using Frame Output Single-
Point mode, then you create a second session for frame_a using Frame Output Queued mode, the second
call to the session constructor returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can close the previous use of frame_a to
create the new session.

cluster_name
This property returns the cluster (network) name used with the session.

Type str

connect_terminals(source, destination)
Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on the interface hardware. The XNET
terminal represents an external or internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI card, RTSI terminals for a PCI
card, or the single external terminal for a C Series module. Internal terminals include timebases (clocks)
and logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the pair is an internal and the other an
external.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

database_name
This property returns the database name used with the session.

Type str

disconnect_terminals(source, destination)
Disconnect terminals on the XNET interface.

58 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

This function disconnects a specific pair of source/destination terminals previously connected with
nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET automatically disconnects all terminal
connections for that interface. Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections dynamically while an application is
running. To disconnect a terminal, you first must stop the interface using nixnet._session.
base.SessionBase.stop with the Interface Only scope. Then you can call ‘disconnect_terminals’
and nixnet._session.base.SessionBase.connect_terminals to adjust terminal connec-
tions. Finally, you can call nixnet._session.base.SessionBase.start with the Interface
Only scope to restart the interface.

You can disconnect only a terminal that has been previously connected. Attempting to disconnect a non-
connected terminal results in an error.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

flush()
Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to store frames. For input modes, the
queues store frame values (or corresponding signal values) that have been received, but not obtained by
calling the read function. For output sessions, the queues store frame values provided to write function,
but not transmitted successfully.

nixnet._session.base.SessionBase.start and nixnet._session.base.
SessionBase.stop have no effect on these queues. Use ‘flush’ to discard all values in the
session’s queues.

For example, if you call a write function to write three frames, then immediately call nixnet.
_session.base.SessionBase.stop, then call nixnet._session.base.SessionBase.
start a few seconds later, the three frames transmit. If you call ‘flush’ between nixnet._session.
base.SessionBase.stop and nixnet._session.base.SessionBase.start, no frames
transmit.

As another example, if you receive three frames, then call nixnet._session.base.
SessionBase.stop, the three frames remains in the queue. If you call nixnet._session.base.
SessionBase.start a few seconds later, then call a read function, you obtain the three frames re-
ceived earlier, potentially followed by other frames received after calling nixnet._session.base.
SessionBase.start. If you call ‘flush’ between nixnet._session.base.SessionBase.
stop and nixnet._session.base.SessionBase.start, read function returns only frames re-
ceived after the calling nixnet._session.base.SessionBase.start.

intf
Returns the Interface configuration object for the session.

Type nixnet._session.intf.Interface

j1939
Returns the J1939 configuration object for the session.

Type nixnet._session.j1939.J1939

lin_comm
LIN Communication state

Type nixnet.types.LinComm

4.2. API Reference 59

NI-XNET Python API Documentation, Release 0.3.1

mode
This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

Type nixnet._enums.CreateSessionMode

num_pend
This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available to the appropriate read function.
If you call the appropriate read function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided to the appropriate write function
but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

num_unused
This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the size of the underlying queue(s). Contrary
to the Queue Size property, this value is in number of frames for Frame I/O, not number of bytes; for Signal
I/O, it is the number of signal values in both cases. After start, this property returns the queue size minus
the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the underlying queue(s).

For output sessions, this is the number of frame/signal values you can provide to a subsequent call to
the appropriate write function. If you call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

protocol
This property returns the protocol that the interface in the session uses.

60 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

Type nixnet._enums.Protocol

queue_size
Get or set queue size.

For output sessions, queues store data passed to the appropriate write function and not yet transmitted onto
the network. For input sessions, queues store data received from the network and not yet obtained using
the appropriate read function.

For most applications, the default queue sizes are sufficient. You can write to this property to override the
default. When you write (set) this property, you must do so prior to the first session start. You cannot set
this property again after calling nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values stored. This is analogous to the number
of values you use with the appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24 bytes. You can use this number
to convert the Queue Size (in bytes) to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can vary depending on the payload
length. For more information, refer to Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame. Within the implementation,
each frame uses a dedicated queue. According to the formulas below, the default queue sizes can be
different for each frame. If you read the default Queue Size property for a Signal Input XY session, the
largest queue size is returned, so that a call to the appropriate read function of that size can empty all
queues. If you read the default Queue Size property for a Signal Output XY session, the smallest queue
size is returned, so that a call to the appropriate write function of that size can succeed when all queues are
empty. If you write the Queue Size property for a Signal I/O XY session, that size is used for all frames,
so you must ensure that it is sufficient for the frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one frame. Within the implemen-
tation, each frame uses a dedicated queue. The Queue Size property does not represent the memory in
these queues, but rather the amount of time stored. The default queue allocations store Application Time
worth of resampled signal values. If you read the default Queue Size property for a Signal I/O Waveform
session, it returns Application Time multiplied by the time Resample Rate. If you write the Queue Size
property for a Signal I/O Waveform session, that value is translated from a number of samples to a time,
and that time is used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored. Single-Point sessions always use a
value of 1 as the effective queue size.

Type int

signals
Operate on session’s signals

Type nixnet._session.signals.SinglePointInSignals

start(scope=<StartStopScope.NORMAL: 0>)
Start communication for the XNET session.

Because the session is started automatically by default, this function is optional. This function is for
more advanced applications to start multiple sessions in a specific order. For more information about
the automatic start feature, refer to the nixnet._session.base.SessionBase.auto_start
property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

4.2. API Reference 61

NI-XNET Python API Documentation, Release 0.3.1

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can start each logical unit separately. When a session is started, all contained frames or signals are
placed in a state where they are ready to communicate. When the interface is started, it takes data from all
started sessions to communicate with other nodes on the bus. For a specification of the state models for
the session and interface, refer to State Models.

If an output session starts before you write data, or you read an input session before it receives a frame,
default data is used. For more information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

state
Session running state.

Type nixnet._enums.SessionInfoState

stop(scope=<StartStopScope.NORMAL: 0>)
Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared), this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can stop each logical unit separately. When a session is stopped, all contained frames or signals are
placed in a state where they are no longer ready to communicate. When the interface is stopped, it no
longer takes data from sessions to communicate with other nodes on the bus. For a specification of the
state models for the session and interface, refer to State Models.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

time_communicating
Time the interface started communicating.

The time is usually later than time_start because the interface must undergo a communication startup
procedure.

Type int

time_current
Current interface time.

Type int

time_start
Time the interface was started.

Type int

wait_for_intf_communicating(timeout=10)
Wait for the interface to begin communication on the network.

62 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

If a start trigger is configured for the interface, this first waits for the trigger. Once the interface is started,
this waits for the protocol’s communication state to transition to a value that indicates communication with
remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for communication (invalid time
of 0 prior)

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_intf_remote_wakeup(timeout=10)
Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the network. This wait is used
for CAN, when you set the ‘can_tcvr_state’ property to ‘constants.CanTcvrState.SLEEP’. Although the
interface itself is ready to communicate, this places the transceiver into a sleep state. When a remote CAN
node transmits a frame, the transceiver wakes up, and communication is restored. This wait detects that
remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to ‘constants.LinSleep.REMOTE_SLEEP’ or
‘constants.LinSleep.LOCAL_SLEEP’. When asleep, if a remote LIN ECU transmits the wakeup pattern
(break), the XNET LIN interface detects this transmission and wakes up. This wait detects that remote
wakeup.

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_transmit_complete(timeout=10)
Wait for transmition to complete.

All frames written for the session have been transmitted on the bus. This condition applies to CAN, LIN,
and FlexRay. This condition is state based, and the state is Boolean (true/false).

Parameters timeout (float) – The maximum amount of time to wait in seconds.

nixnet.session.frames

class nixnet._session.frames.Frame(handle, index, name)
Bases: nixnet._session.collection.Item

Frame configuration for a session.

set_can_start_time_off(offset)
Set CAN Start Time Offset.

Use this function to have more control over the schedule of frames on the bus, to offer more determinism
by configuring cyclic frames to be spaced evenly.

If you do not call this function or you set it to a negative number, NI-XNET chooses this start time offset
based on the arbitration identifier and periodic transmit time.

offset takes effect whenever a session is started. If you stop a session and restart it, the start time offset
is re-evaluated.

Parameters offset (float) – The amount of time that must elapse between the session being
started and the time that the first frame is transmitted across the bus. This is different than
the cyclic rate, which determines the time between subsequent frame transmissions.

4.2. API Reference 63

NI-XNET Python API Documentation, Release 0.3.1

set_can_tx_time(time)
Set CAN Transmit Time.

If you call this function while a frame object is currently started, the frame object is stopped, the cyclic
rate updated, and then the frame object is restarted. Because of the stopping and starting, the frame’s start
time offset is re-evaluated.

The first time a queued frame object is started, the XNET frame’s transmit time determines the object’s
default queue size. Changing this rate has no impact on the queue size. Depending on how you change the
rate, the queue may not be sufficient to store data for an extended period of time. You can mitigate this by
setting the session Queue Size property to provide sufficient storage for all rates you use. If you are using
a single-point session, this is not relevant.

Parameters time (float) – Frame’s transmit time while the session is running. The transmit
time is the amount of time that must elapse between subsequent transmissions of a cyclic
frame. The default value of this property comes from the database (the XNET Frame CAN
Transmit Time property).

set_j1939_addr_filter(address=”)
Set J1939 Address Filter.

Define a filter for the source address of the PGN transmitting node. You can use it when multiple nodes
with different addresses are transmitting the same PGN.

If the filter is active, the session accepts only frames transmitted by a node with the defined address. All
other frames with the same PGN but transmitted by other nodes are ignored.

Note: You can use this function in input sessions only.

Parameters address (str or int) – Decimal value of the address. Leave blank to reset
the filter.

set_lin_tx_n_corrupted_chksums(n)
Set LIN Transmit N Corrupted Checksums.

When set to a nonzero value, this function causes the next N number of checksums to be corrupted.
The checksum is corrupted by negating the value calculated per the database; (EnhancedValue * -1) or
(ClassicValue * -1).

If the frame is transmitted in an unconditional or sporadic schedule slot, N is always decremented for each
frame transmission. If the frame is transmitted in an event-triggered slot and a collision occurs, N is not
decremented. In that case, N is decremented only when the collision resolving schedule is executed and
the frame is successfully transmitted. If the frame is the only one to transmit in the event-triggered slot (no
collision), N is decremented at event-triggered slot time.

This function is useful for testing ECU behavior when a corrupted checksum is transmitted.

Note: This function is valid only for output sessions.

Parameters n (int) – Number of checksums to be corrupted.

set_skip_n_cyclic_frames(n)
Set Skip N Cyclic Frames

64 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

When the frame’s transmission time arrives and the skip count is nonzero, a frame value is dequeued (if this
is not a single-point session), and the skip count is decremented, but the frame actually is not transmitted
across the bus. When the skip count decrements to zero, subsequent cyclic transmissions resume.

This function is useful for testing of ECU behavior when a cyclic frame is expected, but is missing for N
cycles.

Note: Only CAN interfaces currently support this function.

Note: This property is valid only for output sessions and frames with cyclic timing (that is, not event-
based frames).

Parameters n (int) – Skip the next N cyclic frames when nonzero.

class nixnet._session.frames.Frames(handle)
Bases: nixnet._session.collection.Collection

Frames in a session.

count(value)→ integer – return number of occurrences of value

get(index, default=None)
Access an item, returning default on failure.

Parameters

• index (str or int) – Item name or index

• default – Value to return when lookup fails

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

payld_len_max
Returns the maximum payload length of all frames in this session, expressed as bytes (0-254).

For CAN Stream (Input and Output), this property depends on the XNET Cluster CAN I/O Mode prop-
erty. If the I/O mode is constants.CanIoMode.CAN, this property is 8 bytes. If the I/O mode is ‘con-
stants.CanIoMode.CAN_FD’ or ‘constants.CanIoMode.CAN_FD_BRS’, this property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes.

For FlexRay Stream (Input and Output), this property is the same as the XNET Cluster FlexRay Payload
Length Maximum property value.

For Queued and Single-Point (Input and Output), this is the maximum payload of all frames specified in
the List property.

Type int

class nixnet._session.frames.InFrames(handle)
Bases: nixnet._session.frames.Frames

Frames in a session.

count(value)→ integer – return number of occurrences of value

4.2. API Reference 65

NI-XNET Python API Documentation, Release 0.3.1

get(index, default=None)
Access an item, returning default on failure.

Parameters

• index (str or int) – Item name or index

• default – Value to return when lookup fails

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

payld_len_max
Returns the maximum payload length of all frames in this session, expressed as bytes (0-254).

For CAN Stream (Input and Output), this property depends on the XNET Cluster CAN I/O Mode prop-
erty. If the I/O mode is constants.CanIoMode.CAN, this property is 8 bytes. If the I/O mode is ‘con-
stants.CanIoMode.CAN_FD’ or ‘constants.CanIoMode.CAN_FD_BRS’, this property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes.

For FlexRay Stream (Input and Output), this property is the same as the XNET Cluster FlexRay Payload
Length Maximum property value.

For Queued and Single-Point (Input and Output), this is the maximum payload of all frames specified in
the List property.

Type int

read(num_frames, timeout=0, frame_type=<class ’nixnet.types.XnetFrame’>)
Read frames.

Parameters

• num_frames (int) – Number of frames to read.

• timeout (float) – The time in seconds to wait for number to read frame bytes to
become available.

If ‘timeout’ is positive, this function waits for ‘num_frames’ frames to be received, then re-
turns complete frames up to that number. If the frames do not arrive prior to the ‘timeout’,
an error is returned.

If ‘timeout’ is ‘constants.TIMEOUT_INFINITE’, this function waits indefinitely for
‘num_frames’ frames.

If ‘timeout’ is ‘constants.TIMEOUT_NONE’, this function does not wait and immediately
returns all available frames up to the limit ‘num_frames’ specifies.

• frame_type (nixnet.types.FrameFactory) – A factory for the desired frame
formats.

Yields nixnet.types.Frame

read_bytes(num_bytes, timeout=0)
Read data as a list of raw bytes (frame data).

The raw bytes encode one or more frames using the Raw Frame Format.

Parameters

• num_bytes (int) – The number of bytes to read.

66 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

• timeout (float) – The time in seconds to wait for number to read frame bytes to
become available.

To avoid returning a partial frame, even when ‘num_bytes’ are available from the hard-
ware, this read may return fewer bytes in buffer. For example, assume you pass
‘num_bytes’ 70 bytes and ‘timeout’ of 10 seconds. During the read, two frames are re-
ceived, the first 24 bytes in size, and the second 56 bytes in size, for a total of 80 bytes.
The read returns after the two frames are received, but only the first frame is copied to
data. If the read copied 46 bytes of the second frame (up to the limit of 70), that frame
would be incomplete and therefore difficult to interpret. To avoid this problem, the read
always returns complete frames in buffer.

If ‘timeout’ is positive, this function waits for ‘num_bytes’ frame bytes to be received,
then returns complete frames up to that number. If the bytes do not arrive prior to the
‘timeout’, an error is returned.

If ‘timeout’ is ‘constants.TIMEOUT_INFINITE’, this function waits indefinitely for
‘num_bytes’ frame bytes.

If ‘timeout’ is ‘constants.TIMEOUT_NONE’, this function does not wait and immediately
returns all available frame bytes up to the limit ‘num_bytes’ specifies.

Returns A list of raw bytes representing the data.

class nixnet._session.frames.OutFrames(handle)
Bases: nixnet._session.frames.Frames

Frames in a session.

count(value)→ integer – return number of occurrences of value

get(index, default=None)
Access an item, returning default on failure.

Parameters

• index (str or int) – Item name or index

• default – Value to return when lookup fails

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

payld_len_max
Returns the maximum payload length of all frames in this session, expressed as bytes (0-254).

For CAN Stream (Input and Output), this property depends on the XNET Cluster CAN I/O Mode prop-
erty. If the I/O mode is constants.CanIoMode.CAN, this property is 8 bytes. If the I/O mode is ‘con-
stants.CanIoMode.CAN_FD’ or ‘constants.CanIoMode.CAN_FD_BRS’, this property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes.

For FlexRay Stream (Input and Output), this property is the same as the XNET Cluster FlexRay Payload
Length Maximum property value.

For Queued and Single-Point (Input and Output), this is the maximum payload of all frames specified in
the List property.

Type int

write(frames, timeout=10)
Write frame data.

4.2. API Reference 67

NI-XNET Python API Documentation, Release 0.3.1

Parameters

• frames (list of float) – One or more nixnet.types.Frame objects to be
written to the session.

• timeout (float) – The time in seconds to wait for number to read frame bytes to
become available.

If ‘timeout’ is positive, this function waits up to that ‘timeout’ for space to become avail-
able in queues. If the space is not available prior to the ‘timeout’, a ‘timeout’ error is
returned.

If ‘timeout’ is ‘constants.TIMEOUT_INFINITE’, this functions waits indefinitely for
space to become available in queues.

If ‘timeout’ is ‘constants.TIMEOUT_NONE’, this function does not wait and immediately
returns with a ‘timeout’ error if all data cannot be queued. Regardless of the ‘timeout’
used, if a ‘timeout’ error occurs, none of the data is queued, so you can attempt to call this
function again at a later time with the same data.

write_bytes(frame_bytes, timeout=10)
Write a list of raw bytes (frame data).

The raw bytes encode one or more frames using the Raw Frame Format.

Parameters

• frame_bytes (bytes) – Frames to transmit.

• timeout (float) – The time in seconds to wait for number to read frame bytes to
become available.

If ‘timeout’ is positive, this function waits up to that ‘timeout’ for space to become avail-
able in queues. If the space is not available prior to the ‘timeout’, a ‘timeout’ error is
returned.

If ‘timeout’ is ‘constants.TIMEOUT_INFINITE’, this functions waits indefinitely for
space to become available in queues.

If ‘timeout’ is ‘constants.TIMEOUT_NONE’, this function does not wait and immediately
returns with a ‘timeout’ error if all data cannot be queued. Regardless of the ‘timeout’
used, if a ‘timeout’ error occurs, none of the data is queued, so you can attempt to call this
function again at a later time with the same data.

class nixnet._session.frames.SinglePointInFrames(handle)
Bases: nixnet._session.frames.Frames

Frames in a session.

count(value)→ integer – return number of occurrences of value

get(index, default=None)
Access an item, returning default on failure.

Parameters

• index (str or int) – Item name or index

• default – Value to return when lookup fails

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

68 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

payld_len_max
Returns the maximum payload length of all frames in this session, expressed as bytes (0-254).

For CAN Stream (Input and Output), this property depends on the XNET Cluster CAN I/O Mode prop-
erty. If the I/O mode is constants.CanIoMode.CAN, this property is 8 bytes. If the I/O mode is ‘con-
stants.CanIoMode.CAN_FD’ or ‘constants.CanIoMode.CAN_FD_BRS’, this property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes.

For FlexRay Stream (Input and Output), this property is the same as the XNET Cluster FlexRay Payload
Length Maximum property value.

For Queued and Single-Point (Input and Output), this is the maximum payload of all frames specified in
the List property.

Type int

read(frame_type=<class ’nixnet.types.XnetFrame’>)
Read frames.

Parameters frame_type (nixnet.types.FrameFactory) – A factory for the desired
frame formats.

Yields nixnet.types.Frame

read_bytes(num_bytes)
Read data as a list of raw bytes (frame data).

Parameters num_bytes (int) – Number of bytes to read.

Returns Raw bytes representing the data.

Return type bytes

class nixnet._session.frames.SinglePointOutFrames(handle)
Bases: nixnet._session.frames.Frames

Frames in a session.

count(value)→ integer – return number of occurrences of value

get(index, default=None)
Access an item, returning default on failure.

Parameters

• index (str or int) – Item name or index

• default – Value to return when lookup fails

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

payld_len_max
Returns the maximum payload length of all frames in this session, expressed as bytes (0-254).

For CAN Stream (Input and Output), this property depends on the XNET Cluster CAN I/O Mode prop-
erty. If the I/O mode is constants.CanIoMode.CAN, this property is 8 bytes. If the I/O mode is ‘con-
stants.CanIoMode.CAN_FD’ or ‘constants.CanIoMode.CAN_FD_BRS’, this property is 64 bytes.

For LIN Stream (Input and Output), this property always is 8 bytes.

For FlexRay Stream (Input and Output), this property is the same as the XNET Cluster FlexRay Payload
Length Maximum property value.

4.2. API Reference 69

NI-XNET Python API Documentation, Release 0.3.1

For Queued and Single-Point (Input and Output), this is the maximum payload of all frames specified in
the List property.

Type int

write(frames)
Write frame data.

Parameters frames (list of float) – One or more nixnet.types.Frame objects
to be written to the session.

write_bytes(frame_bytes)
Write a list of raw bytes (frame data).

The raw bytes encode one or more frames using the Raw Frame Format.

Parameters frame_bytes (bytes) – Frames to transmit.

nixnet.session.signals

class nixnet._session.signals.Signal(handle, index, name)
Bases: nixnet._session.collection.Item

Signal configuration for a session.

class nixnet._session.signals.Signals(handle)
Bases: nixnet._session.collection.Collection

Signals in a session.

count(value)→ integer – return number of occurrences of value

get(index, default=None)
Access an item, returning default on failure.

Parameters

• index (str or int) – Item name or index

• default – Value to return when lookup fails

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

class nixnet._session.signals.SinglePointInSignals(handle)
Bases: nixnet._session.signals.Signals

Writeable signals in a session.

count(value)→ integer – return number of occurrences of value

get(index, default=None)
Access an item, returning default on failure.

Parameters

• index (str or int) – Item name or index

• default – Value to return when lookup fails

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

70 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

read()
Read data from a Signal Input Single-Point session.

Yields tuple of int and float – Timestamp and signal

class nixnet._session.signals.SinglePointOutSignals(handle)
Bases: nixnet._session.signals.Signals

Writeable signals in a session.

count(value)→ integer – return number of occurrences of value

get(index, default=None)
Access an item, returning default on failure.

Parameters

• index (str or int) – Item name or index

• default – Value to return when lookup fails

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

write(signals)
Write data to a Signal Output Single-Point session.

Parameters signals (list of float) – A list of signal values (float).

nixnet.session.intf

class nixnet._session.intf.Interface(handle)
Bases: object

Interface configuration for a session

baud_rate
CAN, FlexRay, or LIN interface baud rate.

The default value for this interface property is the same as the cluster’s baud rate in the database. Your
application can set this interface baud rate to override the value in the database, or when no database is
used.

CAN

When the upper nibble (0xF0000000) is clear, this is a numeric baud rate (for example, 500000).

NI-XNET CAN hardware currently accepts the following numeric baud rates: 33333, 40000, 50000,
62500, 80000, 83333, 100000, 125000, 160000, 200000, 250000, 400000, 500000, 800000, and 1000000.

LIN

When the upper nibble (0xF0000000) is clear, you can set only baud rates within the LIN-specified range
(2400 to 20000) for the interface.

Type int

bus_err_to_in_strm
Bus Error Frames to Input Stream?

Specifies whether the hardware should place a CAN or LIN bus error frame into the Stream Input queue
after it is generated.

4.2. API Reference 71

NI-XNET Python API Documentation, Release 0.3.1

Type bool

can_disable_prot_exception_handling
CAN Disable Protocol Exception Handling.

A protocol exception occurs when the CAN hardware detects an invalid combination of bits on the CAN
bus reserved for a future protocol expansion. NI-XNET allows you to define how the hardware should
behave in case of a protocol exception:

False (default): the CAN hardware stops receiving frames and starts a bus integration.

True: the CAN hardware transmits an error frame when it detects a protocol exception condition.

Type bool

can_edge_filter
CAN Enable Edge Filter.

When this property is enabled, the CAN hardware requires two consecutive dominant tq for hard synchro-
nization.

Type bool

can_fd_baud_rate
The fast data baud rate for can_io_mode of nixnet._enums.CanIoMode CAN_FD_BRS

The default value for this interface property is the same as the cluster’s FD baud rate in the database. Your
application can set this interface FD baud rate to override the value in the database.

When the upper nibble (0xF0000000) is clear, this is a numeric baud rate (for example, 500000).

NI-XNET CAN hardware currently accepts the following numeric baud rates: 200000, 250000, 400000,
500000, 800000, 1000000, 1250000, 1600000, 2000000, 2500000, 4000000, 5000000, and 8000000.

Note: Not all CAN transceivers are rated to transmit at the requested rate. If you attempt to use a rate
that exceeds the transceiver’s qualified rate, XNET Start returns a warning. NI-XNET Hardware Overview
describes the CAN transceivers’ limitations.

Type int

can_fd_iso_mode
CAN FS ISO Mode.

This property is valid only when the interface is in CAN FD(+BRS) mode. It specifies whether the interface
is working in the ISO CAN FD standard (ISO standard 11898-1:2015) or non-ISO CAN FD standard
(Bosch CAN FD 1.0 specification). Two ports using different standards (ISO CAN FD vs. non-ISO CAN
FD) cannot communicate with each other.

When you use a CAN FD database (DBC or FIBEX file created with NI-XNET), you can specify the
ISO CAN FD mode when creating an alias name for the database. An alias is created automatically when
you open a new database in the NI-XNET Database Editor. The specified ISO CAN FD mode is used as
default, which you can change in the session using this property.

Type nixnet._enums.CanFdIsoMode

can_io_mode
CAN IO Mode.

This property indicates the I/O Mode the interface is using.

72 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

The value is initialized from the database cluster when the session is created and cannot be changed later.
However, you can transmit standard CAN frames on a CAN FD network.

Type nixnet._enums.CanIoMode

can_lstn_only
Listen Only? property configures whether the CAN interface transmits any information to the CAN bus.

When this property is false, the interface can transmit CAN frames and acknowledge received CAN frames.

When this property is true, the interface can neither transmit CAN frames nor acknowledge a received CAN
frame. The true value enables passive monitoring of network traffic, which can be useful for debugging
scenarios when you do not want to interfere with a communicating network cluster.

Type bool

can_pend_tx_order
Pending Transmit Order

The Pending Transmit Order property configures how the CAN interface manages the internal queue of
frames. More than one frame may desire to transmit at the same time. NI-XNET stores the frames in an
internal queue and transmits them onto the CAN bus when the bus is idle.

Note: You can modify this property only when the interface is stopped.

Note: Setting this property causes the internal queue to be flushed. If you start a session, queue frames,
and then stop the session and change this mode, some frames may be lost. Set this property to the desired
value once; do not constantly change modes.

Type nixnet._enums.CanPendTxOrder

can_sing_shot
Single Shot Transmit?

The Single Shot Transmit? property configures whether the CAN interface retries failed transmissions.

When this property is false, failed transmissions retry as specified by the CAN protocol (ISO 11898-1,
6.11 Automatic Retransmission). If a CAN frame is not transmitted successfully, the interface attempts to
retransmit the frame as soon as the bus is idle again. This retransmit process continues until the frame is
successfully transmitted.

When this property is true, failed transmissions do not retry. If a CAN frame is not transmitted successfully,
no further transmissions are attempted.

Note: You can modify this property only when the interface is stopped.

Note: Setting this property causes the internal queue to be flushed. If you start a session, queue frames,
and then stop the session and change this mode, some frames may be lost. Set this property to the desired
value once; do not constantly change modes.

Type bool

4.2. API Reference 73

NI-XNET Python API Documentation, Release 0.3.1

can_tcvr_state
CAN Transceiver State.

The Transceiver State property configures the CAN transceiver and CAN controller modes. The transceiver
state controls whether the transceiver is asleep or communicating, as well as configuring other special
modes.

Type nixnet._enums.CanTcvrState

can_tcvr_type
CAN Transceiver Type.

For XNET hardware that provides a software-selectable transceiver, the Transceiver Type property allows
you to set the transceiver type. Use the XNET Interface CAN.Tranceiver Capability property to determine
whether your hardware supports a software-selectable transceiver.

The default value for this property depends on your type of hardware. If you have fixed-personality hard-
ware, the default value is the hardware value. If you have hardware that supports software-selectable
transceivers, the default is High-Speed.

Type nixnet._enums.CanTcvrType

can_term
CAN Termination.

The Termination property configures the onboard termination of the NI-XNET interface CAN connec-
tor (port). The enumeration is generic and supports two values: Off and On. However, different CAN
hardware has different termination requirements, and the Off and On values have different meanings, see
nixnet._enums.CanTerm.

Note: You can modify this property only when the interface is stopped.

Note: This property does not take effect until the interface is started.

Type nixnet._enums.CanTerm

can_transmit_pause
CAN Transmit Pause.

When this property is enabled, the CAN hardware waits for two bit times before transmitting the next
frame. This allows other CAN nodes to transmit lower priority CAN messages while this CAN node is
transmitting high-priority CAN messages with high speed.

Type bool

can_tx_io_mode
CAN Transmit IO Mode

This property specifies the I/O Mode the interface uses when transmitting a CAN frame. By default, it
is the same as the XNET Cluster CAN:I/O Mode property. However, even if the interface is in CAN
FD+BRS mode, you can force it to transmit frames in the standard CAN format. For this purpose, set this
property to CAN.

The Transmit I/O mode may not exceed the mode set by the XNET Cluster CAN:I/O Mode property.

Note: This property is not supported in CAN FD+BRS ISO mode. If you are using ISO CAN FD mode,
you define the transmit I/O mode in the database with the I/O Mode property of the frame. (When a

74 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

database is not used (for example, in frame stream mode), define the transmit I/O mode with the frame
type field of the frame data.) Note that ISO CAN FD mode is the default mode for CAN FD in NI-XNET.

Note: This property affects only the transmission of frames. Even if you set the transmit I/O mode to
CAN, the interface still can receive frames in FD modes (if the XNET Cluster CAN:I/O Mode property is
configured in an FD mode).

Type nixnet._enums.CanIoMode

echo_tx
Echo Transmit?

Determines whether Frame Input or Signal Input sessions contain frames that the interface transmits.

When this property is true, and a frame transmit is complete for an Output session, the frame is echoed
to the Input session. Frame Input sessions can use the Flags field to differentiate frames received from
the bus and frames the interface transmits. When reading frames with the nixnet.types.RawFrame,
you can parse the Flags field manually by reviewing the Raw Frame Format section. Signal Input sessions
cannot differentiate the origin of the incoming data.

Note: Echoed frames are placed into the input sessions only after the frame transmit is complete. If there
are bus problems (for example, no listener) such that the frame did not transmit, the frame is not received.

Type bool

lin_alw_start_wo_bus_pwr
LIN Start Allowed without Bus Power?

Configures whether the LIN interface does not check for bus power present at interface start, or checks and
reports an error if bus power is missing.

When this property is true, the LIN interface does not check for bus power present at start, so no error is
reported if the interface is started without bus power.

When this property is false, the LIN interface checks for bus power present at start, and an error is reported
if the interface is started without bus power.

Note: You can modify this property only when the interface is stopped.

Type bool

lin_break_length
LIN Break Length

The length of the serial break used at the start of a frame header (schedule entry). The value is specified in
bit-times.

The valid range is 10-36 (inclusive). The default value is 13, which is the value the LIN standard specifies.

At baud rates below 9600, the upper limit may be lower than 36 to avoid violating hold times for the bus.
For example, at 2400 baud, the valid range is 10-14.

4.2. API Reference 75

NI-XNET Python API Documentation, Release 0.3.1

Note: This property is applicable only when the interface is the master.

Type int

lin_checksum_to_in_strm
LIN Checksum to Input Stream?

Configure the hardware to place the received checksum for each LIN Data frame into the Event ID (Info)
field. When False, the Event ID field contains 0 for all LIN Data stream input frames.

Type bool

lin_diag_p2min
LIN Diag P2min

This is the minimum time in seconds between reception of the last frame of the diagnostic request message
and transmission of the response for the first frame in the diagnostic response message by the slave.

Note: This property applies only to the interface as slave.

Type float

lin_diag_stmin
LIN Diag STmin

master: The minimum time in seconds the interface places between the end of transmission of a frame in
a diagnostic request message and the start of transmission of the next frame in the diagnostic request
message.

slave: The minimum time in seconds the interface places between the end of transmission of a frame in
a diagnostic response message and the start of transmission of the response for the next frame in the
diagnostic response message.

Type float

lin_master
LIN Master?

Specifies the NI-XNET LIN interface role on the network: master (true) or slave (false).

In a LIN network (cluster), there always is a single ECU in the system called the master. The master
transmits a schedule of frame headers. Each frame header is a remote request for a specific frame ID.
For each header, typically a single ECU in the network (slave) responds by transmitting the requested
ID payload. The master ECU can respond to a specific header as well, and thus the master can transmit
payload data for the slave ECUs to receive.

The default value for this property is false (slave). This means that by default, the interface does not
transmit frame headers onto the network. When you use input sessions, you read frames that other ECUs
transmit. When you use output sessions, the NI-XNET interface waits for the remote master to send a
header for a frame in the output sessions, then the interface responds with data for the requested frame.

If you call the nixnet._session.base.SessionBase.change_lin_schedule function to
request execution of a schedule, that implicitly sets this property to true (master). You also can set this prop-
erty to true using, but no schedule is active by default, so you still must call the nixnet._session.

76 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

base.SessionBase.change_lin_schedule function at some point to request a specific sched-
ule.

Regardless of this property’s value, you use can input and output sessions. This property specifies which
hardware transmits the scheduled frame headers: NI-XNET (true) or a remote master ECU (false).

Type bool

lin_no_response_to_in_strm
LIN No Response Frames to Input Stream?

Configure the hardware to place a LIN no response frame into the Stream Input queue after it is gener-
ated. A no response frame is generated when the hardware detects a header with no response. For more
information about the no response frame, see nixnet.types.NoResponseFrame.

Type bool

lin_ostr_slv_rsp_lst_by_nad
LIN Output Stream Slave Response List By NAD

A list of NADs for use with the replay feature (nixnet._session.intf.Interface.
out_strm_timng set to Replay Exclusive or Replay Inclusive).

For LIN, the array of frames to replay might contain multiple slave response frames, each with the same
slave response identifier, but each having been transmitted by a different slave (per the NAD value in the
data payload). This means that processing slave response frames for replay requires two levels of filtering.
First, you can include or exclude the slave response frame or ID for replay using Interface:Output Stream
List or Interface:Output Stream List By ID. If you do not include the slave response frame or ID for
replay, no slave responses are transmitted. If you do include the slave response frame or ID for replay, you
can use the Output Stream Slave Response List by NAD property to filter which slave responses (per the
NAD values in the array) are transmitted. This property is always inclusive, regardless of the replay mode
(inclusive or exclusive). If the NAD is in the list and the response frame or ID has been enabled for replay,
any slave response for that NAD is transmitted. If the NAD is not in the list, no slave response for that
NAD is transmitted.

Type list of int

lin_sched_names
LIN Schedule Names

List of schedules for use when the NI-XNET LIN interface acts as a master (lin_master is true). When
the interface is master, you can pass the index of one of these schedules to the nixnet._session.
base.SessionBase.change_lin_schedule function to request a schedule change.

This list of schedules is the same as Cluster.lin_schedules used to configure the session.

Type list of str

lin_term
LIN Termination

The Termination property configures the NI-XNET interface LIN connector (port) onboard termination.
The enumeration is generic and supports two values: Off (disabled) and On (enabled).

Per the LIN 2.1 standard, the Master ECU has a ~1 kOhm termination resistor between Vbat and Vbus.
Therefore, use this property only if you are using your interface as the master and do not already have
external termination.

Note: You can modify this property only when the interface is stopped.

4.2. API Reference 77

NI-XNET Python API Documentation, Release 0.3.1

Note: This property does not take effect until the interface is started.

Type nixnet._enums.LinTerm

out_strm_list
Output Stream List.

The Output Stream List property provides a list of frames for use with the replay fea-
ture (out_strm_timng property set to OutStrmTimng REPLAY_EXCLUSIVE or
REPLAY_INCLUSIVE). In Replay Exclusive mode, the hardware transmits only frames that do
not appear in the list. In Replay Inclusive mode, the hardware transmits only frames that appear in the list.
For a LIN interface, the header of each frame written to stream output is transmitted, and the Exclusive
or Inclusive mode controls the response transmission. Using these modes, you can either emulate an
ECU (Replay Inclusive, where the list contains the frames the ECU transmits) or test an ECU (Replay
Exclusive, where the list contains the frames the ECU transmits), or some other combination.

This property’s data type is an array of database handles to frames. If you are not using a database file
or prefer to specify the frames using CAN arbitration IDs or LIN unprotected IDs, you can use Inter-
face:Output Stream List By ID instead of this property.

Note: Only CAN and LIN interfaces currently support this property.

out_strm_list_by_id
Output Stream List by Frame Identifier.

Provide a list of frames for use with the replay feature Interface:Output Stream Timing property.

This property serves the same purpose as Interface:Output Stream List, in that it provides a list of frames
for replay filtering. This property provides an alternate format for you to specify the frames by their
CAN arbitration ID or LIN unprotected ID. The property’s data type is an array of integers. Each integer
represents a CAN or LIN frame’s identifier, using the same encoding as nixnet.types.RawFrame.

For CAN Frames, see nixnet.types.CanIdentifier for parsing and generating raw identifiers.

LIN frame ID values may be within the range of possible LIN IDs (0-63).

See also Interface.out_strm_list.

Type int

out_strm_timng
Output Stream Timing.

The Output Stream Timing property configures how the hardware transmits frames queued using a Frame
Output Stream session.

See also Interface.out_strm_list.

Note: Only CAN and LIN interfaces currently support this property.

Type nixnet._enums.OutStrmTimng

set_can_ext_tcvr_config(value)
Configure XS series CAN hardware to communicate properly with your external transceiver.

78 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

Parameters value (int) – Bitfield

set_lin_sleep(state)
Set LIN Sleep State

Use the Sleep property to change the NI-XNET LIN interface sleep/awake state and optionally to change
remote node (ECU) sleep/awake states.

Note: Setting a new value is effectively a request, and the function returns before the request is complete.
To detect the current interface sleep/wake state, use nixnet._session.base.SessionBase.
lin_comm.

Parameters state (nixnet._enums.LinSleep) – Desired state.

src_term_start_trigger
Source Terminal Start Trigger

Specifies the name of the internal terminal to use as the interface Start Trigger.

This property is supported for C Series modules in a CompactDAQ chassis. It is not supported for Com-
pactRIO, PXI, or PCI (refer to nixnet._session.base.SessionBase.connect_terminals
for those platforms).

The digital trigger signal at this terminal is for the Start Interface transition, to begin communication for
all sessions that use the interface. This property routes the start trigger, but not the timebase (used for
timestamp of received frames and cyclic transmit of frames). Routing the timebase is not required for
CompactDAQ, because all modules in the chassis automatically use a shared timebase.

Use this property to connect the interface Start Trigger to triggers in other modules and/or interfaces. When
you read this property, you specify the interface Start Trigger as the source of a connection. When you
write this property, you specify the interface Start Trigger as the destination of a connection, and the value
you write represents the source.

The connection this property creates is disconnected when you clear (close) all sessions that use the inter-
face.

Type string

start_trig_to_in_strm
Start Trigger Frames to Input Stream?

Configures the hardware to place a start trigger frame into the Stream Input queue after it is generated. A
Start Trigger frame is generated when the interface is started.

The start trigger frame is especially useful if you plan to log and replay CAN data.

Type bool

nixnet.session.j1939

class nixnet._session.j1939.J1939(handle)
Bases: object

J1939 configuration for a session

include_dest_addr_in_pgn
SAE J1939 Include Destination Address in PGN

4.2. API Reference 79

NI-XNET Python API Documentation, Release 0.3.1

Incoming J1939 frames are matched to an XNET database by the Parameter Group Number (PGN) of the
frame. When receiving PDU1 frames, the destination address of the frame (J1939 PS field) is ignored
when calculating the PGN, in accordance to the J1939 specification. This causes an XNET session to
receive all frames that share the same PGN, making it difficult to distinguish destinations for traffic.

When set to True, this property instructs NI-XNET to include the destination address when extracting the
PGN from the frame. This allows the same PGN sent to different destination addresses to be handled by
separate input sessions.

This property may be set at any time. When set after session start, it will not affect frames already received.

This property is valid only for input sessions. It is not valid for stream sessions. This property affects all
frames in a session.

Type bool

nixnet.session.base

class nixnet._session.base.SessionBase(database_name, cluster_name, list, interface_name,
mode)

Bases: object

Session base object.

application_protocol
This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

Type nixnet._enums.AppProtocol

auto_start
Automatically starts the output session on the first call to the appropriate write function.

For input sessions, start always is performed within the first call to the appropriate read function (if not al-
ready started using nixnet._session.base.SessionBase.start). This is done because there
is no known use case for reading a stopped input session.

For output sessions, as long as the first call to the appropriate write function contains valid data, you can
leave this property at its default value of true. If you need to call the appropriate write function multiple
times prior to starting the session, or if you are starting multiple sessions simultaneously, you can set
this property to false. After calling the appropriate write function as desired, you can call nixnet.
_session.base.SessionBase.start to start the session(s).

When automatic start is performed, it is equivalent to nixnet._session.base.SessionBase.
start with scope set to Normal. This starts the session itself, and if the interface is not already started, it
starts the interface also.

Type bool

can_comm
CAN Communication state

Type nixnet.types.CanComm

change_lin_diagnostic_schedule(schedule)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the diagnostic schedule.

Parameters schedule (nixnet._enums.LinDiagnosticSchedule) – Diagnostic
schedule that the LIN master executes.

80 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

change_lin_schedule(sched_index)
Writes communication states of an XNET session.

This function writes a request for the LIN interface to change the running schedule.

According to the LIN protocol, only the master executes schedules, not slaves. If the nixnet.
_session.intf.Interface.lin_master property is false (slave), this write function implicitly
sets that property to true (master). If the interface currently is running as a slave, this write returns an error,
because it cannot change to master while running.

Parameters sched_index (int) – Index to the schedule table that the LIN master executes.

The schedule tables are sorted the way they are returned from the database with the
nixnet.database._cluster.Cluster.lin_schedules property.

check_fault()
Check for an asynchronous fault.

A fault is an error that occurs asynchronously to the NI-XNET application calls. The fault cause may be
related to network communication, but it also can be related to XNET hardware, such as a fault in the
onboard processor. Although faults are extremely rare, nxReadState provides a detection method distinct
from the status of NI-XNET function calls, yet easy to use alongside the common practice of checking the
communication state.

close()
Close (clear) the XNET session.

This function stops communication for the session and releases all resources the session uses. It inter-
nally calls nixnet._session.base.SessionBase.stop with normal scope, so if this is the last
session using the interface, communication stops.

You typically use ‘close’ when you need to close the existing session to create a new session that uses the
same objects. For example, if you create a session for a frame named frame_a using Frame Output Single-
Point mode, then you create a second session for frame_a using Frame Output Queued mode, the second
call to the session constructor returns an error, because frame_a can be accessed using only one output
mode. If you call ‘close’ before the second constructor call, you can close the previous use of frame_a to
create the new session.

cluster_name
This property returns the cluster (network) name used with the session.

Type str

connect_terminals(source, destination)
Connect terminals on the XNET interface.

This function connects a source terminal to a destination terminal on the interface hardware. The XNET
terminal represents an external or internal hardware connection point on a National Instruments XNET
hardware product. External terminals include PXI Trigger lines for a PXI card, RTSI terminals for a PCI
card, or the single external terminal for a C Series module. Internal terminals include timebases (clocks)
and logical entities such as a start trigger.

The terminal inputs use the Terminal I/O names. Typically, one of the pair is an internal and the other an
external.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

database_name
This property returns the database name used with the session.

4.2. API Reference 81

NI-XNET Python API Documentation, Release 0.3.1

Type str

disconnect_terminals(source, destination)
Disconnect terminals on the XNET interface.

This function disconnects a specific pair of source/destination terminals previously connected with
nixnet._session.base.SessionBase.connect_terminals.

When the final session for a given interface is cleared, NI-XNET automatically disconnects all terminal
connections for that interface. Therefore, ‘disconnect_terminals’ is not required for most applications.

This function typically is used to change terminal connections dynamically while an application is
running. To disconnect a terminal, you first must stop the interface using nixnet._session.
base.SessionBase.stop with the Interface Only scope. Then you can call ‘disconnect_terminals’
and nixnet._session.base.SessionBase.connect_terminals to adjust terminal connec-
tions. Finally, you can call nixnet._session.base.SessionBase.start with the Interface
Only scope to restart the interface.

You can disconnect only a terminal that has been previously connected. Attempting to disconnect a non-
connected terminal results in an error.

Parameters

• source (str) – Connection source name.

• destination (str) – Connection destination name.

flush()
Flushes (empties) all XNET session queues.

With the exception of single-point modes, all sessions use queues to store frames. For input modes, the
queues store frame values (or corresponding signal values) that have been received, but not obtained by
calling the read function. For output sessions, the queues store frame values provided to write function,
but not transmitted successfully.

nixnet._session.base.SessionBase.start and nixnet._session.base.
SessionBase.stop have no effect on these queues. Use ‘flush’ to discard all values in the
session’s queues.

For example, if you call a write function to write three frames, then immediately call nixnet.
_session.base.SessionBase.stop, then call nixnet._session.base.SessionBase.
start a few seconds later, the three frames transmit. If you call ‘flush’ between nixnet._session.
base.SessionBase.stop and nixnet._session.base.SessionBase.start, no frames
transmit.

As another example, if you receive three frames, then call nixnet._session.base.
SessionBase.stop, the three frames remains in the queue. If you call nixnet._session.base.
SessionBase.start a few seconds later, then call a read function, you obtain the three frames re-
ceived earlier, potentially followed by other frames received after calling nixnet._session.base.
SessionBase.start. If you call ‘flush’ between nixnet._session.base.SessionBase.
stop and nixnet._session.base.SessionBase.start, read function returns only frames re-
ceived after the calling nixnet._session.base.SessionBase.start.

intf
Returns the Interface configuration object for the session.

Type nixnet._session.intf.Interface

j1939
Returns the J1939 configuration object for the session.

Type nixnet._session.j1939.J1939

82 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

lin_comm
LIN Communication state

Type nixnet.types.LinComm

mode
This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

Type nixnet._enums.CreateSessionMode

num_pend
This property returns the number of values (frames or signals) pending for the session.

For input sessions, this is the number of frame/signal values available to the appropriate read function.
If you call the appropriate read function with number to read of this number and timeout of 0.0, the
appropriate read function should return this number of values successfully.

For output sessions, this is the number of frames/signal values provided to the appropriate write function
but not yet transmitted onto the network.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

num_unused
This property returns the number of values (frames or signals) unused for the session.

If you get this property prior to starting the session, it provides the size of the underlying queue(s). Contrary
to the Queue Size property, this value is in number of frames for Frame I/O, not number of bytes; for Signal
I/O, it is the number of signal values in both cases. After start, this property returns the queue size minus
the Number of Values Pending property.

For input sessions, this is the number of frame/signal values unused in the underlying queue(s).

For output sessions, this is the number of frame/signal values you can provide to a subsequent call to
the appropriate write function. If you call the appropriate write function with this number of values and
timeout of 0.0, it should return success.

Stream frame sessions using FlexRay or CAN FD protocol may use a variable size of frames. In these
cases, this property assumes the largest possible frame size. If you use smaller frames, the real number of
pending values might be higher.

The largest possible frames sizes are:

CAN FD: 64 byte payload.

FlexRay: The higher value of the frame size in the static segment and the maximum frame size in
the dynamic segment. The XNET Cluster FlexRay Payload Length Maximum property provides
this value.

Type int

4.2. API Reference 83

NI-XNET Python API Documentation, Release 0.3.1

protocol
This property returns the protocol that the interface in the session uses.

Type nixnet._enums.Protocol

queue_size
Get or set queue size.

For output sessions, queues store data passed to the appropriate write function and not yet transmitted onto
the network. For input sessions, queues store data received from the network and not yet obtained using
the appropriate read function.

For most applications, the default queue sizes are sufficient. You can write to this property to override the
default. When you write (set) this property, you must do so prior to the first session start. You cannot set
this property again after calling nixnet._session.base.SessionBase.stop.

For signal I/O sessions, this property is the number of signal values stored. This is analogous to the number
of values you use with the appropriate read or write function.

For frame I/O sessions, this property is the number of bytes of frame data stored.

For standard CAN or LIN frame I/O sessions, each frame uses exactly 24 bytes. You can use this number
to convert the Queue Size (in bytes) to/from the number of frame values.

For CAN FD and FlexRay frame I/O sessions, each frame value size can vary depending on the payload
length. For more information, refer to Raw Frame Format.

For Signal I/O XY sessions, you can use signals from more than one frame. Within the implementation,
each frame uses a dedicated queue. According to the formulas below, the default queue sizes can be
different for each frame. If you read the default Queue Size property for a Signal Input XY session, the
largest queue size is returned, so that a call to the appropriate read function of that size can empty all
queues. If you read the default Queue Size property for a Signal Output XY session, the smallest queue
size is returned, so that a call to the appropriate write function of that size can succeed when all queues are
empty. If you write the Queue Size property for a Signal I/O XY session, that size is used for all frames,
so you must ensure that it is sufficient for the frame with the fastest transmit time.

For Signal I/O Waveform sessions, you can use signals from more than one frame. Within the implemen-
tation, each frame uses a dedicated queue. The Queue Size property does not represent the memory in
these queues, but rather the amount of time stored. The default queue allocations store Application Time
worth of resampled signal values. If you read the default Queue Size property for a Signal I/O Waveform
session, it returns Application Time multiplied by the time Resample Rate. If you write the Queue Size
property for a Signal I/O Waveform session, that value is translated from a number of samples to a time,
and that time is used to allocate memory for each queue.

For Single-Point sessions (signal or frame), this property is ignored. Single-Point sessions always use a
value of 1 as the effective queue size.

Type int

start(scope=<StartStopScope.NORMAL: 0>)
Start communication for the XNET session.

Because the session is started automatically by default, this function is optional. This function is for
more advanced applications to start multiple sessions in a specific order. For more information about
the automatic start feature, refer to the nixnet._session.base.SessionBase.auto_start
property.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

84 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can start each logical unit separately. When a session is started, all contained frames or signals are
placed in a state where they are ready to communicate. When the interface is started, it takes data from all
started sessions to communicate with other nodes on the bus. For a specification of the state models for
the session and interface, refer to State Models.

If an output session starts before you write data, or you read an input session before it receives a frame,
default data is used. For more information, refer to the XNET Frame Default Payload and XNET Signal
Default Value properties.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

state
Session running state.

Type nixnet._enums.SessionInfoState

stop(scope=<StartStopScope.NORMAL: 0>)
Stop communication for the XNET session.

Because the session is stopped automatically when closed (cleared), this function is optional.

For each physical interface, the NI-XNET hardware is divided into two logical units:

Sessions: You can create one or more sessions, each of which contains frames or signals to be
transmitted (or received) on the bus.

Interface: The interface physically connects to the bus and transmits (or receives) data for the
sessions.

You can stop each logical unit separately. When a session is stopped, all contained frames or signals are
placed in a state where they are no longer ready to communicate. When the interface is stopped, it no
longer takes data from sessions to communicate with other nodes on the bus. For a specification of the
state models for the session and interface, refer to State Models.

Parameters scope (nixnet._enums.StartStopScope) – Describes the impact of this
operation on the underlying state models for the session and its interface.

time_communicating
Time the interface started communicating.

The time is usually later than time_start because the interface must undergo a communication startup
procedure.

Type int

time_current
Current interface time.

Type int

time_start
Time the interface was started.

Type int

wait_for_intf_communicating(timeout=10)
Wait for the interface to begin communication on the network.

4.2. API Reference 85

NI-XNET Python API Documentation, Release 0.3.1

If a start trigger is configured for the interface, this first waits for the trigger. Once the interface is started,
this waits for the protocol’s communication state to transition to a value that indicates communication with
remote nodes.

After this wait succeeds, calls to ‘read_state’ will return:

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_ACTIVE’

nixnet._enums.CanCommState: ‘constants.CAN_COMM.ERROR_PASSIVE’

‘constants.ReadState.TIME_COMMUNICATING’: Valid time for communication (invalid time
of 0 prior)

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_intf_remote_wakeup(timeout=10)
Wait for interface remote wakeup.

Wait for the interface to wakeup due to activity by a remote node on the network. This wait is used
for CAN, when you set the ‘can_tcvr_state’ property to ‘constants.CanTcvrState.SLEEP’. Although the
interface itself is ready to communicate, this places the transceiver into a sleep state. When a remote CAN
node transmits a frame, the transceiver wakes up, and communication is restored. This wait detects that
remote wakeup.

This wait is used for LIN when you set ‘lin_sleep’ property to ‘constants.LinSleep.REMOTE_SLEEP’ or
‘constants.LinSleep.LOCAL_SLEEP’. When asleep, if a remote LIN ECU transmits the wakeup pattern
(break), the XNET LIN interface detects this transmission and wakes up. This wait detects that remote
wakeup.

Parameters timeout (float) – The maximum amount of time to wait in seconds.

wait_for_transmit_complete(timeout=10)
Wait for transmition to complete.

All frames written for the session have been transmitted on the bus. This condition applies to CAN, LIN,
and FlexRay. This condition is state based, and the state is Boolean (true/false).

Parameters timeout (float) – The maximum amount of time to wait in seconds.

4.2.2 nixnet.convert

class nixnet.convert.SignalConversionSinglePointSession(database_name, clus-
ter_name, signals)

Bases: object

Convert NI-XNET signal data to frame data or vice versa.

Conversion works similar to Single-Point mode. You specify a set of signals that can span multiple frames.
Signal to frame conversion reads a set of values for the signals specified and writes them to the respective
frame(s). Frame to signal conversion parses a set of frames and returns the latest signal value read from a
corresponding frame.

application_protocol
This property returns the application protocol that the session uses.

The database used with the session determines the application protocol.

Type nixnet._enums.AppProtocol

close()
Close (clear) the XNET session.

86 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

cluster_name
This property returns the cluster (network) name used with the session.

Type str

convert_frames_to_signals(frames)
Convert Frames to signals.

The frames passed into the frames array are read one by one, and the signal values found are written
to internal buffers for each signal. Frames are identified by their identifier (FlexRay: slot) field. After all
frames in frames array are processed, the internal signal buffers’ status is returned with the corresponding
timestamps from the frames where a signal value was found. The signal internal buffers’ status is being
preserved over multiple calls to this function.

This way, for example, data returned from multiple calls of nxFrameRead for a Frame Input Stream Mode
session (or any other Frame Input session) can be passed to this function directly.

Note: Frames unknown to the session are silently ignored.

convert_signals_to_frames(signals, frame_type=<class ’nixnet.types.XnetFrame’>)
Convert signals to frames.

The signal values written to the signals array are written to a raw frame buffer array. For each frame
included in the session, one frame is generated in the array that contains the signal values. Signals not
present in the session are written as their respective default values; empty space in the frames that signals
do not occupy is written with the frame’s default payload.

The frame header values are filled with appropriate values so that this function’s output can be directly
written to a Frame Output session.

Parameters

• signals (list of float) – Values corresponding to signals configured in this ses-
sion.

• frame_type (nixnet.types.FrameFactory) – A factory for the desired frame
formats.

Yields nixnet.types.Frame

database_name
This property returns the database name used with the session.

Type str

j1939
Returns the J1939 configuration object for the session.

Type nixnet._session.j1939.J1939

mode
This property returns the mode associated with the session.

For more information, refer to nixnet._enums.CreateSessionMode.

Type nixnet._enums.CreateSessionMode

protocol
This property returns the protocol that the interface in the session uses.

Type nixnet._enums.Protocol

4.2. API Reference 87

NI-XNET Python API Documentation, Release 0.3.1

signals
Operate on session’s signals

Type nixnet._session.signals.Signals

4.2.3 nixnet.system

nixnet.system.system

class nixnet.system.system.System
Interact with the NI driver and interface hardware.

databases
Operate on systems’s database’s aliases

Type nixnet.system._databases.AliasCollection

dev_refs
Physical XNET devices in the system.

Type iter of nixnet.system._device.Device

intf_refs
Available interfaces on the system.

Type iter of nixnet.system._interface.Interface

intf_refs_all
Available interfaces on the system.

This Includes those not equipped with a Transceiver Cable.

Type iter of nixnet.system._interface.Interface

intf_refs_can
Available interfaces on the system (CAN Protocol).

Type iter of nixnet.system._interface.Interface

intf_refs_lin
Available interfaces on the system (LIN Protocol).

Type iter of nixnet.system._interface.Interface

ver
The driver version (larger numbers imply a newer version).

Use this for:

• Determining the driver functionality or release date

• Determining upgrade availability

Type nixnet.types.DriverVersion

nixnet.system.databases

class nixnet.system._databases.Alias(database_alias, database_filepath)
Bases: object

Alias alias.

88 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

filepath
Get the filepath associated with the Alias object

Type str

class nixnet.system._databases.AliasCollection(handle)
Bases: collections.abc.Mapping

Alias aliases.

add_alias(database_alias, database_filepath, default_baud_rate=None)
Add a new alias with baud rate size of up to 64 bits to a database file.

NI-XNET uses alias names for database files. The alias names provide a shorter name for display, allow
for changes to the file system without changing the application.

This function is supported on Windows only.

Parameters

• database_alias (str) – Provides the desired alias name. Unlike the names of other
XNET database objects, the alias name can use special characters such as space and dash.
Commas are not allowed in the alias name. If the alias name already exists, this function
changes the previous filepath to the specified filepath.

• database_filepath (str) – Provides the path to the CANdb, FIBEX, or LDF file.
Commas are not allowed in the filepath name.

• default_baud_rate (int) – Provides the default baud rate, used when filepath refers
to a CANdb database (.dbc) or an NI-CAN database (.ncd). These database formats are
specific to CAN and do not specify a cluster baud rate. Use this default baud rate to specify
a default CAN baud rate to use with this alias. If database_filepath refers to a FIBEX
database (.xml) or LIN LDF file, the default_baud_rate parameter is ignored. The FIBEX
and LDF database formats require a valid baud rate for every cluster, and NI-XNET uses
that baud rate as the default.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()
Return all aliases and database objects associated with those aliases in the system.

Yields An iterator to tuple pairs of alias and database objects in the system.

keys()
Return all keys (alias names) used in the AliasCollection object.

Yields An iterator to all the keys in the Alias object.

values()
Return all Alias objects in the system.

Yields An iterator to all the values in the AliasCollection object.

nixnet.system.device

class nixnet.system._device.Device(handle)
Bases: object

Physical XNET devices in the system.

form_fac
XNET board form factor.

4.2. API Reference 89

NI-XNET Python API Documentation, Release 0.3.1

Type nixnet._enums.DevForm

intf_refs
Interfaces associated with this device.

Type iter of nixnet.system._interface.Interface

intf_refs_all
Interfaces associated with this device.

This Includes those not equipped with a Transceiver Cable.

Type iter of nixnet.system._interface.Interface

num_ports
The number of physical port connectors on the XNET board.

Type int

num_ports_all
The number of physical port connectors on the XNET board.

This Includes those not equipped with a Transceiver Cable.

Type int

product_name
The XNET device product name.

Type str

product_num
The numeric portion of the XNET device product name.

Type int

ser_num
Serial number associated with the XNET device.

Type int

slot_num
Physical slot where the module is located within a chassis.

Type int

nixnet.system.interface

class nixnet.system._interface.Interface(handle)
Bases: object

Interfaces associated with a physical hardware device.

blink(modifier)
Blinks LEDs for the XNET interface to identify its physical port in the system.

Each XNET device contains one or two physical ports. Each port is labeled on the hardware as Port 1
or Port 2. The XNET device also provides two LEDs per port. For a two-port board, LEDs 1 and 2 are
assigned to Port 1, and LEDs 3 and 4 are assigned to physical Port 2.

When your application uses multiple XNET devices, this function helps to identify each interface to asso-
ciate its software behavior to its hardware connection (port). Prior to running your XNET sessions, you
can call this function to blink the interface LEDs.

90 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

For example, if you have a system with three PCI CAN cards, each with two ports, you can use this
function to blink the LEDs for interface CAN4, to identify it among the six CAN ports.

The LEDs of each port support two states:

Identification: Blink LEDs to identify the physical port assigned to the interface.

In Use: LED behavior that XNET sessions control.

Identification LED State

You can use the blink function only in the Identification state. If you call this function while one or more
XNET sessions for the interface are open (created), it returns an error, because the port’s LEDs are in the
In Use state.

In Use LED State

When you create an XNET session for the interface, the LEDs for that physical port transition to the In Use
state. If you called the blink function previously to enable blinking for identification, that LED behavior
no longer applies. The In Use LED state remains until all XNET sessions are cleared. This typically occurs
when the application terminates. The patterns that appear on the LEDs while In Use are documented in
LEDs.

Parameters moodifier (nixnet._enums.BlinkMode) – Controls LED blinking

Both LEDs blink green (not red). The blinking rate is approximately three times per second.

can_tcvr_cap
Indicates the CAN bus physical transceiver support.

Type nixnet._enums.CanTcvrCap

can_term_cap
Indicates whether the XNET interface can terminate the CAN bus.

Signal reflections on the CAN bus can cause communication failure. To prevent reflections, termination
can be present as external resistance or resistance the XNET board applies internally. This property deter-
mines whether the XNET board can add termination to the bus.

Type nixnet._enums.CanTermCap

dongle_compatible_firmware_version
The oldest driver version compatible with the connected Transceiver Cable’s firmware.

The number is relative to the first driver version that supported the Transceiver Cable, starting with 1 for
the original revision.

..note:: A Transceiver Cable running an updated firmware version may require a later XNET driver
than the version it shipped with for operation.

Type int

dongle_compatible_revision
The oldest driver version compatible with the connected Transceiver Cable’s hardware revision.

The number is relative to the first driver version that supported the particular Transceiver Cable model,
starting with 1 for the original revision.

Note: A Transceiver Cable hardware revision might require a later XNET driver than the version that
introduced support for this model for operation.

4.2. API Reference 91

NI-XNET Python API Documentation, Release 0.3.1

Type int

dongle_firmware_version
The connected Transceiver Cable’s firmware revision number.

Type int

dongle_id
Indicates the connected Transceiver Cable’s type.

Dongle-Less Design indicates this interface is not a Transceiver Cable but a regular XNET expansion card,
cDAQ Module, and so on.

Type nixnet._enums.DongleId

dongle_revision
The connected Transceiver Cable’s hardware revision number.

Type int

dongle_state
Indicates the connected Transceiver Cable’s state.

Some Transceiver Cable types require external power from the network connector for operation. Refer to
the hardware-specific manual for more information.

Type nixnet._enums.DongleState

num
The unique number associated with the XNET interface.

The XNET driver assigns each port connector in the system a unique number XNET driver. This number,
plus its protocol name, is the interface name.

Type int

port_num
Physical port number printed near the connector on the XNET device.

The port numbers on an XNET board are physically identified with numbering. Use this property, along
with the XNET Device Serial Number property, to associate an XNET interface with a physical (XNET
board and port) combination.

Type int

protocol
Protocol supported by the interface.

Type nixnet._enums.Protocol

4.2.4 nixnet.database

nixnet.database.cluster

class nixnet.database._cluster.Cluster(**kwargs)
Bases: nixnet.database._database_object.DatabaseObject

Database cluster

application_protocol
Get or set the application protocol.

Type AppProtocol

92 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

baud_rate
Get or set the buad rate all custer nodes use.

This baud rate represents the rate from the database, so it is read-only from the session. Use a session
interface property (for example, Interface.baud_rate) to override the database baud rate with an
application-specific baud rate.

CAN

For CAN, this rate can be 33333, 40000, 50000, 62500, 80000, 83333, 100000, 125000, 160000, 200000,
250000, 400000, 500000, 800000, or 1000000. Some transceivers may support only a subset of these
values.

LIN

For LIN, this rate can be 2400-20000 inclusive.

If you need values other than these, use the custom settings as described in Interface.baud_rate.

Type int

can_fd_baud_rate
Get or set the fast data baud rate when Cluster.can_io_mode is CanIoMode.CAN_FD_BRS.

Refer to the CanIoMode for a description of CanIoMode.CAN_FD_BRS. Use a session interface prop-
erty (for example, Interface.can_fd_baud_rate) to override the database fast baud rate with an
application-specific fast baud rate.

NI-XNET CAN hardware currently accepts the following numeric baud rates: 200000, 250000, 400000,
500000, 800000, 1000000, 1250000, 1600000, 2000000, 2500000, 4000000, 5000000, and 8000000.
Some transceivers may support only a subset of these values.

If you need values other than these, use the custom settings as described in Interface.
can_fd_baud_rate.

Type int

can_fd_iso_mode
Returns the mode of a CAN FD cluster.

The default is CanFdIsoMode.ISO. You define the value in a dialog box that appears when you define
an alias for the database.

Type CanFdIsoMode

can_io_mode
Get or set the CAN I/O Mode of the cluster.

Type CanIoMode

check_config_status()
Check this cluster’s configuration status.

By default, incorrectly configured clusters in the database are not returned from Database.clusters
because they cannot be used in the bus communication. You can change this behavior by setting
Database.show_invalid_from_open to True. When a cluster configuration status becomes in-
valid after the database is opened, the cluster still is returned from Database.clusters even if
Database.show_invalid_from_open is False.

Raises XnetError – The cluster is incorrectly configured.

comment
Get or set a comment describing the cluster object.

A comment is a string containing up to 65535 characters.

4.2. API Reference 93

NI-XNET Python API Documentation, Release 0.3.1

Type str

dbc_attributes
Access the cluster’s DBC attributes.

Type DbcAttributeCollection

ecus
Returns a collection of Ecu objects in this cluster.

An ECU is assigned to a cluster when the ECU object is created. You cannot change this assignment
afterwards.

Type DbCollection

export(db_filepath)
Exports this cluster to a CANdb++ or LIN database file format.

A CAN cluster is exported as a CANdb++ database file (.dbc). A LIN cluster is exported as a LIN database
file (.ldf). If the target file exists, it is overwritten.

Exporting a cluster is not supported under Real-Time (RT).

Parameters db_filepath (str) – Contains the pathname to the database file.

find(object_class, object_name)
Finds an object in the database.

This function finds a database object relative to this parent object. This object may be a grandparent or
great-grandparent.

If this object is a direct parent (for example, Frame for Signal), the object_name to search for can
be short, and the search proceeds quickly.

If this object is not a direct parent (for example, Database for Signal), the object_name to search
for must be qualified such that it is unique within the scope of this object.

For example, if the class of this object is Cluster, and object_class is Signal, you can specify
object_name of mySignal, assuming that signal name is unique to the cluster. If not, you must
include the Frame name as a prefix, such as myFrameA.mySignal.

NI-XNET supports the following subclasses of DatabaseObject as arguments for object_class:

• nixnet.database.Cluster

• nixnet.database.Frame

• nixnet.database.Pdu

• nixnet.database.Signal

• nixnet.database.SubFrame

• nixnet.database.Ecu

• nixnet.database.LinSched

• nixnet.database.LinSchedEntry

Parameters

• object_class (DatabaseObject) – The class of the object to find.

• object_name (str) – The name of the object to find.

Returns An instance of the found object.

94 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

Raises

• ValueError – Unsupported value provided for argument object_class.

• XnetError – The object is not found.

frames
Returns a collection of Frame objects in this cluster.

A frame is assigned to a cluster when the frame object is created. You cannot change this assignment
afterwards.

Type DbCollection

lin_schedules
Returns a collection of LinSched defined in this cluster.

You assign a LIN schedule to a cluster when you create the LIN schedule object. You cannot change this
assignment afterwards. The schedules in this collection are sorted alphabetically by schedule name.

Type DbCollection

lin_tick
Returns the relative time between LIN ticks (relative f64 in seconds).

The LinSchedEntry.delay property must be a multiple of this tick.

This tick is referred to as the “timebase” in the LIN specification.

The Ecu.lin_master property defines the Tick property in this cluster. You cannot use the Tick
property when there is no LIN Master property defined in this cluster.

Type float

merge(source_obj, copy_mode, prefix, wait_for_complete)
Merges database objects and related subobjects from the source to this cluster.

The source can be any of the following objects:

• Frame

• Pdu

• Ecu

• LinSched

• Cluster

All listed objects must have unique names in the cluster. They are referenced here as objects, as opposed
to child objects (for example, a signal is a child of a frame).

If the source object name is not used in the target cluster, this function copies the source objects with the
child objects to the target. If an object with the same name exists in this cluster, you can avoid name
collisions by specifying the prefix to be added to the name.

If an object with the same name exists in this cluster, the merge behavior depends on the copy_mode
input.

Example

Target frame F1(v1) has signals S1 and S2(v1). Source frame F1(v2) has signals S2(v2) and S3.

(v1) and (v2) are two versions of one object with same name, but with different properties.

• Result when copy_mode is COPY_USE_SOURCE: F1(v2), S2(v2), S3.

4.2. API Reference 95

NI-XNET Python API Documentation, Release 0.3.1

• Result when copy_mode is COPY_USE_TARGET: F1(v1), S1, S2(v1).

• Result when copy_mode is MERGE_USE_SOURCE: F1(v2), S1, S2(v2), S3.

• Result when copy_mode is MERGE_USE_TARGET: F1(v1), S1, S2(v1), S3.

If the source object is a cluster, this function copies all contained PDUs, ECUs, and LIN schedules with
their child objects to this cluster.

Depending on the number of contained objects in the source and destination clusters, the execution can
take a longer time. If wait_for_complete is True, this function waits until the merging process
gets completed. If the execution completes without errors, perecent_complete returns 100. If
wait_for_complete is False, the function returns quickly, and perecent_complete returns
values less than 100. You must call Cluster.merge repeatedly until perecent_complete returns
100. You can use the time between calls to perform asynchronous tasks.

Parameters

• source_obj (object) – The object to be merged into this cluster.

• copy_mode (Merge) – Defines the merging behavior if this cluster already contains an
object with the same name.

• prefix (str) – The prefix to be added to the source object name if an object with the
same name and type exists in this cluster.

• wait_for_complete (bool) – Determines whether the function returns directly or
waits until the entire transmission is completed.

Returns A value which indicates the merging progress as a percentage. 100 indicates comple-
tion.

Return type int

name
Get or set the name of the cluster object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for the short
name. The space (), period (.), and other special characters are not supported within the name. The short
name must begin with a letter (uppercase or lowercase) or underscore, and not a number. The short name
is limited to 128 characters.

If you use a FIBEX file, the short name comes from the file. If you use a CANdb (.dbc), LDF (.ldf), or
NI-CAN (.ncd) file, no cluster name is stored in the file, so NI-XNET uses the name Cluster. If you create
the cluster yourself, the name that you provide is used.

A cluster name must be unique for all clusters in a database.

This short name does not include qualifiers to ensure that it is unique, such as the database name. It is for
display purposes.

Type str

pdus
Returns a collection of Pdu objects in this cluster.

A PDU is assigned to a cluster when the PDU object is created. You cannot change this assignment
afterwards.

Type DbCollection

pdus_reqd
Returns whether using PDUs in the database API is required for this cluster.

96 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

If this property returns False, it is safe to use signals as child objects of a frame without PDUs. This
behavior is compatible with NI-XNET 1.1 or earlier. Clusters from .dbc, .ncd, or FIBEX 2 files always
return False for this property, so using PDUs from those files is not required.

If this property returns True, the cluster contains PDU configuration, which requires reading the PDUs as
frame child objects and then signals as PDU child objects, as shown in the following figure.

Internally, the database always uses PDUs, but shows the same signal objects also as children of a frame.

For this property to return False, the following conditions must be fulfilled for all frames in the cluster:

• Only one PDU is mapped to the frame.

• This PDU is not mapped to other frames.

• The PDU Start Bit in the frame is 0.

• The PDU Update Bit is not used.

If the conditions are not fulfilled for a given frame, signals from the frame are still returned, but reading
the property returns a warning.

Type bool

protocol
Get or set the cluster protocol.

Type Protocol

sigs
Returns a list of all Signal objects in this cluster.

Type list of Signal

nixnet.database.database

class nixnet.database.database.Database(database_name)
Bases: nixnet.database._database_object.DatabaseObject

Opens a database file.

When an already open database is opened, this class grants access to the same database and increases an internal
reference counter. A multiple referenced (open) database must be closed as many times as it has been opened.
Until it is completely closed, the access to this database remains granted, and the database uses computer
resources (memory and handles). For more information, refer to Database.close.

Parameters database_name (str) – The database alias or file pathname to open.

close(close_all_refs=False)
Closes the database.

For the case that different threads of an application are using the same database, Database and
Database.close maintain a reference counter indicating how many times the database is open.
Every thread can open the database, work with it, and close the database independently using
close_all_refs set to False. Only the last call to Database.close actually closes access to
the database.

4.2. API Reference 97

NI-XNET Python API Documentation, Release 0.3.1

Note: Database.__exit__ calls Database.close with close_all_refs set to False. See
examples of this in CAN Dynamic Database Creation and LIN Dynamic Database Creation.

Another option is that only one thread executes Database.close once, using close_all_refs set
to True, which closes access for all other threads. This may be convenient when, for example, the main
program needs to stop all running threads and be sure the database is closed properly, even if some threads
could not execute Database.close.

Parameters close_all_refs (bool) – Indicates that a database open multiple times (refer
to Database) should be closed completely (close_all_refs is True), or just the ref-
erence counter should be decremented (close_all_refs is False), and the database re-
mains open. When the database is closed completely, all references to objects in this database
become invalid.

clusters
Returns a collection of Cluster objects in this database.

A cluster is assigned to a database when the cluster object is created. You cannot change this assignment
afterwards.

FIBEX and AUTOSAR files can contain any number of clusters, and each cluster uses a unique name.

For CANdb (.dbc), LDF (.ldf), or NI-CAN (.ncd) files, the file contains only one cluster, and no cluster
name is stored in the file. For these database formats, NI-XNET uses the name Cluster for the single
cluster.

Type DbCollection

find(object_class, object_name)
Finds an object in the database.

This function finds a database object relative to this parent object. This object may be a grandparent or
great-grandparent.

If this object is a direct parent (for example, Frame for Signal), the object_name to search for can
be short, and the search proceeds quickly.

If this object is not a direct parent (for example, Database for Signal), the object_name to search
for must be qualified such that it is unique within the scope of this object.

For example, if the class of this object is Cluster, and object_class is Signal, you can specify
object_name of mySignal, assuming that signal name is unique to the cluster. If not, you must
include the Frame name as a prefix, such as myFrameA.mySignal.

NI-XNET supports the following subclasses of DatabaseObject as arguments for object_class:

• nixnet.database.Cluster

• nixnet.database.Frame

• nixnet.database.Pdu

• nixnet.database.Signal

• nixnet.database.SubFrame

• nixnet.database.Ecu

• nixnet.database.LinSched

• nixnet.database.LinSchedEntry

98 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

Parameters

• object_class (DatabaseObject) – The class of the object to find.

• object_name (str) – The name of the object to find.

Returns An instance of the found object.

Raises

• ValueError – Unsupported value provided for argument object_class.

• XnetError – The object is not found.

save(db_filepath=”)
Saves the open database to a FIBEX 3.1.0 file.

The file extension must be .xml. If the target file exists, it is overwritten.

XNET saves to the FIBEX file only features that XNET sessions use to communicate on the network.
If the original file was created using non-XNET software, the target file may be missing details from the
original file. For example, NI-XNET supports only linear scaling. If the original FIBEX file used a rational
equation that cannot be expressed as a linear scaling, XNET converts this to a linear scaling with factor
1.0 and offset 0.0.

If db_filepath is empty, the file is saved to the same FIBEX file specified when opened. If opened as
a file path, it uses that file path. If opened as an alias, it uses the file path registered for that alias.

Saving a database is not supported under Real-Time (RT), but you can deploy and use a database saved on
Windows on a Real-Time (RT) target (refer to Database.deploy).

Parameters db_filepath (str) – Contains the pathname to the database file or is empty
(saves to the original filepath).

show_invalid_from_open
Show or hide Frame and Signal objects that are invalid.

After opening a database, this property always is set to False, meaning that invalid Cluster, Frame,
and Signal objects are not returned in properties that return a DbCollection for the database (for
example, Cluster.frames and Frame.mux_static_signals). Invalid Cluster, Frame, and
Signal objects are incorrectly defined and therefore cannot be used in the bus communication. The
False setting is recommended when you use the database to create XNET sessions.

In case the database was opened to correct invalid configuration (for example, in a database editor), you
must set the property to True prior to reading properties that return a DbCollection for the database
(for example, Cluster.frames and Frame.mux_static_signals).

For invalid objects, the Cluster.check_config_status, Frame.check_config_status,
and Signal.check_config_status methods raise an exception if there is a problem. For valid
objects, no error is raised.

Cluster, Frame, and Signal objects that became invalid after the database is opened are still returned
from the Database.clusters, Cluster.frames, and Frame.mux_static_signals, even if
Database.show_invalid_from_open is False and Configuration Status returns an error code.
For example, if you open a Frame with valid properties, then you set Signal.start_bit beyond
the Frame.payload_len, Frame.check_config_status raises an exception, but the frame is
returned from Cluster.frames.

Type bool

4.2. API Reference 99

NI-XNET Python API Documentation, Release 0.3.1

nixnet.database.ecu

class nixnet.database._ecu.Ecu(**kwargs)
Bases: nixnet.database._database_object.DatabaseObject

Database ECU

check_config_status()
Check this ECU’s configuration status.

By default, incorrectly configured ECUs in the database are not returned from Cluster.ecus be-
cause they cannot be used in the bus communication. You can change this behavior by setting
Database.show_invalid_from_open to True. When an ECU configuration status becomes in-
valid after the database is opened, the ECU still is returned from Cluster.ecus even if Database.
show_invalid_from_open is False.

Raises XnetError – The ECU is incorrectly configured.

clst
Returns the parent cluster to which the ECU is connected.

The parent cluster is determined when the ECU object is created. You cannot change it afterwards.

Type Cluster

comment
Get or set a comment describing the ECU object.

A comment is a string containing up to 65535 characters.

Type str

dbc_attributes
Access the ECU’s DBC attributes.

Type DbcAttributeCollection

j1939_node_name
Get or set the preferred J1939 node address to be used when simulating this ECU.

If you assign this ECU to an XNET session (j1939.set_ecu), XNET will start address claiming for this
address using this node name and Ecu.j1939_preferred_address.

Type int

j1939_preferred_address
Get or set the preferred J1939 node address to be used when simulating this ECU.

If you assign this ECU to an XNET session (j1939.set_ecu), XNET will start address claiming for this
address using Ecu.j1939_node_name and use the address for the session when the address is granted.

Type int

lin_config_nad
Get or set the configured NAD of a LIN slave node.

NAD is the address of a slave node and is used in diagnostic services. Initial NAD is replaced by configured
NAD with node configuration services.

Warning: This property is not saved in the FIBEX database. You can import it only from an LDF file.

Type int

100 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

lin_function_id
Get or set the function ID.

Function ID is a 16-bit value identifying the function of the LIN node (ECU).

Warning: This property is not saved in the FIBEX database. You can import it only from an LDF file.

Type int

lin_initial_nad
Get or set the initial NAD of a LIN slave node.

NAD is the address of a slave node and is used in diagnostic services. Initial NAD is replaced by configured
NAD with node configuration services.

Warning: This property is not saved in the FIBEX database. You can import it only from an LDF file.

Type int

lin_master
Get or set whether the ECU is a LIN master (True) or LIN slave (False).

Type bool

lin_p2_min
Get or set the minimum time in seconds between frame reception and node response.

This is the minimum time between reception of the last frame of the diagnostic request and the response
sent by the node.

Warning: This property is not saved in the FIBEX database. You can import it only from an LDF file.

Type float

lin_protocol_ver
Get or set the version of the LIN standard this ECU uses.

Type LinProtocolVer

lin_st_min
Get or set the minimum time in seconds for node preparation.

This is the minimum time the node requires to prepare for the next frame of the diagnostic service.

Warning: This property is not saved in the FIBEX database. You can import it only from an LDF file.

Type float

lin_supplier_id
Get or set the supplier ID.

Supplier ID is a 16-bit value identifying the supplier of the LIN node (ECU).

4.2. API Reference 101

NI-XNET Python API Documentation, Release 0.3.1

Warning: This property is not saved in the FIBEX database. You can import it only from an LDF file.

Type int

name
Get or set the name of the ECU object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for the short
name. The space (), period (.), and other special characters are not supported within the name. The short
name must begin with a letter (uppercase or lowercase) or underscore, and not a number. The short name
is limited to 128 characters.

An ECU name must be unique for all ECUs in a cluster.

This short name does not include qualifiers to ensure that it is unique, such as the database and cluster
name. It is for display purposes.

Type str

rx_frms
Get or set a list of frames the ECU receives.

This property defines all frames the ECU receives. All frames an ECU receives in a given cluster must be
defined in the same cluster.

Type list of Frame

tx_frms
Get or set a list of frames the ECU transmits.

This property defines all frames the ECU transmits. All frames an ECU transmits in a given cluster must
be defined in the same cluster.

Type list of Frame

nixnet.database.frame

class nixnet.database._frame.Frame(**kwargs)
Bases: nixnet.database._database_object.DatabaseObject

Database frame

application_protocol
Get or set the frame’s application protocol.

Type AppProtocol

can_ext_id
Get or set whether the Frame.id property in a CAN cluster is extended.

The frame identifier represents a standard 11-bit (False) or extended 29-bit (True) arbitration ID.

Type bool

can_io_mode
Get or set the frame’s I/O mode.

This property is used in ISO CAN FD+BRS mode only. In this mode, you can specify every frame to be
transmitted in CAN 2.0, CAN FD, or CAN FD+BRS mode. CAN FD+BRS frames require the interface
to be in CAN FD+BRS mode; otherwise, it is transmitted in CAN FD mode.

102 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

When the interface is in Non-ISO CAN FD or Legacy ISO CAN FD mode, this property is disregarded. In
Non-ISO CAN FD and Legacy ISO CAN FD mode, you must use Interface.can_tx_io_mode to
switch the transmit mode.

When the assigned database does not define the property in ISO CAN FD mode, the frames are transmitted
with Interface.can_io_mode.

Type CanIoMode

can_timing_type
Get or set the CAN frame timing.

Because this property specifies the behavior of the frame’s transfer within the embedded system (for ex-
ample, a vehicle), it describes the transfer between ECUs in the network. In the following description,
transmitting ECU refers to the ECU that transmits the CAN data frame (and possibly receives the associ-
ated CAN remote frame). Receiving ECU refers to an ECU that receives the CAN data frame (and possibly
transmits the associated CAN remote frame).

When you use the frame within an NI-XNET session, an output session acts as the transmitting ECU, and
an input session acts as a receiving ECU. For a description of how these CAN timing types apply to the
NI-XNET session mode, refer to CAN Timing Type and Session Mode.

If you are using a FIBEX or AUTOSAR database, this property is a required part of the XML schema for
a frame, so the default (initial) value is obtained from the file.

If you are using a CANdb (.dbc) database, this property is an optional attribute in the file. If NI-XNET
finds an attribute named GenMsgSendType, that attribute is the default value of this property. If the
GenMsgSendType attribute begins with cyclic, this property’s default value is CYCLIC_DATA; otherwise,
it is EVENT_DATA. If the CANdb file does not use the GenMsgSendType attribute, this property uses a
default value of EVENT_DATA, which you can change in your application.

If you are using an .ncd database or an in-memory database, this property uses a default value of
EVENT_DATA. Within your application, change this property to the desired timing type.

Type FrmCanTiming

can_tx_time
Get or set the time between consecutive frames from the transmitting ECU.

The units are in seconds.

Although the fractional part of the float can provide resolution of picoseconds, the NI-XNET CAN transmit
supports an accuracy of 500 microseconds. Therefore, when used within an NI-XNET output session, this
property is rounded to the nearest 500 microsecond increment (0.0005).

For a Frame.can_timing_type of CYCLIC_DATA or CYCLIC_REMOTE, this property specifies
the time between consecutive data/remote frames. A time of 0.0 is invalid.

For a Frame.can_timing_type of EVENT_DATA or EVENT_REMOTE, this property specifies the
minimum time between consecutive data/remote frames when the event occurs quickly. This is also known
as the debounce time or minimum interval. The time is measured from the end of previous frame (acknowl-
edgment) to the start of the next frame. A time of 0.0 specifies no minimum (back to back frames allowed).

If you are using a FIBEX or AUTOSAR database, this property is a required part of the XML schema for
a frame, so the default (initial) value is obtained from the file.

If you are using a CANdb (.dbc) database, this property is an optional attribute in the file. If NI-XNET
finds an attribute named GenMsgCycleTime, that attribute is interpreted as a number of milliseconds and
used as the default value of this property. If the CANdb file does not use the GenMsgCycleTime attribute,
this property uses a default value of 0.1 (100 ms), which you can change in your application.

4.2. API Reference 103

NI-XNET Python API Documentation, Release 0.3.1

If you are using a .ncd database or an in-memory database, this property uses a default value of 0.1 (100
ms). Within your application, change this property to the desired time.

Type float

check_config_status()
Check this frame’s configuration status.

By default, incorrectly configured frames in the database are not returned from Cluster.frames
because they cannot be used in the bus communication. You can change this behavior by setting
Database.show_invalid_from_open to True. When a frame configuration status becomes invalid
after the database is opened, the frame still is returned from Cluster.frames even if Database.
show_invalid_from_open is False.

Raises XnetError – The frame is incorrectly configured.

cluster
Get the parent cluster in which the frame has been created.

You cannot change the parent cluster after the frame object has been created.

Type Cluster

comment
Get or set a comment describing the frame object.

A comment is a string containing up to 65535 characters.

Type str

dbc_attributes
Access the frame’s DBC attributes.

Type DbcAttributeCollection

default_payload
Get or set the frame default payload, specified as a list of ints.

Each int in the list represents a byte (U8). The number of bytes in the list must match the Frame.
payload_len property.

This property’s initial value is an list of all 0, except the frame is located in a CAN cluster with J1939
application protocol, which uses 0xFF by default. For the database formats NI-XNET supports, this
property is not provided in the database file.

When you use this frame within an NI-XNET session, this property’s use varies depending on the session
mode. The following sections describe this property’s behavior for each session mode.

Frame Output Single-Point and Frame Output Queued Modes: Use this property when a frame trans-
mits prior to a call to write. This can occur when you set the SessionBase.auto_start prop-
erty to False and start a session prior to writing. When SessionBase.auto_start is True
(default), the first frame write also starts frame transmit, so this property is not used.

The following frame configurations potentially can transmit prior to a call to write:

• Frame.can_timing_type is CYCLIC_DATA.

• Frame.can_timing_type is CYCLIC_REMOTE. (for example, a remote frame received
prior to a call to writing).

• Frame.can_timing_type is EVENT_REMOTE. (for example, a remote frame received prior
to a call to writing).

• Frame.can_timing_type is CYCLIC_EVENT.

104 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

• LIN frame in a schedule entry where LinSchedEntry.type is UNCONDITIONAL.

The following frame configurations cannot transmit prior to writing, so this property is not used:

• Frame.can_timing_type is EVENT_DATA..

• LIN frame in a schedule entry where LinSchedEntry.type is SPORADIC or
EVENT_TRIGGERED.

Frame Output Stream Mode: This property is not used. Transmit is limited to frames provided to write.

Signal Output Single-Point, Signal Output Waveform, and Signal Output XY Modes: Use this prop-
erty when a frame transmits prior to a call to write. Refer to Frame Output Single-Point and Frame
Output Queued Modes for a list of applicable frame configurations.

This property is used as the initial payload, then each XNET Signal Default Value is mapped into that
payload, and the result is used for the frame transmit.

Frame Input Stream and Frame Input Queued Modes: This property is not used. These modes do not
return data prior to receiving frames.

Frame Input Single-Point Mode: This property is used for frames read returns prior to receiving the first
frame.

Signal Input Single-Point, Signal Input Waveform, and Signal Input XY Modes: This property is not
used. Each Signal.default is used when reading from a session prior to receiving the first frame.

Type list of int

find(object_class, object_name)
Finds an object in the database.

This function finds a database object relative to this parent object. This object may be a grandparent or
great-grandparent.

If this object is a direct parent (for example, Frame for Signal), the object_name to search for can
be short, and the search proceeds quickly.

If this object is not a direct parent (for example, Database for Signal), the object_name to search
for must be qualified such that it is unique within the scope of this object.

For example, if the class of this object is Cluster, and object_class is Signal, you can specify
object_name of mySignal, assuming that signal name is unique to the cluster. If not, you must
include the Frame name as a prefix, such as myFrameA.mySignal.

NI-XNET supports the following subclasses of DatabaseObject as arguments for object_class:

• nixnet.database.Cluster

• nixnet.database.Frame

• nixnet.database.Pdu

• nixnet.database.Signal

• nixnet.database.SubFrame

• nixnet.database.Ecu

• nixnet.database.LinSched

• nixnet.database.LinSchedEntry

Parameters

4.2. API Reference 105

NI-XNET Python API Documentation, Release 0.3.1

• object_class (DatabaseObject) – The class of the object to find.

• object_name (str) – The name of the object to find.

Returns An instance of the found object.

Raises

• ValueError – Unsupported value provided for argument object_class.

• XnetError – The object is not found.

id
Get or set the frame identifier.

This property is required. If the property does not contain a valid value, and you create an XNET session
that uses this frame, the session returns an error. To ensure that the property contains a valid value, you
can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value at runtime using this property.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case, so you must set a valid value prior to creating a
session.

CAN: For CAN frames, this is the Arbitration ID.

When Frame.can_ext_id is set to False, this is the standard CAN identifier with a size of 11
bits, which results in allowed range of 0-2047. However, the CAN standard disallows identifiers in
which the first 7 bits are all recessive, so the working range of identifiers is 0-2031.

When Frame.can_ext_id is set to True, this is the extended CAN identifier with a size of 29
bits, which results in allowed range of 0-536870911.

LIN: For LIN frames, this is the frame’s ID (unprotected). The valid range for a LIN frame ID is 0-63
(inclusive)

Type int

lin_checksum
Returns whether the LIN frame transmitted checksum is classic or enhanced.

The enhanced checksum considers the protected identifier when it is generated.

The checksum is determined from the Ecu.lin_protocol_ver properties of the transmitting and
receiving the frame. The lower version of both ECUs is significant. If the LIN version of both ECUs is 2.0
or higher, the checksum type is enhanced; otherwise, the checksum type is classic.

Diagnostic frames (with decimal identifier 60 or 61) always use classic checksum, even on LIN 2.x.

Type FrmLinChecksum

mux_data_mux_sig
Returns a data multiplexer signal object in the frame.

Use the Frame.mux_is_muxed property to determine whether the frame contains a multiplexer signal.

You can create a data multiplexer signal by creating a signal and then setting the Signal.
mux_is_data_mux property to True.

106 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

A frame can contain only one data multiplexer signal.

Raises XnetError – The data multiplexer signal is not defined in the frame

Type Signal

mux_is_muxed
Returns whether this frame is data multiplexed.

This property returns True if the frame contains a multiplexer signal. Frames containing a multiplexer
contain subframes that allow using bits of the frame payload for different information (signals) depending
on the multiplexer value.

Type bool

mux_static_signals
Collection of static Signal objects in this frame.

Static signals are contained in every frame transmitted, as opposed to dynamic signals, which are trans-
mitted depending on the multiplexer value.

If the frame is not multiplexed, this property returns the same objects as Frame.sigs.

Type DbCollection

mux_subframes
Collection of SubFrame objects in this frame.

A subframe defines a group of signals transmitted using the same multiplexer value. Only one subframe at
a time is transmitted in the frame.

A subframe is defined by creating a subframe object as a child of a frame.

Type DbCollection

name
String identifying a frame object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for the short
name. The space (), period (.), and other special characters are not supported within the name. The short
name must begin with a letter (uppercase or lowercase) or underscore, and not a number. The short name
is limited to 128 characters.

A frame name must be unique for all frames in a cluster.

This short name does not include qualifiers to ensure that it is unique, such as the database and cluster
name. It is for display purposes.

Type str

payload_len
Get or set the number of bytes of data in the payload.

For CAN and LIN, this is 0-8.

This property is required. If the property does not contain a valid value, and you create an XNET session
that uses this frame, the session returns an error. To ensure that the property contains a valid value, you
can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value at runtime using this property.

4.2. API Reference 107

NI-XNET Python API Documentation, Release 0.3.1

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case, so you must set a valid value prior to creating a
session.

Type int

pdu_properties
Get or set a list that maps existing PDUs to a frame.

A mapped PDU is transmitted inside the frame payload when the frame is transmitted. You can map one
or more PDUs to a frame and one PDU to multiple frames.

Mapping PDUs to a frame requires setting pdu_properties with a list of PduProperties tuples. Each tuple
contains the following properties:

• PduProperties.pdu: Defines the sequence of values for the other two properties.

• PduProperties.start_bit: Defines the start bit of the PDU inside the frame.

• PduProperties.update_bit: Defines the update bit for the PDU inside the frame. If the
update bit is not used, set the value to -1.

Databases imported from FIBEX prior to version 3.0, from DBC, NCD, or LDF files have a strong one-to-
one relationship between frames and PDUs. Every frame has exactly one PDU mapped, and every PDU is
mapped to exactly one frame.

To unmap PDUs from a frame, set this property to an empty list. A frame without mapped PDUs contains
no signals.

For CAN and LIN, NI-XNET supports only a one-to-one relationship between frames and PDUs.
For those interfaces, advanced PDU configuration returns raises an exception when calling Frame.
check_config_status and when creating a session. If you do not use advanced PDU configuration,
you can avoid using PDUs in the database API and create signals and subframes directly on a frame.

Type list of PduProperties

sigs
Get a list of all Signal objects in the frame.

This property returns a list to all Signal objects in the frame, including static and dynamic signals and
the multiplexer signal.

Type list of Signal

nixnet.database.lin_sched

class nixnet.database._lin_sched.LinSched(**kwargs)
Bases: nixnet.database._database_object.DatabaseObject

Database LIN schedule

check_config_status()
Check this LIN schedule’s configuration status.

By default, incorrectly configured schedules in the database are not returned from Cluster.
lin_schedules because they cannot be used in the bus communication. You can change this be-
havior by setting Database.show_invalid_from_open to True. When a schedule configura-
tion status becomes invalid after the database is opened, the schedule still is returned from Cluster.
lin_schedules even if Database.show_invalid_from_open is False.

Raises XnetError – The LIN schedule is incorrectly configured.

108 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

clst
Get the parent cluster in which the you created the schedule.

You cannot change the parent cluster after creating the schedule object.

Type Cluster

comment
Get or set a comment describing the schedule object.

A comment is a string containing up to 65535 characters.

Type str

entries
Collection of LinSchedEntry for this LIN schedule.

The position of each entry in this collection specifies the position in the schedule. The database file and/or
the order that you create entries at runtime determine the position.

Type DbCollection

find(object_class, object_name)
Finds an object in the database.

This function finds a database object relative to this parent object. This object may be a grandparent or
great-grandparent.

If this object is a direct parent (for example, Frame for Signal), the object_name to search for can
be short, and the search proceeds quickly.

If this object is not a direct parent (for example, Database for Signal), the object_name to search
for must be qualified such that it is unique within the scope of this object.

For example, if the class of this object is Cluster, and object_class is Signal, you can specify
object_name of mySignal, assuming that signal name is unique to the cluster. If not, you must
include the Frame name as a prefix, such as myFrameA.mySignal.

NI-XNET supports the following subclasses of DatabaseObject as arguments for object_class:

• nixnet.database.Cluster

• nixnet.database.Frame

• nixnet.database.Pdu

• nixnet.database.Signal

• nixnet.database.SubFrame

• nixnet.database.Ecu

• nixnet.database.LinSched

• nixnet.database.LinSchedEntry

Parameters

• object_class (DatabaseObject) – The class of the object to find.

• object_name (str) – The name of the object to find.

Returns An instance of the found object.

Raises

• ValueError – Unsupported value provided for argument object_class.

4.2. API Reference 109

NI-XNET Python API Documentation, Release 0.3.1

• XnetError – The object is not found.

name
Get or set the name of the LIN schedule object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for the short
name. The space (), period (.), and other special characters are not supported within the name. The short
name must begin with a letter (uppercase or lowercase) or underscore, and not a number. The short name
is limited to 128 characters.

A schedule name must be unique for all schedules in a cluster.

Type str

priority
Get or set the priority of a run-once LIN schedule.

This priority applies when multiple run-once schedules are pending for execution.

The valid range for this property is 1-254. Lower values correspond to higher priority.

This property applies only when the LinSched.run_mode property is ONCE. Run-once schedule re-
quests are queued for execution based on this property. When all run-once schedules have completed, the
master returns to the previously running continuous schedule (or null).

Run-continuous schedule requests are not queued. Only the most recent run-continuous schedule is used,
and it executes only if no run-once schedule is pending. Therefore, a run-continuous schedule has an
effective priority of 255, but this property is not used.

Null schedule requests take effect immediately and supercede any running run-once or run-continuous
schedule. The queue of pending run-once schedule requests is flushed (emptied without running them).
Therefore, a null schedule has an effective priority of 0, but this property is not used.

This property is not read from the database, but is handled like a database property. After opening the
database, the default value is returned, and you can change the property. But similar to database properties,
you cannot change it after a session is created.

Type int

run_mode
Get or set how the master runs this schedule.

This property is not read from the database, but is handled like a database property. After opening the
database, the default value is returned, and you can change the property. But similar to database properties,
you cannot change it after a session is created.

Usually, the default value for the run mode is CONTINUOUS. If the schedule is configured to be a collision
resolving table for an event-triggered entry, the default is ONCE.

Type LinSchedRunMode

nixnet.database.lin_sched_entry

class nixnet.database._lin_sched_entry.LinSchedEntry(**kwargs)
Bases: nixnet.database._database_object.DatabaseObject

Database LIN schedule entry

collision_res_sched
Get or set a LIN schedule that resolves a collision for this event-triggered entry.

110 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

This property applies only when LinSchedEntry.type is EVENT_TRIGGERED. When a collision
occurs for the event-triggered entry in this schedule, the master must switch to the collision resolving
schedule to transfer the unconditional frames successfully.

Raises XnetError – The property requires that LinSchedEntry.type be set to
EVENT_TRIGGERED.

Type LinSched

delay
Get or set the time from the start of this entry (slot) to the start of the next entry.

The property uses a float value in seconds, with the fractional part used for milliseconds or microseconds.

Type float

event_id
Get or set the event-triggered entry identifier.

This identifier is unprotected (NI-XNET handles the protection).

This property applies only when LinSchedEntry.type is EVENT_TRIGGERED. This identifier is
for the event triggered entry itself, and the first payload byte is for the protected identifier of the contained
unconditional frame.

Type int

frames
Get or set a list of frames for this LIN schedule entry.

If LinSchedEntry.type is UNCONDITIONAL, this list contains one frame, which is the single un-
conditional frame for this entry.

If LinSchedEntry.type is SPORADIC, this list contains one or more unconditional frames for this
entry. When multiple frames are pending for this entry, the order in the list determines the priority to
transmit.

If LinSchedEntry.type is EVENT_TRIGGERED, this list contains one or more unconditional frames
for this entry. When multiple frames for this entry are pending to be sent by distinct slaves, this property
uses the LinSchedEntry.collision_res_sched to process the frames.

Type list of Frame

name
Get or set the name of the LIN schedule entry object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for the short
name. The space (), period (.), and other special characters are not supported within the name. The short
name must begin with a letter (uppercase or lowercase) or underscore, and not a number. The short name
is limited to 128 characters.

A schedule entry name must be unique for all entries in the same schedule.

Type str

name_unique_to_cluster
Returns a LIN schedule entry name unique to the cluster that contains the object.

If the single name is not unique within the cluster, the name is <schedule-name>.<schedule-entry-name>.

You can pass the name to the find function to retrieve the reference to the object, while the single name is
not guaranteed success in find because it may be not unique in the cluster.

Type str

4.2. API Reference 111

NI-XNET Python API Documentation, Release 0.3.1

nc_ff_data_bytes
Get or set a list of 8 ints containing raw data for LIN node configuration.

Node configuration defines a set of services used to configure slave nodes in the cluster. Every service
has a specific set of parameters coded in this int list. In the LDF, file those parameters are stored, for
example, in the node (ECU) or the frame object. NI-XNET LDF reader composes those parameters to the
byte values like they are sent on the bus. The LIN specification document describes the node configuration
services and the mapping of the parameters to the free format bytes.

The node configuration service is executed only if LinSchedEntry.type is set to
NODE_CONFIG_SERVICE.

Warning: This property is not saved to the FIBEX file. If you write this property, save the database,
and reopen it, the node configuration services are not contained in the database. Writing this property
is useful only in the NI-XNET session immediately following.

Type list of int

sched
Returns the LIN schedule that uses this entry.

This LIN schedule is considered this entry’s parent. You define the parent schedule when you create the
entry object. You cannot change it afterwards.

Type LinSched

type
Get or set the LIN schedule entry type.

All frames that contain a payload are UNCONDITIONAL. The LIN schedule entry type determines the
mechanism for transferring frames in this entry (slot).

Type LinSchedEntryType

nixnet.database.pdu

class nixnet.database._pdu.Pdu(**kwargs)
Bases: nixnet.database._database_object.DatabaseObject

Database PDU

check_config_status()
Check this PDU’s configuration status.

By default, incorrectly configured PDUs in the database are not returned from Cluster.pdus be-
cause they cannot be used in the bus communication. You can change this behavior by setting
Database.show_invalid_from_open to True. When a PDU configuration status becomes in-
valid after the database is opened, the PDU still is returned from Cluster.pdus even if Database.
show_invalid_from_open is False.

Raises XnetError – The PDU is incorrectly configured.

cluster
Get the parent cluster in which the PDU has been created.

You cannot change the parent cluster after creating the PDU object.

Type Cluster

112 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

comment
Get or set a comment describing the PDU object.

A comment is a string containing up to 65535 characters.

Type str

find(object_class, object_name)
Finds an object in the database.

This function finds a database object relative to this parent object. This object may be a grandparent or
great-grandparent.

If this object is a direct parent (for example, Frame for Signal), the object_name to search for can
be short, and the search proceeds quickly.

If this object is not a direct parent (for example, Database for Signal), the object_name to search
for must be qualified such that it is unique within the scope of this object.

For example, if the class of this object is Cluster, and object_class is Signal, you can specify
object_name of mySignal, assuming that signal name is unique to the cluster. If not, you must
include the Frame name as a prefix, such as myFrameA.mySignal.

NI-XNET supports the following subclasses of DatabaseObject as arguments for object_class:

• nixnet.database.Cluster

• nixnet.database.Frame

• nixnet.database.Pdu

• nixnet.database.Signal

• nixnet.database.SubFrame

• nixnet.database.Ecu

• nixnet.database.LinSched

• nixnet.database.LinSchedEntry

Parameters

• object_class (DatabaseObject) – The class of the object to find.

• object_name (str) – The name of the object to find.

Returns An instance of the found object.

Raises

• ValueError – Unsupported value provided for argument object_class.

• XnetError – The object is not found.

frms
Returns a list of all frames to which the PDU is mapped.

A PDU is transmitted within the frames to which it is mapped.

To map a PDU to a frame, use the Frame.pdu_properties property. You can map one PDU to
multiple frames.

Type list of Frame

4.2. API Reference 113

NI-XNET Python API Documentation, Release 0.3.1

mux_data_mux_sig
Data multiplexer signal in the PDU.

This property returns the reference to the data multiplexer signal. If data multiplexer is not defined in
the PDU, the property raises an XnetError exception. Use the Pdu.mux_is_muxed property to
determine whether the PDU contains a multiplexer signal.

You can create a data multiplexer signal by creating a signal and then setting the Signal.
mux_is_data_mux property to True.

A PDU can contain only one data multiplexer signal.

Raises XnetError – The data multiplexer is not defined in the PDU.

Type Signal

mux_is_muxed
Returns True if the PDU contains a multiplexer signal.

PDUs containing a multiplexer contain subframes that allow using bits of the payload for different infor-
mation (signals), depending on the value of the SubFrame.mux_value property.

Type bool

mux_static_sigs
Returns a list of static signals in the PDU.

Returns an list of signal objects in the PDU that do not depend on value of the SubFrame.mux_value
property. Static signals are contained in every PDU transmitted, as opposed to dynamic signals, which are
transmitted depending on the value of the SubFrame.mux_value property.

You can create static signals by specifying the PDU as the parent object. You can create dynamic signals
by specifying a subframe as the parent.

If the PDU is not multiplexed, this property returns the same list as the Pdu.signals property.

Type list of Signal

mux_subframes
Collection of SubFrame objects in this PDU.

A subframe defines a group of signals transmitted using the same value of the SubFrame.mux_value.
Only one subframe is transmitted in the PDU at a time.

Type DbCollection

name
Get or set the name of the PDU object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for the short
name. The space (), period (.), and other special characters are not supported within the name. The short
name must begin with a letter (uppercase or lowercase) or underscore, and not a number. The short name
is limited to 128 characters.

A PDU name must be unique for all PDUs in a cluster.

Type str

payload_len
Get or set the size of the PDU data in bytes.

This property is required. If the property does not contain a valid value, and you create an XNET session
that uses this PDU, the session returns an error. To ensure that the property contains a valid value, you can
do one of the following:

114 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value at runtime using this property.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case, so you must set a valid value prior to creating a
session.

Type int

signals
Collection of all Signal objects in this PDU.

The collection includes all signals in the PDU, including static and dynamic signals and the multiplexer
signal.

Type DbCollection

nixnet.database.signal

class nixnet.database._signal.Signal(**kwargs)
Bases: nixnet.database._database_object.DatabaseObject

Database signal

byte_ordr
Signal byte order in the frame payload.

This property defines how signal bytes are ordered in the frame payload when the frame is loaded in
memory.

This property is required. If the property does not contain a valid value, and you create an XNET session
that uses this signal, the session returns an error. To ensure that the property contains a valid value, you
can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value using the nxdbSetProperty function.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case, so you must set a valid value prior to creating a
session.

Type SigByteOrdr

check_config_status()
Check this signal’s configuration status.

By default, incorrectly configured signals in the database are not returned from Frame.sigs be-
cause they cannot be used in the bus communication. You can change this behavior by setting
Database.show_invalid_from_open to True. When a signal configuration status becomes in-
valid after the database is opened, the signal still is returned from Frame.sigs even if Database.
show_invalid_from_open is False.

Examples of invalid signal configuration:

• The signal is specified using bits outside the frame payload.

4.2. API Reference 115

NI-XNET Python API Documentation, Release 0.3.1

• The signal overlaps another signal in the frame. For example, two multiplexed signals with the same
multiplexer value are using the same bit in the frame payload.

• The signal with integer data type (signed or unsigned) is specified with more than 52 bits. This is not
allowed due to internal limitation of the double data type that NI-XNET uses for signal values.

• The frame containing the signal is invalid (for example, a CAN frame is defined with more than 8
payload bytes).

Raises XnetError – The signal is incorrectly configured.

comment
Get or set a comment describing the signal object.

A comment is a string containing up to 65535 characters.

Type str

data_type
Get or set the signal data type.

This property determines how the bits of a signal in a frame must be interpreted to build a value.

This property is required. If the property does not contain a valid value, and you create an XNET session
that uses this signal, the session returns an error. To ensure that the property contains a valid value, you
can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value at runtime using this property.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case, so you must set a valid value prior to creating a
session.

Type SigDataType

dbc_attributes
Access the signal’s DBC attributes.

Type DbcAttributeCollection

dbc_signal_value_table
Access the signal’s DBC value table.

Type DbcSignalValueTable

default
Get or set the signal default value, specified as scaled floating-point units.

The initial value of this property comes from the database. If the database does not provide a value, this
property uses a default value of 0.0.

For all three signal output sessions, this property is used when a frame transmits prior to writing to a
session. The Frame.default_payload property is used as the initial payload, then the default value
of each signal is mapped into that payload using this property, and the result is used for the frame transmit.

For all three signal input sessions, this property is returned for each signal when reading a session prior to
receiving the first frame.

116 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

For more information about when this property is used, refer to the discussion of read and write for each
session mode.

Type float

frame
Returns the signal parent frame object.

The parent frame is defined when the signal object is created. You cannot change it afterwards.

Type Frame

max
Get or set the scaled signal value maximum.

Session read and write methods do not limit the signal value to a maximum value. Use this database
property to set the maximum value.

Type float

min
The scaled signal value minimum.

Session read and write methods do not limit the signal value to a minimum value. Use this database
property to set the minimum value.

Type float

mux_is_data_mux
Get or set whether this signal is a multiplexer signal.

A frame containing a multiplexer value is called a multiplexed frame.

A multiplexer defines an area within the frame to contain different information (dynamic signals) de-
pending on the multiplexer signal value. Dynamic signals with a different multiplexer value (defined in a
different subframe) can share bits in the frame payload. The multiplexer signal value determines which
dynamic signals are transmitted in the given frame.

To define dynamic signals in the frame transmitted with a given multiplexer value, you first must create
a subframe in this frame and set the multiplexer value in the subframe. Then you must create dynamic
signals using SubFrame.dyn_signals to create child signals of this subframe.

Multiplexer signals may not overlap other static or dynamic signals in the frame.

Dynamic signals may overlap other dynamic signals when they have a different multiplexer value.

A frame may contain only one multiplexer signal.

The multiplexer signal is not scaled. Scaling factor and offset do not apply.

In NI-CAN, the multiplexer signal was called mode channel.

Type bool

mux_is_dynamic
returns whether this signal is a dynamic signal.

Use this property to determine if a signal is static or dynamic. Dynamic signals are transmitted in the frame
when the multiplexer signal in the frame has a given value specified in the subframe. Use the Signal.
mux_value property to determine with which multiplexer value the dynamic signal is transmitted.

This property is read only. To create a dynamic signal, create the signal object as a child of a subframe
instead of a frame. The dynamic signal cannot be changed to a static signal afterwards.

In NI-CAN, dynamic signals were called mode-dependent signals.

4.2. API Reference 117

NI-XNET Python API Documentation, Release 0.3.1

Type bool

mux_subfrm
Returns the subframe parent.

This property is valid only for dynamic signals that have a subframe parent. For static signals or the
multiplexer signal, this property raises an XnetError exception.

Raises XnetError – The signal does not have a subframe parent.

Type SubFrame

mux_value
Returns the multiplexer value of a dynamic signal.

The multiplexer value applies to dynamic signals only (when Signal.mux_is_dynamic is True).
This property defines which multiplexer value is transmitted in the multiplexer signal when this dynamic
signal is transmitted in the frame.

The multiplexer value is determined in the subframe. All dynamic signals that are children of the same
subframe object use the same multiplexer value.

Dynamic signals with the same multiplexer value may not overlap each other, the multiplexer signal, or
static signals.

Type int

name
Get or set a string identifying a signal object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for the short
name. The space (), period (.), and other special characters are not supported within the name. The short
name must begin with a letter (uppercase or lowercase) or underscore, and not a number. The short name
is limited to 128 characters.

A signal name must be unique for all signals in a frame.

This short name does not include qualifiers to ensure that it is unique, such as the database, cluster, and
frame name. It is for display purposes.

Type str

name_unique_to_cluster
Returns a signal name unique to the cluster that contains the signal.

If the single name is not unique within the cluster, the name is <frame-name>.<signal-name>.

You can pass the name to the find function to retrieve the reference to the object, while the single name is
not guaranteed success in find because it may be not unique in the cluster.

Type str

num_bits
The number of bits the signal uses in the frame payload.

IEEE Float numbers are limited to 32 bit or 64 bit.

Integer (signed and unsigned) numbers are limited to 1-52 bits. NI-XNET converts all integers to doubles
(64-bit IEEE Float). Integer numbers with more than 52 bits (the size of the mantissa in a 64-bit IEEE
Float) cannot be converted exactly to double, and vice versa; therefore, NI-XNET does not support this.

This property is required. If the property does not contain a valid value, and you create an XNET session
that uses this signal, the session returns an error. To ensure that the property contains a valid value, you
can do one of the following:

118 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value at runtime using this property.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case, so you must set a valid value prior to creating a
session.

Type int

pdu
Returns to the signal’s parent PDU.

The parent PDU is defined when the signal object is created. You cannot change it afterwards.

Type Pdu

scale_fac
Get or set factor a for linear scaling ax+b.

Linear scaling is applied to all signals with the IEEE Float data type, unsigned and signed. For identical
scaling 1.0x+0.0, NI-XNET optimized scaling routines do not perform the multiplication and addition

Type float

scale_off
Get or set offset b for linear scaling ax+b.

Linear scaling is applied to all signals with the IEEE Float data type, unsigned and signed. For identical
scaling 1.0x+0.0, NI-XNET optimized scaling routines do not perform the multiplication and addition

Type float

start_bit
Get or set the least significant signal bit position in the frame payload.

This property determines the signal starting point in the frame. For the integer data type (signed and
unsigned), it means the binary signal representation least significant bit position. For IEEE Float signals,
it means the mantissa least significant bit.

The NI-XNET Database Editor shows a graphical overview of the frame. It enumerates the frame bytes
on the left and the byte bits on top. The bit number in the frame is calculated as byte number x 8 + bit
number. The maximum bit number in a CAN or LIN frame is 63 (7 x 8 + 7); the maximum bit number in
a FlexRay frame is 2031 (253 x 8 + 7).

Frame Overview in the NI-XNET Database Editor with a Signal Starting in Bit 12

This property is required. If the property does not contain a valid value, and you create an XNET session
that uses this signal, the session returns an error. To ensure that the property contains a valid value, you
can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value at runtime using this property.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case, so you must set a valid value prior to creating a
session.

4.2. API Reference 119

NI-XNET Python API Documentation, Release 0.3.1

Type int

unit
Get or set the signal value unit.

NI-XNET does not use the unit internally for calculations. You can use the string to display the signal
value along with the unit.

Type str

nixnet.database.subframe

class nixnet.database._subframe.SubFrame(**kwargs)
Bases: nixnet.database._database_object.DatabaseObject

Database subframe

check_config_status()
Check this subframe’s configuration status.

By default, incorrectly configured subframes in the database are not returned from Frame.
mux_subframes because they cannot be used in the bus communication. You can change this be-
havior by setting Database.show_invalid_from_open to True. When a subframe configura-
tion status becomes invalid after the database is opened, the subframe still is returned from Frame.
mux_subframes even if Database.show_invalid_from_open is False.

Raises XnetError – The subframe is incorrectly configured.

dyn_signals
Returns a collection of dynamic Signal objects in the subframe.

Those signals are transmitted when the multiplexer signal in the frame has the multiplexer value defined
in the subframe.

Type DbCollection

find(object_class, object_name)
Finds an object in the database.

This function finds a database object relative to this parent object. This object may be a grandparent or
great-grandparent.

If this object is a direct parent (for example, Frame for Signal), the object_name to search for can
be short, and the search proceeds quickly.

If this object is not a direct parent (for example, Database for Signal), the object_name to search
for must be qualified such that it is unique within the scope of this object.

For example, if the class of this object is Cluster, and object_class is Signal, you can specify
object_name of mySignal, assuming that signal name is unique to the cluster. If not, you must
include the Frame name as a prefix, such as myFrameA.mySignal.

NI-XNET supports the following subclasses of DatabaseObject as arguments for object_class:

• nixnet.database.Cluster

• nixnet.database.Frame

• nixnet.database.Pdu

• nixnet.database.Signal

• nixnet.database.SubFrame

120 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

• nixnet.database.Ecu

• nixnet.database.LinSched

• nixnet.database.LinSchedEntry

Parameters

• object_class (DatabaseObject) – The class of the object to find.

• object_name (str) – The name of the object to find.

Returns An instance of the found object.

Raises

• ValueError – Unsupported value provided for argument object_class.

• XnetError – The object is not found.

frm
Returns the reference to the parent frame.

The parent frame is defined when the subframe is created, and you cannot change it afterwards.

Type Frame

mux_value
Get or set the multiplexer value for this subframe.

This property specifies the multiplexer signal value used when the dynamic signals in this subframe are
transmitted in the frame. Only one subframe is transmitted at a time in the frame.

There also is a multiplexer value for a signal object as a read-only property. It reflects the value set on the
parent subframe object.

This property is required. If the property does not contain a valid value, and you create an XNET session
that uses this subframe, the session returns an error. To ensure that the property contains a valid value, you
can do one of the following:

• Use a database file (or alias) to create the session.

The file formats require a valid value in the text for this property.

• Set a value at runtime using this property.

This is needed when you create your own in-memory database (:memory:) rather than use a file.
The property does not contain a default in this case, so you must set a valid value prior to creating a
session.

Type int

name
Get or set the name of the subframe object.

Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for the short
name. The space (), period (.), and other special characters are not supported within the name. The short
name must begin with a letter (uppercase or lowercase) or underscore, and not a number. The short name
is limited to 128 characters.

A subframe name must be unique for all subframes in a frame.

This short name does not include qualifiers to ensure that it is unique, such as the database, cluster, and
frame name. It is for display purposes.

4.2. API Reference 121

NI-XNET Python API Documentation, Release 0.3.1

Type str

name_unique_to_cluster
Returns a subframe name unique to the cluster that contains the subframe.

If the single name is not unique within the cluster, the name is <frame-name>.<subframe-name>.

You can pass the name to the find function to retrieve the reference to the object, while the single name is
not guaranteed success in find because it may be not unique in the cluster.

Type str

pdu
Returns the subframe’s parent PDU.

This property returns the reference to the subframe’s parent PDU. The parent PDU is defined when the
subframe object is created. You cannot change it afterwards.

Type Pdu

nixnet.database.collection

class nixnet.database._collection.DbCollection(handle, db_type, prop_id, factory)
Bases: collections.abc.Mapping

Collection of database objects.

add(name)
Add a new database object to the collection.

Parameters name (str) – Name of the new database object.

Returns An instance of the new database object.

Return type DatabaseObject

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()
Return all database object names and objects in the collection.

Yields An iterator to tuple pairs of database object names and objects in the collection

keys()
Return database object names in the collection.

Yields An iterator to database object names in the collection.

values()
Return database objects in the collection.

Yields An iterator to database objects in the collection.

nixnet.database.dbc_attributes

class nixnet.database._dbc_attributes.DbcAttributeCollection(handle)
Bases: collections.abc.Mapping

Collection for accessing DBC attributes.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()
Return all attribute names and values in the collection.

122 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

Yields An iterator to tuple pairs of attribute names and values in the collection.

keys()
Return all attribute names in the collection.

Yields An iterator to all attribute names in the collection.

values()
Return all attribute values in the collection.

Yields An iterator to all attribute values in the collection.

nixnet.database.dbc_signal_value_table

class nixnet.database._dbc_signal_value_table.DbcSignalValueTable(handle)
Bases: collections.abc.Mapping

Collection for accessing a DBC signal value table.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()
Return all value descriptions and values in the collection.

Yields An iterator to tuple pairs of value descriptions and values in the collection.

keys()
Return all value descriptions in the collection.

Yields An iterator to all value descriptions in the collection.

values()
Return all values in the collection.

Yields An iterator to all values in the collection.

4.2.5 nixnet.constants

class nixnet._enums.AppProtocol
Bases: enum.Enum

Application Protocol.

Values:

NONE: The default application protocol.

J1939: Indicates J1939 clusters. The value enables the following features:

• Sending/receiving long frames as the SAE J1939 specification specifies, using the J1939 transport
protocol.

• Using a special notation for J1939 identifiers.

• Using J1939 address claiming.

class nixnet._enums.BlinkMode
Bases: enum.Enum

Interface blink mode.

Values:

DISABLE: Disable blinking for identification. This option turns off both LEDs for the port.

4.2. API Reference 123

NI-XNET Python API Documentation, Release 0.3.1

ENABLE: Enable blinking for identification. Both LEDs of the interface’s physical port turn on and off.
The hardware blinks the LEDs automatically until you disable.

class nixnet._enums.CanCommState
Bases: enum.Enum

CAN Comm State.

Values:

ERROR_ACTIVE: This state reflects normal communication, with few errors detected. The CAN inter-
face remains in this state as long as receive error counter and transmit error counter are both below
128.

ERROR_PASSIVE: If either the receive error counter or transmit error counter increment above 127,
the CAN interface transitions into this state. Although communication proceeds, the CAN device
generally is assumed to have problems with receiving frames.

When a CAN interface is in error passive state, acknowledgement errors do not increment the trans-
mit error counter. Therefore, if the CAN interface transmits a frame with no other device (ECU)
connected, it eventually enters error passive state due to retransmissions, but does not enter bus off
state.

BUS_OFF: If the transmit error counter increments above 255, the CAN interface transitions into this
state. Communication immediately stops under the assumption that the CAN interface must be iso-
lated from other devices.

When a CAN interface transitions to the bus off state, communication stops for the interface. All
NI-XNET sessions for the interface no longer receive or transmit frame values. To restart the CAN
interface and all its sessions, call nixnet._session.base.SessionBase.start.

INIT: This is the CAN interface initial state on power-up. The interface is essentially off, in that it is not
attempting to communicate with other nodes (ECUs).

When the start trigger occurs for the CAN interface, it transitions from the Init state to the Error Ac-
tive state. When the interface stops due to a call to nixnet._session.base.SessionBase.
stop., the CAN interface transitions from either Error Active or Error Passive to the Init state. When
the interface stops due to the Bus Off state, it remains in that state until you restart.

class nixnet._enums.CanFdIsoMode
Bases: enum.Enum

CAN FD ISO MODE.

Values:

ISO: ISO CAN FD standard (ISO standard 11898-1:2015)

In ISO CAN FD mode, for every transmitted frame, you can specify in the database or frame header
whether a frame must be sent in CAN 2.0, CAN FD, or CAN FD+BRS mode. In the frame type field
of the frame header, received frames indicate whether they have been sent with CAN 2.0, CAN FD,
or CAN FD+BRS. You cannot use the Interface:CAN:Transmit I/O Mode property in ISO CAN FD
mode, as the frame defines the transmit mode.

NON_ISO: non-ISO CAN FD standard (Bosch CAN FD 1.0 specification)

In Non-ISO CAN FD mode, CAN data frames are received at CAN data typed frames, which is either
CAN 2.0, CAN FD, or CAN FD+BRS, but you cannot distinguish the standard in which the frame
has been transmitted.

ISO_LEGACY: You also can set the mode to Legacy ISO mode. In this mode, the behavior is the same as
in Non-ISO CAN FD mode (Interface:CAN:Transmit I/O Mode is working, and received frames have

124 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

the CAN data type). But the interface is working in ISO CAN FD mode, so you can communicate
with other ISO CAN FD devices. Use this mode only for compatibility with existing applications.

class nixnet._enums.CanIoMode
Bases: enum.Enum

CAN I/O Mode.

Values:

CAN: This is the default CAN 2.0 A/B standard I/O mode as defined in ISO 11898-1:2003. A fixed baud
rate is used for transfer, and the payload length is limited to 8 bytes.

CAN_FD: This is the CAN FD mode as specified in the CAN with Flexible Data-Rate specification,
version 1.0. Payload lengths up to 64 are allowed, but they are transmitted at a single fixed baud rate
(defined by Cluster.can_fd_baud_rate or Interface.can_fd_baud_rate).

CAN_FD_BRS: This is the CAN FD as specified in the CAN with Flexible Data-Rate specification,
version 1.0, with the optional Baud Rate Switching enabled. The same payload lengths as CAN FD
mode are allowed; additionally, the data portion of the CAN frame is transferred at a different (higher)
baud rate (defined by Cluster.can_fd_baud_rate or Interface.can_fd_baud_rate).

class nixnet._enums.CanLastErr
Bases: enum.Enum

CAN Last Error

Values:

NONE: The last receive or transmit was successful.

STUFF: More than 5 equal bits have occurred in sequence, which the CAN specification does not allow.

FORM: A fixed format part of the received frame used the wrong format.

ACK: Another node (ECU) did not acknowledge the frame transmit.

If you call the appropriate write function and do not have a cable connected, or the cable is con-
nected to a node that is not communicating, you see this error repeatedly. The CAN communication
state eventually transitions to Error Passive, and the frame transmit retries indefinitely.

BIT1: During a frame transmit (with the exception of the arbitration ID field), the interface wanted to
send a recessive bit (logical 1), but the monitored bus value was dominant (logical 0).

BIT0: During a frame transmit (with the exception of the arbitration ID field), the interface wanted to
send a dominant bit (logical 0), but the monitored bus value was recessive (logical 1).

CRC: The CRC contained within a received frame does not match the CRC calculated for the incoming
bits.

class nixnet._enums.CanPendTxOrder
Bases: enum.Enum

Can Pending Transmit Order.

Values:

AS_SUBMITTED: Frames are transmitted in the order that they were submitted into the queue. There
is no reordering of any frames, and a higher priority frame may be delayed due to the transmission or
retransmission of a previously submitted frame. However, this mode has the highest performance.

BY_IDENTIFIER: Frames with the highest priority identifier (lower CAN ID value) transmit first. The
frames are stored in a priority queue sorted by ID. If a frame currently being transmitted requires
retransmission (for example, it lost arbitration or failed with a bus error), and a higher priority frame
is queued in the meantime, the lower priority frame is not immediately retried, but the higher priority

4.2. API Reference 125

NI-XNET Python API Documentation, Release 0.3.1

frame is transmitted instead. In this mode, you can emulate multiple ECUs and still see a behavior
similar to a real bus in that the highest priority message is transmitted on the bus. This mode may
be slower in performance (possible delays between transmissions as the queue is re-evaluated), and
lower priority messages may be delayed indefinitely due to frequent high-priority messages.

class nixnet._enums.CanTcvrCap
Bases: enum.Enum

CAN bus phusical transceivers support.

Values:

HS: High-Speed / Flexible Data-Rate (HS/FD).

LS: Low-Speed / Fault-Tolerant (LS//FT)

XS: XS (HS//FD, LS/FT, SW, or External)

XSHSLS: XS (HS//FD, LS/FT)

class nixnet._enums.CanTcvrState
Bases: enum.Enum

CAN Transceiver State.

Values:

NORMAL: This state sets the transceiver to normal communication mode. If the transceiver is in the
Sleep mode, this performs a local wakeup of the transceiver and CAN controller chip.

SLEEP: This state sets the transceiver and CAN controller chip to Sleep (or standby) mode. You can set
the interface to Sleep mode only while the interface is communicating. If the interface has not been
started, setting the transceiver to Sleep mode returns an error.

Before going to sleep, all pending transmissions are transmitted onto the CAN bus. Once all pending
frames have been transmitted, the interface and transceiver go into Sleep (or standby) mode. Once
the interface enters Sleep mode, further communication is not possible until a wakeup occurs. The
transceiver and CAN controller wake from Sleep mode when either a local wakeup or remote wakeup
occurs.

A local wakeup occurs when the application sets the transceiver state to either Normal or Single Wire
Wakeup.

A remote wakeup occurs when a remote node transmits a CAN frame (referred to as the wakeup
frame). The wakeup frame wakes up the NI-XNET interface transceiver and CAN controller chip.
The CAN controller chip does not receive or acknowledge the wakeup frame. After detecting the
wakeup frame and idle bus, the CAN interface enters Normal mode.

When the local or remote wakeup occurs, frame transmissions resume from the point at which the
original Sleep mode was set.

SW_WAKEUP: For a remote wakeup to occur for Single Wire transceivers, the node that transmits the
wakeup frame first must place the network into the Single Wire Wakeup Transmission mode by as-
serting a higher voltage.

This state sets a Single Wire transceiver into the Single Wire Wakeup Transmission mode, which
forces the Single Wire transceiver to drive a higher voltage level on the network to wake up all sleeping
nodes. Other than this higher voltage, this mode is similar to Normal mode. CAN frames can be
received and transmitted normally.

If you are not using a Single Wire transceiver, setting this state returns an error. If your current mode
is Single Wire High-Speed, setting this mode returns an error because you are not allowed to wake up
the bus in high-speed mode.

126 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

The application controls the timing of how long the wakeup voltage is driven. The application typ-
ically changes to Single Wire Wakeup mode, transmits a single wakeup frame, and then returns to
Normal mode.

SW_HIGH_SPEED: This state sets a Single Wire transceiver into Single Wire High-Speed Communi-
cation mode. If you are not using a Single Wire transceiver, setting this state returns an error.

Single Wire High-Speed Communication mode disables the transceiver’s internal waveshaping func-
tion, allowing the SAE J2411 High-Speed baud rate of 83.333 kbytes/s to be used. The disadvantage
versus Single Wire Normal Communication mode, which allows only the SAE J2411 baud rate of
33.333 kbytes/s, is degraded EMC performance. Other than the disabled waveshaping, this mode is
similar to Normal mode. CAN frames can be received and transmitted normally.

This mode has no relationship to High-Speed transceivers. It is merely a higher speed mode of the
Single Wire transceiver, typically used to download data when the onboard network is attached to an
offboard tester ECU.

The Single Wire transceiver does not support use of this mode in conjunction with Sleep mode. For
example, a remote wakeup cannot transition from sleep to this Single Wire High-Speed mode. There-
fore, setting the mode to Sleep from Single Wire High-Speed mode returns an error.

class nixnet._enums.CanTcvrType
Bases: enum.Enum

CAN Transceiver Type

Values:

High-Speed (HS): This configuration enables the High-Speed transceiver. This transceiver supports baud
rates of 40 kbaud to 1 Mbaud. When using a High-Speed transceiver, you also can communicate with
a CAN FD bus. Refer to NI-XNET Hardware Overview to determine which CAN FD baud rates are
supported.

Low-Speed/Fault-Tolerant (LS): This configuration enables the Low-Speed/Fault-Tolerant transceiver.
This transceiver supports baud rates of 40-125 kbaud.

Single Wire (SW): This configuration enables the Single Wire transceiver. This transceiver supports baud
rates of 33.333 kbaud and 83.333 kbaud.

External (EXT): This configuration allows you to use an external transceiver to connect to your CAN
bus. Refer to the XNET Session Interface:CAN:External Transceiver Config property for more infor-
mation.

Disconnect (DISC): This configuration allows you to disconnect the CAN controller chip from the con-
nector. You can use this value when you physically change the external transceiver.

class nixnet._enums.CanTerm
Bases: enum.Enum

CAN Termination.

Different CAN hardware has different termination requirements, and the OFF and ON values have different
meanings.

High-Speed CAN

High-Speed CAN networks are typically terminated on the bus itself instead of within a node. However, NI-
XNET allows you to configure termination within the node to simplify testing. If your bus already has the correct
amount of termination, leave this property in the default state of Off. However, if you require termination, set
this property to On.

Values:

4.2. API Reference 127

NI-XNET Python API Documentation, Release 0.3.1

OFF: Termination is disabled.

On: Termination (120 Ohms) is enabled.

Low-Speed/Fault-Tolerant CAN

Every node on a Low-Speed CAN network requires termination for each CAN data line (CAN_H and CAN_L).
This configuration allows the Low-Speed/Fault-Tolerant CAN port to provide fault detection and recovery. Re-
fer to Termination for more information about low-speed termination. In general, if the existing network has
an overall network termination of 125 Ohms or less, turn on termination to enable the 4.99 kOhms option.
Otherwise, you should select the default 1.11 kOhms option.

Values:

OFF: Termination is set to 1.11 kOhms.

ON: Termination is set to 4.99 kOhms.

Single-Wire CAN

The ISO standard requires Single-Wire transceivers to have a 9.09 kOhms resistor, and no additional configura-
tion is supported.

class nixnet._enums.CanTermCap
Bases: enum.Enum

CAN Termination Capability.

Values: NO YES

class nixnet._enums.ClstFlexRaySampClkPer
Bases: enum.Enum

An enumeration.

class nixnet._enums.Condition
Bases: enum.Enum

An enumeration.

class nixnet._enums.CreateSessionMode
Bases: enum.Enum

Create Session Mode.

The session mode specifies the data type (signals or frames), direction (input or output), and how data is trans-
ferred between your application and the network.

Values:

SIGNAL_IN_SINGLE_POINT: Reads the most recent value received for each signal. This mode typi-
cally is used for control or simulation applications, such as Hardware In the Loop (HIL).

SIGNAL_IN_WAVEFORM: Using the time when the signal frame is received, resamples the signal data
to a waveform with a fixed sample rate. This mode typically is used for synchronizing XNET data
with DAQmx analog/digital input channels.

SIGNAL_IN_XY: For each frame received, provides its signals as a value/timestamp pair. This is the
recommended mode for reading a sequence of all signal values.

SIGNAL_OUT_SINGLE_POINT: Writes signal values for the next frame transmit. This mode typically
is used for control or simulation applications, such as Hardware In the Loop (HIL).

SIGNAL_OUT_WAVEFORM: Using the time when the signal frame is transmitted according to the
database, resamples the signal data from a waveform with a fixed sample rate. This mode typically is
used for synchronizing XNET data with DAQmx analog/digital output channels.

128 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

SIGNAL_OUT_XY: Provides a sequence of signal values for transmit using each frame’s timing as the
database specifies. This is the recommended mode for writing a sequence of all signal values.

FRAME_IN_STREAM: Reads all frames received from the network using a single stream. This mode
typically is used for analyzing and/or logging all frame traffic in the network.

FRAME_IN_QUEUED: Reads data from a dedicated queue per frame. This mode enables your appli-
cation to read a sequence of data specific to a frame (for example, CAN identifier).

FRAME_IN_SINGLE_POINT: Reads the most recent value received for each frame. This mode typ-
ically is used for control or simulation applications that require lower level access to frames (not
signals).

FRAME_OUT_STREAM: Transmits an arbitrary sequence of frame values using a single stream. The
values are not limited to a single frame in the database, but can transmit any frame.

FRAME_OUT_QUEUED: Provides a sequence of values for a single frame, for transmit using that
frame’s timing as the database specifies.

FRAME_OUT_SINGLE_POINT: Writes frame values for the next transmit. This mode typically is
used for control or simulation applications that require lower level access to frames (not signals).

SIGNAL_CONVERSION_SINGLE_POINT: This mode does not use any hardware. It is used to con-
vert data between the signal representation and frame representation.

class nixnet._enums.DevForm
Bases: enum.Enum

Device physical form factor.

Values: C_SERIES PCI PCIE PXI PXIE USB

class nixnet._enums.DongleId
Bases: enum.Enum

Dongle ID

Values:

HSCAN: CAN High Speed

XSCAN: CAN Software-Selectable

LIN: LIN

DONGLE_LESS: Dongle-Less Design

class nixnet._enums.DongleState
Bases: enum.Enum

Dongle State.

Values:

NO_DONGLE_NO_EXT_POWER: No dongle, no external power.

NO_DONGLE_EXT_POWER: No dongle, has external power.

DONGLE_NO_EXT_POWER: Has dongle, no external power.

READY: Ready.

BUSY: Busy.

COMM_ERROR: Comm Error.

OVERCURRENT: Overcurrent.

4.2. API Reference 129

NI-XNET Python API Documentation, Release 0.3.1

class nixnet._enums.Err
Bases: enum.Enum

Error codes returned by NI-XNET.

class nixnet._enums.FlexRayPocState
Bases: enum.Enum

An enumeration.

class nixnet._enums.FlexRaySleep
Bases: enum.Enum

An enumeration.

class nixnet._enums.FlexRayTerm
Bases: enum.Enum

An enumeration.

class nixnet._enums.FrameType
Bases: enum.Enum

Frame format type.

class nixnet._enums.FrmCanTiming
Bases: enum.Enum

CAN Frame Timing

Values:

CYCLIC_DATA: The transmitting ECU transmits the CAN data frame in a cyclic (periodic) manner. The
Frame.can_tx_time property defines the time between cycles. The transmitting ECU ignores
CAN remote frames received for this frame.

EVENT_DATA: The transmitting ECU transmits the CAN data frame in an event-driven manner. The
Frame.can_tx_time property defines the minimum interval. For NI-XNET, the event occurs
when you write data to a session. The transmitting ECU ignores CAN remote frames received for this
frame.

CYCLIC_REMOTE: The receiving ECU transmits the CAN remote frame in a cyclic (periodic) man-
ner. The Frame.can_tx_time property defines the time between cycles. The transmitting ECU
responds to each CAN remote frame by transmitting the associated CAN data frame.

EVENT_REMOTE: The receiving ECU transmits the CAN remote frame in an event-driven manner.
The Frame.can_tx_time property defines the minimum interval. For NI-XNET, the event occurs
when you write a frame to a session. The transmitting ECU responds to each CAN remote frame by
transmitting the associated CAN data frame.

CYCLIC_EVENT: This timing type is a combination of the cyclic and event timing. The frame is trans-
mitted when you write to a session, but also periodically sending the last recent values written. The
Frame.can_tx_time property defines the cycle period. There is no minimum interval time de-
fined in this mode, so be careful not to write too frequently to avoid creating a high busload.

class nixnet._enums.FrmFlexRayChAssign
Bases: enum.Enum

An enumeration.

class nixnet._enums.FrmFlexRayTiming
Bases: enum.Enum

An enumeration.

130 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

class nixnet._enums.FrmLinChecksum
Bases: enum.Enum

LIN Frame Transmitted Checksum

Values:

CLASSIC: Classic checksum.

ENHANCED: Enhanced checksum.

class nixnet._enums.GetDbcAttributeMode
Bases: enum.Enum

An enumeration.

class nixnet._enums.LinCommState
Bases: enum.Enum

LIN Comm State

Values:

IDLE: This is the LIN interface initial state on power-up. The interface is essentially off, in that it is
not attempting to communicate with other nodes (ECUs). When the start trigger occurs for the LIN
interface, it transitions from the Idle state to the Active state. When the interface stops due to a call to
XNET Stop, the LIN interface transitions from either Active or Inactive to the Idle state.

ACTIVE: This state reflects normal communication. The LIN interface remains in this state as long as
bus activity is detected (frame headers received or transmitted).

INACTIVE: This state indicates that no bus activity has been detected in the past four seconds.

Regardless of whether the interface acts as a master or slave, it transitions to this state after four
seconds of bus inactivity. As soon as bus activity is detected (break or frame header), the interface
transitions to the Active state.

The LIN interface does not go to sleep automatically when it transitions to Inactive. To place the
interface into sleep mode, set the XNET Session Interface:LIN:Sleep property when you detect the
Inactive state.

class nixnet._enums.LinDiagnosticSchedule
Bases: enum.Enum

LIN Diagnostic Schedule

Values:

NULL: The master does not execute any diagnostic schedule. No master request or slave response headers
are transmitted on the LIN.

MASTER_REQ: The master executes a diagnostic master request schedule (transmits a mas-
ter request header onto the LIN) if it can. First, a master request schedule must be
defined for the LIN cluster in the imported or in-memory database. Otherwise, error
‘nixnet._enums.Err.DIAGNOSTIC_SCHEDULE_NOT_DEFINED’ is returned when attempting to
set this value. Second, the master must have a frame output queued session created for the master
request frame, and there must be one or more new master request frames pending in the queue. If no
new frames are pending in the output queue, no master request header is transmitted. This allows the
timing of master request header transmission to be controlled by the timing of master request frame
writes to the output queue.

If there are no normal schedules pending, the master is effectively in diagnostics-only mode, and
master request headers are transmitted at a rate determined by the slot delay defined for the master
request frame slot in the master request schedule or the nixnet._session.intf.Interface.lin_diag_s_tmin

4.2. API Reference 131

NI-XNET Python API Documentation, Release 0.3.1

property time, whichever is greater, and the state of the master request frame output queue as described
above.

If there are normal schedules pending, the master is effectively in diagnostics-interleaved mode, and
a master request header transmission is inserted between each complete execution of a run-once or
run-continuous schedule, as long as the nixnet._session.intf.Interface.lin_diag_s_tmin property time
has been met, and there are one or more new master request frames pending in the master request
frame output queue.

SLAVE_RESP: The master executes a diagnostic slave response schedule (transmits a slave re-
sponse header onto the LIN) if it is able to. A slave response schedule must be de-
fined for the LIN cluster in the imported or in-memory database. Otherwise, error
‘nixnet._enums.Err.DIAGNOSTIC_SCHEDULE_NOT_DEFINED’ is returned when attempting to
set this value.

If there are no normal schedules pending, the master is effectively in diagnostics-only mode, and slave
response headers are transmitted at the rate of the slot delay defined for the slave response frame slot in
the slave response schedule. The addressed slave may or may not respond to each header, depending
on its specified P2min and STmin timings.

If there are normal schedules pending, the master is effectively in diagnostics-interleaved mode, and
a slave response header transmission is inserted between each complete execution of a run-once or
run-continuous schedule. Here again, the addressed slave may or may not respond to each header,
depending on its specified P2min and STmin timings.

class nixnet._enums.LinLastErr
Bases: enum.Enum

LIN Comm Last Error Code

Values:

NONE: No bus error has occurred since the previous communication state read.

UNKNOWN_ID: Received a frame identifier that is not valid.

FORM: The form of a received frame is incorrect. For example, the database specifies 8 bytes of payload,
but you receive only 4 bytes.

FRAMING: The byte framing is incorrect (for example, a missing stop bit).

READBACK: The interface transmitted a byte, but the value read back from the transceiver was different.
This often is caused by a cabling problem, such as noise.

TIMEOUT: Receiving the frame took longer than the LIN-specified timeout.

CRC: The received checksum was different than the expected checksum.

class nixnet._enums.LinProtocolVer
Bases: enum.Enum

LIN Protocol Version

Values:

VER_1_2: Version 1.2

VER_1_3: Version 1.3

VER_2_0: Version 2.0

VER_2_1: Version 2.1

VER_2_2: Version 2.2

132 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

class nixnet._enums.LinSchedEntryType
Bases: enum.Enum

LIN Schedule Entry Type.

Values:

UNCONDITIONAL: A single frame transfers in this slot.

SPORADIC: The master transmits in this slot. The master can select from multiple frames to transmit.
Only updated frames are transmitted. When more than one frame is updated, the master decides by pri-
ority which frame to send. The other updated frame remains pending and can be sent when this sched-
ule entry is processed the following time. The order of unconditional frames in LinSchedEntry.
frames (the first frame has the highest priority) determines the frame priority.

EVENT_TRIGGERED: Multiple slaves can transmit an unconditional frame in this slot. The slave
transmits the frame only if at least one frame signal has been updated. When a collision occurs
(multiple slaves try to transmit in the same slot), this is detected and resolved using a different schedule
specified in the LinSchedEntry.collision_res_sched property. The resolving schedule
runs once, starting in the subsequent slot after the collision, and automatically returns to the previous
schedule at the subsequent position where the collision occurred.

NODE_CONFIG_SERVICE: The schedule entry contains a node configuration service. The node con-
figuration service is defined as raw data bytes in LinSchedEntry.nc_ff_data_bytes.

class nixnet._enums.LinSchedRunMode
Bases: enum.Enum

LIN Schedule Run Mode.

Values:

CONTINUOUS: The master runs the schedule continuously. When the last entry executes, the schedule
starts again with the first entry.

ONCE: The master runs the schedule once (all entries), then returns to the previously running continuous
schedule (or NULL). If requests are submitted for multiple run-once schedules, each run-once exe-
cutes in succession based on its LinSched.priority , then the master returns to the continuous
schedule (or NULL).

NULL: All communication stops immediately. A schedule with this run mode is called a null schedule.

class nixnet._enums.LinSleep
Bases: enum.Enum

LIN interface sleep/awake state

Values:

REMOTE_SLEEP: Set interface to sleep locally and transmit sleep requests to remote node.

REMOTE_WAKE: Set interface to awake locally and transmit wakeup requests to remote nodes.

LOCAL_SLEEP: Set interface to sleep locally and not to interact with the network.

LOCAL_WAKE: Set interface to awake locally and not to interact with the network.

class nixnet._enums.LinTerm
Bases: enum.Enum

LIN Termination

class nixnet._enums.Merge
Bases: enum.Enum

4.2. API Reference 133

NI-XNET Python API Documentation, Release 0.3.1

Cluster Merge Behavior

Values:

COPY_USE_SOURCE: The target object with all dependent child objects is removed from the target
cluster and replaced by the source objects.

COPY_USE_TARGET: The source object is ignored (the target cluster object with child objects remains
unchanged).

MERGE_USE_SOURCE: This adds child objects from the source object to child objects from the des-
tination object. If target object contains a child object with the same name, the child object from
the source frame replaces it. The source object properties (for example, payload length of the frame)
replace the target properties.

MERGE_USE_TARGET: This adds child objects from the source object to child objects from the des-
tination object. If the target object contains a child object with the same name, it remains unchanged.
The target object properties remain unchanged (for example, payload length).

class nixnet._enums.ObjectClass
Bases: enum.Enum

An enumeration.

class nixnet._enums.OutStrmTimng
Bases: enum.Enum

Output Stream Timing

Values:

IMMEDIATE: Frames are dequeued from the queue and transmitted immediately to the bus. The hard-
ware transmits all frames in the queue as fast as possible. There are no restrictions on frames that you
use in other sessions.

For replay modes, the hardware is placed into a Replay mode. In this mode, the hardware evaluates
the frame timestamps and attempts to maintain the original transmission times as the timestamp stored
in the frame indicates. The actual transmission time is based on the relative time difference between
the first dequeued frame and the time contained in the dequeued frame.

REPLAY_EXCLUSIVE: The hardware transmits only frames that do not appear in the list. You cannot
create any other output sessions. Attempting to create an output session returns an error. Input sessions
have no restrictions.

This can be used to test an ECU when the output stream list contains the frames the ECU transmits.
You can replay all frames in this mode if the output stream list is unset.

REPLAY_INCLUSIVE: The hardware transmits only frames that appear in the list. You can create
output sessions that use frames that do not appear in the Interface:Output Stream List property. At-
tempting to create an output session that uses a frame from the Interface:Output Stream List property
results in an error. Input sessions have no restrictions.

This can be used to emulate an ECU when the output stream list contains the frames the ECU trans-
mits.

class nixnet._enums.Phase
Bases: enum.Enum

Version Phase.

Values: RELEASE

class nixnet._enums.Protocol
Bases: enum.Enum

134 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

Protocol.

Values:

UNKNOWN: Unknown protocol,

CAN: CAN protocol.

FLEX_RAY: FlexRay protocol.

LIN: LIN protocol.

class nixnet._enums.ReadState
Bases: enum.Enum

An enumeration.

class nixnet._enums.SessionInfoState
Bases: enum.Enum

State of running session.

Values:

STOPPED: All frames in the session are stopped.

STARTED: All frames in the session are started.

MIX: Some frames in the session are started while other frames are stopped. This state may occur when
using start or stop with StartStopScope.SESSION_ONLY.

class nixnet._enums.SigByteOrdr
Bases: enum.Enum

Signal Byte Order

Values:

Little Endian: Higher significant signal bits are placed on higher byte addresses. In NI-CAN, this was
called Intel Byte Order.

Little Endian Signal with Start Bit 12

Big Endian: Higher significant signal bits are placed on lower byte addresses. In NI-CAN, this was called
Motorola Byte Order.

Big Endian Signal with Start Bit 12

class nixnet._enums.SigDataType
Bases: enum.Enum

Signal Data Type

Values:

SIGNED: Signed integer with positive and negative values.

UNSIGNED: Unsigned integer with no negative values.

IEEE_FLOAT: Float value with 7 or 15 significant decimal digits (32 bit or 64 bit).

class nixnet._enums.StartStopScope
Bases: enum.Enum

Start/Stop Scope enum.

4.2. API Reference 135

NI-XNET Python API Documentation, Release 0.3.1

Values:

NORMAL: The session is started followed by starting the interface. This is equivalent to calling
nixnet._session.base.SessionBase.start with the Session Only Scope followed by
calling nixnet._session.base.SessionBase.start with the Interface Only Scope.

SESSION_ONLY: The session is placed into the Started state (refer to State Models). If the interface
is in the Stopped state before this function runs, the interface remains in the Stopped state, and no
communication occurs with the bus. To have multiple sessions start at exactly the same time, start
each session with the Session Only Scope. When you are ready for all sessions to start communi-
cating on the associated interface, call nixnet._session.base.SessionBase.start with
the Interface Only scope. Starting a previously started session is considered a no-op. This operation
sends the command to start the session, but does not wait for the session to be started. It is ideal for a
real-time application where performance is critical.

INTERFACE_ONLY: If the underlying interface is not previously started, the interface is placed into the
Started state (refer to State Models). After the interface starts communicating, all previously started
sessions can transfer data to and from the bus. Starting a previously started interface is considered a
no-op.

SESSION_ONLY_BLOCKING: The session is placed in the Started state (refer to State Models). If
the interface is in the Stopped state before this function runs, the interface remains in the Stopped
state, and no communication occurs with the bus. To have multiple sessions start at exactly the same
time, start each session with the Session Only Scope. When you are ready for all sessions to start
communicating on the associated interface, call nxStart with the Interface Only Scope. Starting a
previously started session is considered a no-op. This operation waits for the session to start before
completing.

class nixnet._enums.Warn
Bases: enum.Enum

Warning codes returned by NI-XNET.

class nixnet._enums.WriteState
Bases: enum.Enum

An enumeration.

4.2.6 nixnet.types

class nixnet.types.DriverVersion
Bases: nixnet.types.DriverVersion_

Driver Version

The arguments align with the following fields: [major].[minor].[update][phase][build].

major

Type int

minor

Type int

update

Type int

phase

Type nixnet._enums.Phase

136 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

build

Type int

class nixnet.types.CanComm
Bases: nixnet.types.CanComm_

CAN Communication State.

state
Communication State

Type nixnet._enums.CanCommState

tcvr_err
Transceiver Error. Transceiver error indicates whether an error condition exists on the physical transceiver.
This is typically referred to as the transceiver chip NERR pin. False indicates normal operation (no error),
and true indicates an error.

Type bool

sleep
Sleep. Sleep indicates whether the transceiver and communication controller are in their sleep state. False
indicates normal operation (awake), and true indicates sleep.

Type bool

last_err
Last Error. Last error specifies the status of the last attempt to receive or transmit a frame

Type nixnet._enums.CanLastErr

tx_err_count
Transmit Error Counter. The transmit error counter begins at 0 when communication starts on the CAN
interface. The counter increments when an error is detected for a transmitted frame and decrements when
a frame transmits successfully. The counter increases more for an error than it is decreased for success.
This ensures that the counter generally increases when a certain ratio of frames (roughly 1/8) encounter
errors. When communication state transitions to Bus Off, the transmit error counter no longer is valid.

Type int

rx_err_count
Receive Error Counter. The receive error counter begins at 0 when communication starts on the CAN
interface. The counter increments when an error is detected for a received frame and decrements when a
frame is received successfully. The counter increases more for an error than it is decreased for success.
This ensures that the counter generally increases when a certain ratio of frames (roughly 1/8) encounter
errors.

Type int

class nixnet.types.LinComm
Bases: nixnet.types.LinComm_

CAN Communication State.

sleep
Sleep. Indicates whether the transceiver and communication controller are in their sleep state. False
indicates normal operation (awake), and true indicates sleep.

Type bool

state
Communication State

4.2. API Reference 137

NI-XNET Python API Documentation, Release 0.3.1

Type nixnet._enums.LinCommState

last_err
Last Error. Last error specifies the status of the last attempt to receive or transmit a frame

Type nixnet._enums.LinLastErr

err_received
Returns the value received from the network when last error occurred.

When last_err is READBACK, this is the value read back.

When last_err is CHECKSUM, this is the received checksum.

Type int

err_expected
Returns the value that the LIN interface expected to see (instead of last received).

When last_err is READBACK, this is the value transmitted.

When last_err is CHECKSUM, this is the calculated checksum.

Type int

err_id
Returns the frame identifier in which the last error occurred.

This is not applicable when last_err is NONE or UNKNOWN_ID.

Type int

tcvr_rdy
Indicates whether the LIN transceiver is powered from the bus.

True indicates the bus power exists, so it is safe to start communication on the LIN interface.

If this value is false, you cannot start communication successfully. Wire power to the LIN transceiver and
run your application again.

Type bool

sched_index
Indicates the LIN schedule that the interface currently is running.

This index refers to a LIN schedule that you requested using the nixnet._session.base.
SessionBase.change_lin_schedule function. It indexes the array of schedules represented in
the nixnet._session.intf.Interface.lin_sched_names.

This index applies only when the LIN interface is running as a master. If the LIN interface is running as a
slave only, this element should be ignored.

Type int

class nixnet.types.CanIdentifier(identifier, extended=False)
Bases: object

CAN frame arbitration identifier.

identifier
CAN frame arbitration identifier

Type int

extended
If the identifier is extended

138 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

Type bool

classmethod from_raw(raw)
Parse a raw frame identifier into a CanIdentifier

Parameters raw (int) – A raw frame identifier

Returns parsed value

Return type CanIdentifier

>>> CanIdentifier.from_raw(0x1)
CanIdentifier(0x1)
>>> CanIdentifier.from_raw(0x20000001)
CanIdentifier(0x1, extended=True)

class nixnet.types.FrameFactory
Bases: object

ABC for creating nixnet.types.Frame objects.

classmethod from_raw(frame)
Convert from RawFrame.

class nixnet.types.Frame
Bases: nixnet.types.FrameFactory

ABC for frame objects.

to_raw()
Convert to RawFrame.

type
Frame format.

Type nixnet._enums.FrameType

class nixnet.types.RawFrame(timestamp, identifier, type, flags=0, info=0, payload=b”)
Bases: nixnet.types.Frame

Raw Frame.

timestamp
Absolute time the XNET interface received the end-of-frame.

Type int

identifier
Frame identifier.

Type int

type
Frame type.

Type nixnet._enums.FrameType

flags
Flags that qualify the type.

Type int

info
Info that qualify the type.

Type int

4.2. API Reference 139

NI-XNET Python API Documentation, Release 0.3.1

payload
Payload.

Type bytes

classmethod from_raw(frame)
Convert from RawFrame.

to_raw()
Convert to RawFrame.

type
Frame format.

Type nixnet._enums.FrameType

class nixnet.types.CanFrame(identifier, type=<FrameType.CAN_DATA: 0>, payload=b”)
Bases: nixnet.types.Frame

CAN Frame.

identifier
CAN frame arbitration identifier.

Type nixnet.types.CanIdentifier

echo
If the frame is an echo of a successful transmit rather than being received from the network.

Type bool

type
Frame type.

Type nixnet._enums.FrameType

timestamp
Absolute time the XNET interface received the end-of-frame.

Type int

payload
Payload.

Type bytes

classmethod from_raw(frame)
Convert from RawFrame.

>>> raw = RawFrame(5, 0x20000001, constants.FrameType.CAN_DATA, _cconsts.NX_
→˓FRAME_FLAGS_TRANSMIT_ECHO, 0, b'')
>>> CanFrame.from_raw(raw)
CanFrame(CanIdentifier(0x1, extended=True), echo=True, timestamp=0x5)

to_raw()
Convert to RawFrame.

>>> CanFrame(CanIdentifier(1, True), constants.FrameType.CAN_DATA).to_raw()
RawFrame(timestamp=0x0, identifier=0x20000001, type=FrameType.CAN_DATA)
>>> c = CanFrame(CanIdentifier(1, True), constants.FrameType.CAN_DATA)
>>> c.echo = True
>>> c.to_raw()
RawFrame(timestamp=0x0, identifier=0x20000001, type=FrameType.CAN_DATA,
→˓flags=0x80)

140 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

type
Frame format.

Type nixnet._enums.FrameType

class nixnet.types.CanBusErrorFrame(timestamp, state, tcvr_err, bus_err, tx_err_count,
rx_err_count)

Bases: nixnet.types.Frame

Error detected on hardware bus of a nixnet.session.FrameInStreamSession.

Note: This requires enabling nixnet._session.intf.Interface.bus_err_to_in_strm.

See also nixnet.types.CanComm.

timestamp
Absolute time when the bus error occurred.

Type int

state
Communication State

Type nixnet._enums.CanCommState

tcvr_err
Transceiver Error.

Type bool

bus_err
Last Error.

Type nixnet._enums.CanLastErr

tx_err_count
Transmit Error Counter.

Type int

rx_err_count
Receive Error Counter.

Type int

classmethod from_raw(frame)
Convert from RawFrame.

>>> raw = RawFrame(0x64, 0x0, constants.FrameType.CAN_BUS_ERROR, 0, 0, b
→˓'\x00\x01\x02\x03\x04')
>>> CanBusErrorFrame.from_raw(raw)
CanBusErrorFrame(0x64, CanCommState.ERROR_ACTIVE, True, CanLastErr.ACK, 1, 2)

to_raw()
Convert to RawFrame.

>>> CanBusErrorFrame(100, constants.CanCommState.BUS_OFF, True, constants.
→˓CanLastErr.STUFF, 1, 2).to_raw()
RawFrame(timestamp=0x64, identifier=0x0, type=FrameType.CAN_BUS_ERROR,
→˓len(payload)=5)

4.2. API Reference 141

NI-XNET Python API Documentation, Release 0.3.1

type
Frame format.

Type nixnet._enums.FrameType

class nixnet.types.LinFrame(identifier, type=<FrameType.LIN_DATA: 64>, payload=b”)
Bases: object

LIN Frame.

identifier
LIN frame arbitration identifier.

Type int

echo
If the frame is an echo of a successful transmit rather than being received from the network.

Type bool

type
Frame type.

Type nixnet._enums.FrameType

timestamp
Absolute time the XNET interface received the end-of-frame.

Type int

eventslot
Whether the frame was received within an event-triggered slot or an unconditional or sporadic slot.

Type bool

eventid
Identifier for an event-triggered slot.

Type int

payload
A byte string representing the payload.

Type bytes

classmethod from_raw(frame)
Convert from RawFrame.

>>> raw = RawFrame(5, 2, constants.FrameType.LIN_DATA, 0x81, 1, b'{')
>>> LinFrame.from_raw(raw)
LinFrame(identifier=0x2, echo=True, timestamp=0x5, eventslot=True, eventid=1,
→˓len(payload)=1)
>>> raw = RawFrame(5, 2, constants.FrameType.LIN_DATA, _cconsts.NX_FRAME_
→˓FLAGS_TRANSMIT_ECHO, 0, b'{')
>>> LinFrame.from_raw(raw)
LinFrame(identifier=0x2, echo=True, timestamp=0x5, len(payload)=1)

to_raw()
Convert to RawFrame.

>>> LinFrame(2, constants.FrameType.LIN_DATA).to_raw()
RawFrame(timestamp=0x0, identifier=0x2, type=FrameType.LIN_DATA)
>>> l = LinFrame(2, constants.FrameType.LIN_DATA)

(continues on next page)

142 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

(continued from previous page)

>>> l.echo = True
>>> l.eventslot = True
>>> l.eventid = 1
>>> l.to_raw()
RawFrame(timestamp=0x0, identifier=0x2, type=FrameType.LIN_DATA, flags=0x81,
→˓info=0x1)

class nixnet.types.LinBusErrorFrame(timestamp, state, bus_err, err_id, err_received,
err_expected)

Bases: nixnet.types.Frame

Error detected on hardware bus of a nixnet.session.FrameInStreamSession.

Note: This requires enabling nixnet._session.intf.Interface.bus_err_to_in_strm.

See also nixnet.types.LinComm.

timestamp
Absolute time when the bus error occurred.

Type int

state
Communication State.

Type nixnet._enums.LinCommState

bus_err
Last Error.

Type nixnet._enums.LinLastErr

err_id
Identifier on bus.

Type int

err_received
Received byte on bus

Type int

err_expected
Expected byte on bus

Type int

classmethod from_raw(frame)
Convert from RawFrame.

>>> raw = RawFrame(0x64, 0x0, constants.FrameType.LIN_BUS_ERROR, 0, 0, b
→˓'\x00\x01\x02\x03\x04')
>>> LinBusErrorFrame.from_raw(raw)
LinBusErrorFrame(0x64, LinCommState.IDLE, LinLastErr.UNKNOWN_ID, 0x2, 3, 4)

to_raw()
Convert to RawFrame.

4.2. API Reference 143

NI-XNET Python API Documentation, Release 0.3.1

>>> LinBusErrorFrame(100, constants.LinCommState.INACTIVE, constants.
→˓LinLastErr.UNKNOWN_ID, 2, 3, 4).to_raw()
RawFrame(timestamp=0x64, identifier=0x0, type=FrameType.LIN_BUS_ERROR,
→˓len(payload)=5)

type
Frame format.

Type nixnet._enums.FrameType

class nixnet.types.DelayFrame(offset)
Bases: nixnet.types.Frame

Delay hardware when DelayFrame is outputted.

Note: This requires nixnet._session.intf.Interface.out_strm_timng to be in replay mode.

offset
Time to delay in milliseconds.

Type int

classmethod from_raw(frame)
Convert from RawFrame.

>>> raw = RawFrame(5, 0, constants.FrameType.SPECIAL_DELAY, 0, 0, b'')
>>> DelayFrame.from_raw(raw)
DelayFrame(5)

to_raw()
Convert to RawFrame.

>>> DelayFrame(250).to_raw()
RawFrame(timestamp=0xfa, identifier=0x0, type=FrameType.SPECIAL_DELAY)

type
Frame format.

Type nixnet._enums.FrameType

class nixnet.types.LogTriggerFrame(timestamp)
Bases: nixnet.types.Frame

Timestamp of when a trigger occurred.

This frame is generated on input sessions when a rising edge is detected on an external connection.

Note: This requires using nixnet._session.base.SessionBase.connect_terminals to con-
nect an external connection to the internal LogTrigger terminal.

timestamp
Absolute time that the trigger occurred.

Type int

classmethod from_raw(frame)
Convert from RawFrame.

144 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

>>> raw = RawFrame(5, 0, constants.FrameType.SPECIAL_LOG_TRIGGER, 0, 0, b'')
>>> LogTriggerFrame.from_raw(raw)
LogTriggerFrame(0x5)

to_raw()
Convert to RawFrame.

>>> LogTriggerFrame(250).to_raw()
RawFrame(timestamp=0xfa, identifier=0x0, type=FrameType.SPECIAL_LOG_TRIGGER)

type
Frame format.

Type nixnet._enums.FrameType

class nixnet.types.StartTriggerFrame(timestamp)
Bases: nixnet.types.Frame

Timestamp of nixnet.session.FrameInStreamSession start.

Note: This requires enabling nixnet._session.intf.Interface.start_trig_to_in_strm.

timestamp
Absolute time that the trigger occurred.

Type int

classmethod from_raw(frame)
Convert from RawFrame.

>>> raw = RawFrame(5, 0, constants.FrameType.SPECIAL_START_TRIGGER, 0, 0, b'')
>>> StartTriggerFrame.from_raw(raw)
StartTriggerFrame(0x5)

to_raw()
Convert to RawFrame.

>>> StartTriggerFrame(250).to_raw()
RawFrame(timestamp=0xfa, identifier=0x0, type=FrameType.SPECIAL_START_TRIGGER)

type
Frame format.

Type nixnet._enums.FrameType

class nixnet.types.XnetFrame
Bases: nixnet.types.FrameFactory

Create Frame based on RawFrame content.

classmethod from_raw(frame)
Convert from RawFrame.

class nixnet.types.PduProperties
Bases: nixnet.types.PDU_PROPERTIES_

Properties that map a PDU onto a frame.

Mapping PDUs to a frame requires setting three frame properties that are combined into this tuple.

4.2. API Reference 145

NI-XNET Python API Documentation, Release 0.3.1

pdu
Defines the sequence of values for the other two properties.

Type Pdu

start_bit
Defines the start bit of the PDU inside the frame.

Type int

update_bit
Defines the update bit for the PDU inside the frame. If the update bit is not used, set the value to -1.

Type int

4.2.7 nixnet.errors

exception nixnet.errors.XnetError(message, error_code)
Bases: nixnet.errors.Error

Error raised by any NI-XNET method.

error_code
Error code reported by NI-XNET.

Type int

error_type
Error type reported by NI-XNET.

Type nixnet._enums.Err

exception nixnet.errors.XnetWarning(message, warning_code)
Bases: Warning

Warning raised by any NI-XNET method.

warning_code
Warning code reported by NI-XNET.

Type int

warning_type
Warning type reported by NI-XNET.

Type nixnet._enums.Warn

nixnet.errors.XnetResourceWarning
alias of builtins.ResourceWarning

4.3 Examples

4.3.1 Queued I/O Example

This example uses nixnet.session.FrameInQueuedSession and nixnet.session.
FrameOutQueuedSession to demonstrate how queued sessions work.

146 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

CAN Queued I/O

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

import six

import nixnet
from nixnet import constants
from nixnet import types

def main():
database_name = 'NIXNET_example'
cluster_name = 'CAN_Cluster'
input_frame = 'CANEventFrame1'
output_frame = 'CANEventFrame1'
interface1 = 'CAN1'
interface2 = 'CAN2'

with nixnet.FrameInQueuedSession(
interface1,
database_name,
cluster_name,
input_frame) as input_session:

with nixnet.FrameOutQueuedSession(
interface2,
database_name,
cluster_name,
output_frame) as output_session:

terminated_cable = six.moves.input('Are you using a terminated cable (Y
→˓or N)? ')

if terminated_cable.lower() == "y":
input_session.intf.can_term = constants.CanTerm.ON
output_session.intf.can_term = constants.CanTerm.OFF

elif terminated_cable.lower() == "n":
input_session.intf.can_term = constants.CanTerm.ON
output_session.intf.can_term = constants.CanTerm.ON

else:
print("Unrecognised input ({}), assuming 'n'".format(terminated_

→˓cable))
input_session.intf.can_term = constants.CanTerm.ON
output_session.intf.can_term = constants.CanTerm.ON

Start the input session manually to make sure that the first
frame value sent before the initial read will be received.
input_session.start()

user_value = six.moves.input('Enter payload [int, int]: ')
try:

payload_list = [int(x.strip()) for x in user_value.split(",")]
except ValueError:

payload_list = [2, 4, 8, 16]
print('Unrecognized input ({}). Setting data buffer to {}'.

→˓format(user_value, payload_list))
(continues on next page)

4.3. Examples 147

NI-XNET Python API Documentation, Release 0.3.1

(continued from previous page)

id = types.CanIdentifier(0)
payload = bytearray(payload_list)
frame = types.CanFrame(id, constants.FrameType.CAN_DATA, payload)

i = 0
while True:

for index, byte in enumerate(payload):
payload[index] = byte + i

frame.payload = payload
output_session.frames.write([frame])
print('Sent frame with ID: {} payload: {}'.format(frame.identifier,

list(frame.
→˓payload)))

Wait 1 s and then read the received values.
They should be the same as the ones sent.
time.sleep(1)

count = 1
frames = input_session.frames.read(count)
for frame in frames:

print('Received frame with ID: {} payload: {}'.format(frame.
→˓identifier,

list(six.
→˓iterbytes(frame.payload))))

i += 1
if max(payload) + i > 0xFF:

i = 0

inp = six.moves.input('Hit enter to continue (q to quit): ')
if inp.lower() == 'q':

break

print('Data acquisition stopped.')

if __name__ == '__main__':
main()

Refer to Adapting CAN examples to LIN for how to adapt from CAN to LIN.

4.3.2 Stream I/O Example

This example uses nixnet.session.FrameInStreamSession and nixnet.session.
FrameOutStreamSession to demonstrate how streamed sessions work.

CAN Stream I/O

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

(continues on next page)

148 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

(continued from previous page)

import time

import six

import nixnet
from nixnet import constants
from nixnet import types

def main():
interface1 = 'CAN1'
interface2 = 'CAN2'

with nixnet.FrameInStreamSession(interface1) as input_session:
with nixnet.FrameOutStreamSession(interface2) as output_session:

terminated_cable = six.moves.input('Are you using a terminated cable (Y
→˓or N)? ')

if terminated_cable.lower() == "y":
input_session.intf.can_term = constants.CanTerm.ON
output_session.intf.can_term = constants.CanTerm.OFF

elif terminated_cable.lower() == "n":
input_session.intf.can_term = constants.CanTerm.ON
output_session.intf.can_term = constants.CanTerm.ON

else:
print("Unrecognised input ({}), assuming 'n'".format(terminated_

→˓cable))
input_session.intf.can_term = constants.CanTerm.ON
output_session.intf.can_term = constants.CanTerm.ON

input_session.intf.baud_rate = 125000
output_session.intf.baud_rate = 125000

Start the input session manually to make sure that the first
frame value sent before the initial read will be received.
input_session.start()

user_value = six.moves.input('Enter payload [int, int]: ')
try:

payload_list = [int(x.strip()) for x in user_value.split(",")]
except ValueError:

payload_list = [2, 4, 8, 16]
print('Unrecognized input ({}). Setting data buffer to {}'.

→˓format(user_value, payload_list))

id = types.CanIdentifier(0)
payload = bytearray(payload_list)
frame = types.CanFrame(id, constants.FrameType.CAN_DATA, payload)

print('The same values should be received. Press q to quit')
i = 0
while True:

for index, byte in enumerate(payload):
payload[index] = byte + i

frame.payload = payload
output_session.frames.write([frame])

(continues on next page)

4.3. Examples 149

NI-XNET Python API Documentation, Release 0.3.1

(continued from previous page)

print('Sent frame with ID: {} payload: {}'.format(frame.identifier,
list(frame.

→˓payload)))

Wait 1 s and then read the received values.
They should be the same as the ones sent.
time.sleep(1)

count = 1
frames = input_session.frames.read(count)
for frame in frames:

print('Received frame with ID: {} payload: {}'.format(frame.
→˓identifier,

list(six.
→˓iterbytes(frame.payload))))

i += 1
if max(payload) + i > 0xFF:

i = 0

inp = six.moves.input('Hit enter to continue (q to quit): ')
if inp.lower() == 'q':

break

print('Data acquisition stopped.')

if __name__ == '__main__':
main()

LIN Stream I/O

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

import six

import nixnet
from nixnet import constants
from nixnet import types

def main():
interface1 = 'LIN1'
interface2 = 'LIN2'
database = 'NIXNET_exampleLDF'

with nixnet.FrameInStreamSession(interface1, database) as input_session:
with nixnet.FrameOutStreamSession(interface2, database) as output_session:

terminated_cable = six.moves.input('Are you using a terminated cable (Y
→˓or N)? ')

if terminated_cable.lower() == "y":
(continues on next page)

150 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

(continued from previous page)

input_session.intf.lin_term = constants.LinTerm.ON
output_session.intf.lin_term = constants.LinTerm.OFF

elif terminated_cable.lower() == "n":
input_session.intf.lin_term = constants.LinTerm.ON
output_session.intf.lin_term = constants.LinTerm.ON

else:
print("Unrecognised input ({}), assuming 'n'".format(terminated_

→˓cable))
input_session.intf.lin_term = constants.LinTerm.ON
output_session.intf.lin_term = constants.LinTerm.ON

output_session.intf.lin_master = True

Start the input session manually to make sure that the first
frame value sent before the initial read will be received.
input_session.start()

Set the schedule. This will also automatically enable master mode.
output_session.change_lin_schedule(0)

user_value = six.moves.input('Enter payload [int, int]: ')
try:

payload_list = [int(x.strip()) for x in user_value.split(",")]
except ValueError:

payload_list = [2, 4, 8, 16]
print('Unrecognized input ({}). Setting data buffer to {}'.

→˓format(user_value, payload_list))

id = 0
payload = bytearray(payload_list)
frame = types.LinFrame(id, constants.FrameType.LIN_DATA, payload)

print('The same values should be received. Press q to quit')
i = 0
while True:

for index, byte in enumerate(payload):
payload[index] = byte + i

frame.payload = payload
output_session.frames.write([frame])
print('Sent frame with ID: {} payload: {}'.format(frame.identifier,

list(frame.
→˓payload)))

Wait 1 s and then read the received values.
They should be the same as the ones sent.
time.sleep(1)

count = 1
frames = input_session.frames.read(count)
for frame in frames:

print('Received frame with ID: {} payload: {}'.format(frame.
→˓identifier,

list(six.
→˓iterbytes(frame.payload))))

i += 1
(continues on next page)

4.3. Examples 151

NI-XNET Python API Documentation, Release 0.3.1

(continued from previous page)

if max(payload) + i > 0xFF:
i = 0

inp = six.moves.input('Hit enter to continue (q to quit): ')
if inp.lower() == 'q':

break

print('Data acquisition stopped.')

if __name__ == '__main__':
main()

Refer to Adapting CAN examples to LIN for how to adapt from CAN to LIN.

4.3.3 Single-Point I/O Example

This example uses nixnet.session.SignalInSinglePointSession and nixnet.session.
SignalOutSinglePointSession to demonstrate how single-point sessions work.

To adapt this to Frames, just change the sessions to nixnet.session.FrameInSinglePointSession
and nixnet.session.FrameOutSinglePointSession with frames instead of signals. Then adjust
read/write to take a frame object per frame configured in the session rather than signals.

This works for both CAN and LIN frames. LIN frames also require change_lin_sched to write a request for the
LIN interface to change the running schedule. See Queued I/O Example to see how to read and write frames.

CAN Single-Point I/O

def main():
database_name = 'NIXNET_example'
cluster_name = 'CAN_Cluster'
input_signals = ['CANEventSignal1', 'CANEventSignal2']
output_signals = ['CANEventSignal1', 'CANEventSignal2']
interface1 = 'CAN1'
interface2 = 'CAN2'

with nixnet.SignalInSinglePointSession(
interface1,
database_name,
cluster_name,
input_signals) as input_session:

with nixnet.SignalOutSinglePointSession(
interface2,
database_name,
cluster_name,
output_signals) as output_session:

terminated_cable = six.moves.input('Are you using a terminated cable (Y
→˓or N)? ')

if terminated_cable.lower() == "y":
input_session.intf.can_term = constants.CanTerm.ON
output_session.intf.can_term = constants.CanTerm.OFF

elif terminated_cable.lower() == "n":
input_session.intf.can_term = constants.CanTerm.ON

(continues on next page)

152 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

(continued from previous page)

output_session.intf.can_term = constants.CanTerm.ON
else:

print("Unrecognised input ({}), assuming 'n'".format(terminated_
→˓cable))

input_session.intf.can_term = constants.CanTerm.ON
output_session.intf.can_term = constants.CanTerm.ON

Start the input session manually to make sure that the first
signal value sent before the initial read will be received.
input_session.start()

user_value = six.moves.input('Enter {} signal values [float, float]: '.
→˓format(len(input_signals)))

try:
value_buffer = [float(x.strip()) for x in user_value.split(",")]

except ValueError:
value_buffer = [24.5343, 77.0129]
print('Unrecognized input ({}). Setting data buffer to {}'.

→˓format(user_value, value_buffer))

if len(value_buffer) != len(input_signals):
value_buffer = [24.5343, 77.0129]
print('Invalid number of signal values entered. Setting data buffer

→˓to {}'.format(value_buffer))

print('The same values should be received. Press q to quit')
i = 0
while True:

for index, value in enumerate(value_buffer):
value_buffer[index] = value + i

output_session.signals.write(value_buffer)
print('Sent signal values: {}'.format(value_buffer))

Wait 1 s and then read the received values.
They should be the same as the ones sent.
time.sleep(1)

signals = input_session.signals.read()
for timestamp, value in signals:

date = convert_timestamp(timestamp)
print('Received signal with timestamp {} and value {}'.

→˓format(date, value))

i += 1
if max(value_buffer) + i > sys.float_info.max:

i = 0

inp = six.moves.input('Hit enter to continue (q to quit): ')
if inp.lower() == 'q':

break

print('Data acquisition stopped.')

4.3. Examples 153

NI-XNET Python API Documentation, Release 0.3.1

4.3.4 Signal/Frame Conversion Example

This example uses nixnet.convert.SignalConversionSinglePointSession to take signal values
from the user, converts them to frames, and converts them back.

To adapt this example to LIN frames, reference signals in a database that use LIN:

convert_frames_to_signals: Accepts any frame type.

convert_signals_to_frames: Chooses the frame object to create based on the frame_type field in
the raw data. This can be overridden by passing a custom nixnet.types.FrameFactory in the
frame_type parameter.

def main():
database_name = 'NIXNET_example'
cluster_name = 'CAN_Cluster'
signal_names = ['CANEventSignal1', 'CANEventSignal2']

with convert.SignalConversionSinglePointSession(
database_name,
cluster_name,
signal_names) as session:

user_value = six.moves.input('Enter {} signal values [float, float]: '.
→˓format(len(signal_names)))

try:
expected_signals = [float(x.strip()) for x in user_value.split(",")]

except ValueError:
expected_signals = [24.5343, 77.0129]
print('Unrecognized input ({}). Setting data buffer to {}'.format(user_

→˓value, expected_signals))

if len(expected_signals) != len(signal_names):
expected_signals = [24.5343, 77.0129]
print('Invalid number of signal values entered. Setting data buffer to {}

→˓'.format(expected_signals))

frames = session.convert_signals_to_frames(expected_signals)
print('Frames:')
for frame in frames:

print(' {}'.format(frame))
print(' payload={}'.format(list(six.iterbytes(frame.payload))))

converted_signals = session.convert_frames_to_signals(frames)
print('Signals: {}'.format([v for (_, v) in converted_signals]))

4.3.5 Adapting CAN examples to LIN

To adapt the examples from CAN to LIN, reference signals in a database that use LIN:

write: Accepts any frame type.

read: Chooses the frame object to create based on the frame_type field in the raw data. This can be
overridden by passing a custom nixnet.types.FrameFactory in the frame_type parameter.

change_lin_sched: Writes a request for the LIN interface to change the running schedule.

This displays the diff of can_frame_stream_io.py and lin_frame_stream_io.py to demonstrate the
changes required to update CAN example code for LIN.

154 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

--- /home/docs/checkouts/readthedocs.org/user_builds/nixnet/checkouts/stable/nixnet_
→˓examples/can_frame_stream_io.py
+++ /home/docs/checkouts/readthedocs.org/user_builds/nixnet/checkouts/stable/nixnet_
→˓examples/lin_frame_stream_io.py
@@ -12,29 +12,32 @@

def main():
- interface1 = 'CAN1'
- interface2 = 'CAN2'
+ interface1 = 'LIN1'
+ interface2 = 'LIN2'
+ database = 'NIXNET_exampleLDF'

- with nixnet.FrameInStreamSession(interface1) as input_session:
- with nixnet.FrameOutStreamSession(interface2) as output_session:
+ with nixnet.FrameInStreamSession(interface1, database) as input_session:
+ with nixnet.FrameOutStreamSession(interface2, database) as output_session:

terminated_cable = six.moves.input('Are you using a terminated cable (Y
→˓or N)? ')

if terminated_cable.lower() == "y":
- input_session.intf.can_term = constants.CanTerm.ON
- output_session.intf.can_term = constants.CanTerm.OFF
+ input_session.intf.lin_term = constants.LinTerm.ON
+ output_session.intf.lin_term = constants.LinTerm.OFF

elif terminated_cable.lower() == "n":
- input_session.intf.can_term = constants.CanTerm.ON
- output_session.intf.can_term = constants.CanTerm.ON
+ input_session.intf.lin_term = constants.LinTerm.ON
+ output_session.intf.lin_term = constants.LinTerm.ON

else:
print("Unrecognised input ({}), assuming 'n'".format(terminated_

→˓cable))
- input_session.intf.can_term = constants.CanTerm.ON
- output_session.intf.can_term = constants.CanTerm.ON
+ input_session.intf.lin_term = constants.LinTerm.ON
+ output_session.intf.lin_term = constants.LinTerm.ON

- input_session.intf.baud_rate = 125000
- output_session.intf.baud_rate = 125000
+ output_session.intf.lin_master = True

Start the input session manually to make sure that the first
frame value sent before the initial read will be received.
input_session.start()

+
+ # Set the schedule. This will also automatically enable master mode.
+ output_session.change_lin_schedule(0)

user_value = six.moves.input('Enter payload [int, int]: ')
try:

@@ -43,9 +46,9 @@
payload_list = [2, 4, 8, 16]
print('Unrecognized input ({}). Setting data buffer to {}'.

→˓format(user_value, payload_list))

- id = types.CanIdentifier(0)

(continues on next page)

4.3. Examples 155

NI-XNET Python API Documentation, Release 0.3.1

(continued from previous page)

+ id = 0
payload = bytearray(payload_list)

- frame = types.CanFrame(id, constants.FrameType.CAN_DATA, payload)
+ frame = types.LinFrame(id, constants.FrameType.LIN_DATA, payload)

print('The same values should be received. Press q to quit')
i = 0

4.3.6 Programmatic Database Usage

This example uses nixnet.system._databases.AliasCollection to demonstrate how databases can be
programmatically added and used in a system.

def main():
with system.System() as my_system:

database_alias = 'custom_database'
database_filepath = os.path.join(os.path.dirname(__file__), 'databases\custom_

→˓database.dbc')
default_baud_rate = 500000
my_system.databases.add_alias(database_alias, database_filepath, default_baud_

→˓rate)

database_name = 'custom_database'
cluster_name = 'CAN_Cluster'
output_frame = 'CANEventFrame1'
interface = 'CAN1'

with nixnet.FrameOutQueuedSession(
interface,
database_name,
cluster_name,
output_frame) as output_session:

terminated_cable = six.moves.input('Are you using a terminated cable (Y or N)?
→˓ ')

if terminated_cable.lower() == "y":
output_session.intf.can_term = constants.CanTerm.OFF

elif terminated_cable.lower() == "n":
output_session.intf.can_term = constants.CanTerm.ON

else:
print("Unrecognised input ({}), assuming 'n'".format(terminated_cable))
output_session.intf.can_term = constants.CanTerm.ON

user_value = six.moves.input('Enter payload [int, int]: ')
try:

payload_list = [int(x.strip()) for x in user_value.split(",")]
except ValueError:

payload_list = [2, 4, 8, 16]
print('Unrecognized input ({}). Setting data buffer to {}'.format(user_

→˓value, payload_list))

id = types.CanIdentifier(0)
payload = bytearray(payload_list)
frame = types.CanFrame(id, constants.FrameType.CAN_DATA, payload)

print("Writing CAN frames using {} alias:".format(database_name))

(continues on next page)

156 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

(continued from previous page)

i = 0
while i < 3:

for index, byte in enumerate(payload):
payload[index] = byte + i

frame.payload = payload
output_session.frames.write([frame])
print('Sent frame with ID: {} payload: {}'.format(frame.identifier,

→˓list(frame.payload)))
i += 1

with system.System() as my_system:
del my_system.databases[database_name]

4.3.7 Dynamic Database Creation

This example programmatically modifies the in-memory database to contain a cluster, a frame, and two signals. The
database is then used in a nixnet.session.SignalOutSinglePointSession and nixnet.session.
SignalInSinglePointSession to write and then read a pair of signals.

CAN Dynamic Database Creation

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from random import randint
import six
import time

import nixnet
from nixnet import constants
from nixnet import database

def main():
database_name = ':memory:'
cluster_name = 'CAN_Cluster'
frame_name = 'CAN_Event_Frame'
signal_1_name = 'CAN_Event_Signal_1'
signal_2_name = 'CAN_Event_Signal_2'
signal_list = [signal_1_name, signal_2_name]
output_interface = 'CAN1'
input_interface = 'CAN2'

Open the default in-memory database.
Database.close will be called by Database.__exit__ when exiting the 'with'

→˓block.
with database.Database(database_name) as db:

Add a CAN cluster, a frame, and two signals to the database.
cluster = db.clusters.add(cluster_name)

(continues on next page)

4.3. Examples 157

NI-XNET Python API Documentation, Release 0.3.1

(continued from previous page)

cluster.protocol = constants.Protocol.CAN
cluster.baud_rate = 125000
frame = cluster.frames.add(frame_name)
frame.id = 1
frame.payload_len = 2
signal_1 = frame.mux_static_signals.add(signal_1_name)
signal_1.byte_ordr = constants.SigByteOrdr.BIG_ENDIAN
signal_1.data_type = constants.SigDataType.UNSIGNED
signal_1.start_bit = 0
signal_1.num_bits = 8
signal_2 = frame.mux_static_signals.add(signal_2_name)
signal_2.byte_ordr = constants.SigByteOrdr.BIG_ENDIAN
signal_2.data_type = constants.SigDataType.UNSIGNED
signal_2.start_bit = 8
signal_2.num_bits = 8

Using the database we just created, write and then read a pair of signals.
with nixnet.SignalOutSinglePointSession(

output_interface,
database_name,
cluster_name,
signal_list) as output_session:

with nixnet.SignalInSinglePointSession(
input_interface,
database_name,
cluster_name,
signal_list) as input_session:

terminated_cable = six.moves.input('Are you using a terminated cable
→˓(Y or N)? ')

if terminated_cable.lower() == "y":
input_session.intf.can_term = constants.CanTerm.ON
output_session.intf.can_term = constants.CanTerm.OFF

elif terminated_cable.lower() == "n":
input_session.intf.can_term = constants.CanTerm.ON
output_session.intf.can_term = constants.CanTerm.ON

else:
print("Unrecognised input ({}), assuming 'n'".format(terminated_

→˓cable))
input_session.intf.can_term = constants.CanTerm.ON
output_session.intf.can_term = constants.CanTerm.ON

Start the input session manually to make sure that the first
signal values sent before the initial read will be received.
input_session.start()

Generate a pair of random values and send out the signals.
output_values = [randint(0, 255), randint(0, 255)]
output_session.signals.write(output_values)
print('Sent signal values: {}'.format(output_values))

Wait 1 s and then read the received values.
They should be the same as the ones sent.
time.sleep(1)

input_signals = input_session.signals.read()
input_values = [int(value) for timestamp, value in input_signals]
print('Received signal values: {}'.format(input_values))

(continues on next page)

158 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

(continued from previous page)

if __name__ == '__main__':
main()

LIN Dynamic Database Creation

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from random import randint
import six
import time

import nixnet
from nixnet import constants
from nixnet import database

def main():
database_name = ':memory:'
cluster_name = 'LIN_Cluster'
ecu_1_name = 'LIN_ECU_1'
ecu_2_name = 'LIN_ECU_2'
schedule_name = 'LIN_Schedule_1'
schedule_entry_name = 'LIN_Schedule_Entry'
frame_name = 'LIN_Frame'
signal_1_name = 'LIN_Signal_1'
signal_2_name = 'LIN_Signal_2'
signal_list = [signal_1_name, signal_2_name]
output_interface = 'LIN1'
input_interface = 'LIN2'

Open the default in-memory database.
Database.close will be called by Database.__exit__ when exiting the 'with'

→˓block.
with database.Database(database_name) as db:

Add a LIN cluster, a frame, and two signals to the database.
cluster = db.clusters.add(cluster_name)
cluster.protocol = constants.Protocol.LIN
cluster.baud_rate = 19200
frame = cluster.frames.add(frame_name)
frame.id = 1
frame.payload_len = 2
signal_1 = frame.mux_static_signals.add(signal_1_name)
signal_1.byte_ordr = constants.SigByteOrdr.BIG_ENDIAN
signal_1.data_type = constants.SigDataType.UNSIGNED
signal_1.start_bit = 0
signal_1.num_bits = 8
signal_2 = frame.mux_static_signals.add(signal_2_name)
signal_2.byte_ordr = constants.SigByteOrdr.BIG_ENDIAN
signal_2.data_type = constants.SigDataType.UNSIGNED
signal_2.start_bit = 8

(continues on next page)

4.3. Examples 159

NI-XNET Python API Documentation, Release 0.3.1

(continued from previous page)

signal_2.num_bits = 8

Add a LIN ECU and LIN Schedule to the cluster.
ecu_1 = cluster.ecus.add(ecu_1_name)
ecu_1.lin_protocol_ver = constants.LinProtocolVer.VER_2_2
ecu_1.lin_master = True
ecu_2 = cluster.ecus.add(ecu_2_name)
ecu_2.lin_protocol_ver = constants.LinProtocolVer.VER_2_2
ecu_2.lin_master = False
cluster.lin_tick = 0.01
schedule = cluster.lin_schedules.add(schedule_name)
schedule.priority = 0
schedule.run_mode = constants.LinSchedRunMode.CONTINUOUS
schedule_entry = schedule.entries.add(schedule_entry_name)
schedule_entry.delay = 1000.0
schedule_entry.type = constants.LinSchedEntryType.UNCONDITIONAL
schedule_entry.frames = [frame]

Using the database we just created, write and then read a pair of signals.
with nixnet.SignalOutSinglePointSession(

output_interface,
database_name,
cluster_name,
signal_list) as output_session:

with nixnet.SignalInSinglePointSession(
input_interface,
database_name,
cluster_name,
signal_list) as input_session:

terminated_cable = six.moves.input('Are you using a terminated cable
→˓(Y or N)? ')

if terminated_cable.lower() == "y":
input_session.intf.lin_term = constants.LinTerm.ON
output_session.intf.lin_term = constants.LinTerm.OFF

elif terminated_cable.lower() == "n":
input_session.intf.lin_term = constants.LinTerm.ON
output_session.intf.lin_term = constants.LinTerm.ON

else:
print("Unrecognised input ({}), assuming 'n'".format(terminated_

→˓cable))
input_session.intf.lin_term = constants.LinTerm.ON
output_session.intf.lin_term = constants.LinTerm.ON

Start the input session manually to make sure that the first
signal values sent before the initial read will be received.
input_session.start()

Set the schedule. This will also automatically enable master mode.
output_session.change_lin_schedule(0)

Generate a pair of random values and send out the signals.
output_values = [randint(0, 255), randint(0, 255)]
output_session.signals.write(output_values)
print('Sent signal values: {}'.format(output_values))

Wait 1 s and then read the received values.
They should be the same as the ones sent.

(continues on next page)

160 Chapter 4. License

NI-XNET Python API Documentation, Release 0.3.1

(continued from previous page)

time.sleep(1)

input_signals = input_session.signals.read()
input_values = [int(value) for timestamp, value in input_signals]
print('Received signal values: {}'.format(input_values))

if __name__ == '__main__':
main()

4.4 Contributing to nixnet

Contributions to nixnet are welcome from all!

nixnet is managed via git, with the canonical upstream repository hosted on GitHub.

nixnet follows a pull-request model for development. If you wish to contribute, you will need to create a GitHub
account, fork this project, push a branch with your changes to your project, and then submit a pull request.

See GitHub’s official documentation for more details.

4.4.1 Getting Started

To contribute to this project, it is recommended that you follow these steps:

1. Fork the repository on GitHub.

2. Run the unit tests on your system (see Testing section). At this point, if any tests fail, do not begin development.
Try to investigate these failures. If you’re unable to do so, report an issue through our GitHub issues page.

3. Write new tests that demonstrate your bug or feature. Ensure that these new tests fail.

4. Make your change.

5. Run all the unit tests again (which include the tests you just added), and confirm that they all pass.

6. Send a GitHub Pull Request to the ni/nixnet-python main branch. GitHub Pull Requests are the expected method
of code collaboration on this project.

4.4.2 Testing

In order to be able to run the nixnet unit tests, your setup should meet the following minimum requirements:

• Setup has a machine with NI-XNET or the NI-XNET Runtime installed.

• Machine has a supported version of CPython or PyPy installed.

• TODO Document required hardware and system setup.

nixnet relies on tox and pytest for testing

$ pip install tox

To run the tests:

4.4. Contributing to nixnet 161

https://git-scm.com
https://github.com/ni/nixnet-python
https://help.github.com/articles/using-pull-requests/
http://github.com/ni/nixnet-python/issues
http://tox.readthedocs.io
https://docs.pytest.org/en/latest/usage.html

NI-XNET Python API Documentation, Release 0.3.1

$ # Unit tests:
$ tox
$ # Integration tests:
$ tox -c tox-integration.ini -- --can-in-interface CAN1 --can-out-interface CAN2 --
→˓lin-in-interface LIN1 --lin-out-interface LIN2
$ # Integration tests (no LIN board):
$ tox -c tox-integration.ini -- --can-in-interface CAN1 --can-out-interface CAN2

Examples for debugging failures:

$ # Only run python3 unit tests
$ tox -e py3-test
$ # Further filter those tests to all starting with test_frames
$ tox -e py3-test -- -k test_frames
$ # Drop into PDB on first failure and quit when done
$ tox -e py3-test -- -x --pdb

4.4.3 Developer Certificate of Origin (DCO)

Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I have the right to submit it under the open source
license indicated in the file; or

(b) The contribution is based upon previous work that, to the best of my knowledge, is covered under an appropriate
open source license and I have the right under that license to submit that work with modifications, whether
created in whole or in part by me, under the same open source license (unless I am permitted to submit under a
different license), as indicated in the file; or

(c) The contribution was provided directly to me by some other person who certified (a), (b) or (c) and I have not
modified it.

(d) I understand and agree that this project and the contribution are public and that a record of the contribution
(including all personal information I submit with it, including my sign-off) is maintained indefinitely and may
be redistributed consistent with this project or the open source license(s) involved.

(taken from developercertificate.org)

See LICENSE for details about how nixnet is licensed.

162 Chapter 4. License

http://developercertificate.org/
https://github.com/ni/nixnet-python/blob/main/LICENSE

CHAPTER 5

Indices and Tables

• genindex

• modindex

163

NI-XNET Python API Documentation, Release 0.3.1

164 Chapter 5. Indices and Tables

Python Module Index

n
nixnet._enums, 123
nixnet._session.base, 80
nixnet._session.frames, 63
nixnet._session.intf, 71
nixnet._session.j1939, 79
nixnet._session.signals, 70
nixnet.constants, 123
nixnet.convert, 86
nixnet.database._cluster, 92
nixnet.database._collection, 122
nixnet.database._dbc_attributes, 122
nixnet.database._dbc_signal_value_table,

123
nixnet.database._ecu, 100
nixnet.database._frame, 102
nixnet.database._lin_sched, 108
nixnet.database._lin_sched_entry, 110
nixnet.database._pdu, 112
nixnet.database._signal, 115
nixnet.database._subframe, 120
nixnet.database.database, 97
nixnet.errors, 146
nixnet.session, 9
nixnet.system._databases, 88
nixnet.system._device, 89
nixnet.system._interface, 90
nixnet.system.system, 88
nixnet.types, 136

165

NI-XNET Python API Documentation, Release 0.3.1

166 Python Module Index

Index

A
add() (nixnet.database._collection.DbCollection

method), 122
add_alias() (nixnet.system._databases.AliasCollection

method), 89
Alias (class in nixnet.system._databases), 88
AliasCollection (class in

nixnet.system._databases), 89
application_protocol

(nixnet._session.base.SessionBase attribute),
80

application_protocol
(nixnet.convert.SignalConversionSinglePointSession
attribute), 86

application_protocol
(nixnet.database._cluster.Cluster attribute), 92

application_protocol
(nixnet.database._frame.Frame attribute),
102

application_protocol
(nixnet.session.FrameInQueuedSession at-
tribute), 23

application_protocol
(nixnet.session.FrameInSinglePointSession
attribute), 37

application_protocol
(nixnet.session.FrameInStreamSession at-
tribute), 10

application_protocol
(nixnet.session.FrameOutQueuedSession
attribute), 30

application_protocol
(nixnet.session.FrameOutSinglePointSession
attribute), 43

application_protocol
(nixnet.session.FrameOutStreamSession
attribute), 17

application_protocol
(nixnet.session.SignalInSinglePointSession

attribute), 50
application_protocol

(nixnet.session.SignalOutSinglePointSession
attribute), 57

AppProtocol (class in nixnet._enums), 123
auto_start (nixnet._session.base.SessionBase at-

tribute), 80
auto_start (nixnet.session.FrameInQueuedSession

attribute), 23
auto_start (nixnet.session.FrameInSinglePointSession

attribute), 37
auto_start (nixnet.session.FrameInStreamSession at-

tribute), 10
auto_start (nixnet.session.FrameOutQueuedSession

attribute), 30
auto_start (nixnet.session.FrameOutSinglePointSession

attribute), 43
auto_start (nixnet.session.FrameOutStreamSession

attribute), 17
auto_start (nixnet.session.SignalInSinglePointSession

attribute), 50
auto_start (nixnet.session.SignalOutSinglePointSession

attribute), 57

B
baud_rate (nixnet._session.intf.Interface attribute), 71
baud_rate (nixnet.database._cluster.Cluster attribute),

92
blink() (nixnet.system._interface.Interface method),

90
BlinkMode (class in nixnet._enums), 123
build (nixnet.types.DriverVersion attribute), 136
bus_err (nixnet.types.CanBusErrorFrame attribute),

141
bus_err (nixnet.types.LinBusErrorFrame attribute),

143
bus_err_to_in_strm (nixnet._session.intf.Interface

attribute), 71
byte_ordr (nixnet.database._signal.Signal attribute),

115

167

NI-XNET Python API Documentation, Release 0.3.1

C
can_comm (nixnet._session.base.SessionBase attribute),

80
can_comm (nixnet.session.FrameInQueuedSession at-

tribute), 24
can_comm (nixnet.session.FrameInSinglePointSession

attribute), 37
can_comm (nixnet.session.FrameInStreamSession at-

tribute), 10
can_comm (nixnet.session.FrameOutQueuedSession at-

tribute), 30
can_comm (nixnet.session.FrameOutSinglePointSession

attribute), 44
can_comm (nixnet.session.FrameOutStreamSession at-

tribute), 17
can_comm (nixnet.session.SignalInSinglePointSession

attribute), 51
can_comm (nixnet.session.SignalOutSinglePointSession

attribute), 57
can_disable_prot_exception_handling

(nixnet._session.intf.Interface attribute), 72
can_edge_filter (nixnet._session.intf.Interface at-

tribute), 72
can_ext_id (nixnet.database._frame.Frame attribute),

102
can_fd_baud_rate (nixnet._session.intf.Interface at-

tribute), 72
can_fd_baud_rate (nixnet.database._cluster.Cluster

attribute), 93
can_fd_iso_mode (nixnet._session.intf.Interface at-

tribute), 72
can_fd_iso_mode (nixnet.database._cluster.Cluster

attribute), 93
can_io_mode (nixnet._session.intf.Interface attribute),

72
can_io_mode (nixnet.database._cluster.Cluster at-

tribute), 93
can_io_mode (nixnet.database._frame.Frame at-

tribute), 102
can_lstn_only (nixnet._session.intf.Interface at-

tribute), 73
can_pend_tx_order (nixnet._session.intf.Interface

attribute), 73
can_sing_shot (nixnet._session.intf.Interface at-

tribute), 73
can_tcvr_cap (nixnet.system._interface.Interface at-

tribute), 91
can_tcvr_state (nixnet._session.intf.Interface at-

tribute), 73
can_tcvr_type (nixnet._session.intf.Interface at-

tribute), 74
can_term (nixnet._session.intf.Interface attribute), 74
can_term_cap (nixnet.system._interface.Interface at-

tribute), 91

can_timing_type (nixnet.database._frame.Frame
attribute), 103

can_transmit_pause (nixnet._session.intf.Interface
attribute), 74

can_tx_io_mode (nixnet._session.intf.Interface at-
tribute), 74

can_tx_time (nixnet.database._frame.Frame at-
tribute), 103

CanBusErrorFrame (class in nixnet.types), 141
CanComm (class in nixnet.types), 137
CanCommState (class in nixnet._enums), 124
CanFdIsoMode (class in nixnet._enums), 124
CanFrame (class in nixnet.types), 140
CanIdentifier (class in nixnet.types), 138
CanIoMode (class in nixnet._enums), 125
CanLastErr (class in nixnet._enums), 125
CanPendTxOrder (class in nixnet._enums), 125
CanTcvrCap (class in nixnet._enums), 126
CanTcvrState (class in nixnet._enums), 126
CanTcvrType (class in nixnet._enums), 127
CanTerm (class in nixnet._enums), 127
CanTermCap (class in nixnet._enums), 128
change_lin_diagnostic_schedule()

(nixnet._session.base.SessionBase method), 80
change_lin_diagnostic_schedule()

(nixnet.session.FrameInQueuedSession
method), 24

change_lin_diagnostic_schedule()
(nixnet.session.FrameInSinglePointSession
method), 37

change_lin_diagnostic_schedule()
(nixnet.session.FrameInStreamSession
method), 10

change_lin_diagnostic_schedule()
(nixnet.session.FrameOutQueuedSession
method), 31

change_lin_diagnostic_schedule()
(nixnet.session.FrameOutSinglePointSession
method), 44

change_lin_diagnostic_schedule()
(nixnet.session.FrameOutStreamSession
method), 17

change_lin_diagnostic_schedule()
(nixnet.session.SignalInSinglePointSession
method), 51

change_lin_diagnostic_schedule()
(nixnet.session.SignalOutSinglePointSession
method), 57

change_lin_schedule()
(nixnet._session.base.SessionBase method), 80

change_lin_schedule()
(nixnet.session.FrameInQueuedSession
method), 24

change_lin_schedule()

168 Index

NI-XNET Python API Documentation, Release 0.3.1

(nixnet.session.FrameInSinglePointSession
method), 37

change_lin_schedule()
(nixnet.session.FrameInStreamSession
method), 10

change_lin_schedule()
(nixnet.session.FrameOutQueuedSession
method), 31

change_lin_schedule()
(nixnet.session.FrameOutSinglePointSession
method), 44

change_lin_schedule()
(nixnet.session.FrameOutStreamSession
method), 17

change_lin_schedule()
(nixnet.session.SignalInSinglePointSession
method), 51

change_lin_schedule()
(nixnet.session.SignalOutSinglePointSession
method), 57

check_config_status()
(nixnet.database._cluster.Cluster method),
93

check_config_status()
(nixnet.database._ecu.Ecu method), 100

check_config_status()
(nixnet.database._frame.Frame method),
104

check_config_status()
(nixnet.database._lin_sched.LinSched method),
108

check_config_status()
(nixnet.database._pdu.Pdu method), 112

check_config_status()
(nixnet.database._signal.Signal method),
115

check_config_status()
(nixnet.database._subframe.SubFrame
method), 120

check_fault() (nixnet._session.base.SessionBase
method), 81

check_fault() (nixnet.session.FrameInQueuedSession
method), 24

check_fault() (nixnet.session.FrameInSinglePointSession
method), 37

check_fault() (nixnet.session.FrameInStreamSession
method), 11

check_fault() (nixnet.session.FrameOutQueuedSession
method), 31

check_fault() (nixnet.session.FrameOutSinglePointSession
method), 44

check_fault() (nixnet.session.FrameOutStreamSession
method), 18

check_fault() (nixnet.session.SignalInSinglePointSession

method), 51
check_fault() (nixnet.session.SignalOutSinglePointSession

method), 58
close() (nixnet._session.base.SessionBase method),

81
close() (nixnet.convert.SignalConversionSinglePointSession

method), 86
close() (nixnet.database.database.Database method),

97
close() (nixnet.session.FrameInQueuedSession

method), 24
close() (nixnet.session.FrameInSinglePointSession

method), 38
close() (nixnet.session.FrameInStreamSession

method), 11
close() (nixnet.session.FrameOutQueuedSession

method), 31
close() (nixnet.session.FrameOutSinglePointSession

method), 44
close() (nixnet.session.FrameOutStreamSession

method), 18
close() (nixnet.session.SignalInSinglePointSession

method), 51
close() (nixnet.session.SignalOutSinglePointSession

method), 58
clst (nixnet.database._ecu.Ecu attribute), 100
clst (nixnet.database._lin_sched.LinSched attribute),

108
ClstFlexRaySampClkPer (class in nixnet._enums),

128
Cluster (class in nixnet.database._cluster), 92
cluster (nixnet.database._frame.Frame attribute), 104
cluster (nixnet.database._pdu.Pdu attribute), 112
cluster_name (nixnet._session.base.SessionBase at-

tribute), 81
cluster_name (nixnet.convert.SignalConversionSinglePointSession

attribute), 86
cluster_name (nixnet.session.FrameInQueuedSession

attribute), 25
cluster_name (nixnet.session.FrameInSinglePointSession

attribute), 38
cluster_name (nixnet.session.FrameInStreamSession

attribute), 11
cluster_name (nixnet.session.FrameOutQueuedSession

attribute), 31
cluster_name (nixnet.session.FrameOutSinglePointSession

attribute), 45
cluster_name (nixnet.session.FrameOutStreamSession

attribute), 18
cluster_name (nixnet.session.SignalInSinglePointSession

attribute), 51
cluster_name (nixnet.session.SignalOutSinglePointSession

attribute), 58
clusters (nixnet.database.database.Database at-

Index 169

NI-XNET Python API Documentation, Release 0.3.1

tribute), 98
collision_res_sched

(nixnet.database._lin_sched_entry.LinSchedEntry
attribute), 110

comment (nixnet.database._cluster.Cluster attribute), 93
comment (nixnet.database._ecu.Ecu attribute), 100
comment (nixnet.database._frame.Frame attribute), 104
comment (nixnet.database._lin_sched.LinSched at-

tribute), 109
comment (nixnet.database._pdu.Pdu attribute), 112
comment (nixnet.database._signal.Signal attribute), 116
Condition (class in nixnet._enums), 128
connect_terminals()

(nixnet._session.base.SessionBase method), 81
connect_terminals()

(nixnet.session.FrameInQueuedSession
method), 25

connect_terminals()
(nixnet.session.FrameInSinglePointSession
method), 38

connect_terminals()
(nixnet.session.FrameInStreamSession
method), 11

connect_terminals()
(nixnet.session.FrameOutQueuedSession
method), 31

connect_terminals()
(nixnet.session.FrameOutSinglePointSession
method), 45

connect_terminals()
(nixnet.session.FrameOutStreamSession
method), 18

connect_terminals()
(nixnet.session.SignalInSinglePointSession
method), 51

connect_terminals()
(nixnet.session.SignalOutSinglePointSession
method), 58

convert_frames_to_signals()
(nixnet.convert.SignalConversionSinglePointSession
method), 87

convert_signals_to_frames()
(nixnet.convert.SignalConversionSinglePointSession
method), 87

count() (nixnet._session.frames.Frames method), 65
count() (nixnet._session.frames.InFrames method), 65
count() (nixnet._session.frames.OutFrames method),

67
count() (nixnet._session.frames.SinglePointInFrames

method), 68
count() (nixnet._session.frames.SinglePointOutFrames

method), 69
count() (nixnet._session.signals.Signals method), 70
count() (nixnet._session.signals.SinglePointInSignals

method), 70
count() (nixnet._session.signals.SinglePointOutSignals

method), 71
CreateSessionMode (class in nixnet._enums), 128

D
data_type (nixnet.database._signal.Signal attribute),

116
Database (class in nixnet.database.database), 97
database_name (nixnet._session.base.SessionBase at-

tribute), 81
database_name (nixnet.convert.SignalConversionSinglePointSession

attribute), 87
database_name (nixnet.session.FrameInQueuedSession

attribute), 25
database_name (nixnet.session.FrameInSinglePointSession

attribute), 38
database_name (nixnet.session.FrameInStreamSession

attribute), 11
database_name (nixnet.session.FrameOutQueuedSession

attribute), 32
database_name (nixnet.session.FrameOutSinglePointSession

attribute), 45
database_name (nixnet.session.FrameOutStreamSession

attribute), 18
database_name (nixnet.session.SignalInSinglePointSession

attribute), 52
database_name (nixnet.session.SignalOutSinglePointSession

attribute), 58
databases (nixnet.system.system.System attribute), 88
dbc_attributes (nixnet.database._cluster.Cluster

attribute), 94
dbc_attributes (nixnet.database._ecu.Ecu at-

tribute), 100
dbc_attributes (nixnet.database._frame.Frame at-

tribute), 104
dbc_attributes (nixnet.database._signal.Signal at-

tribute), 116
dbc_signal_value_table

(nixnet.database._signal.Signal attribute),
116

DbcAttributeCollection (class in
nixnet.database._dbc_attributes), 122

DbCollection (class in nixnet.database._collection),
122

DbcSignalValueTable (class in
nixnet.database._dbc_signal_value_table),
123

default (nixnet.database._signal.Signal attribute), 116
default_payload (nixnet.database._frame.Frame

attribute), 104
delay (nixnet.database._lin_sched_entry.LinSchedEntry

attribute), 111
DelayFrame (class in nixnet.types), 144

170 Index

NI-XNET Python API Documentation, Release 0.3.1

dev_refs (nixnet.system.system.System attribute), 88
DevForm (class in nixnet._enums), 129
Device (class in nixnet.system._device), 89
disconnect_terminals()

(nixnet._session.base.SessionBase method), 82
disconnect_terminals()

(nixnet.session.FrameInQueuedSession
method), 25

disconnect_terminals()
(nixnet.session.FrameInSinglePointSession
method), 38

disconnect_terminals()
(nixnet.session.FrameInStreamSession
method), 11

disconnect_terminals()
(nixnet.session.FrameOutQueuedSession
method), 32

disconnect_terminals()
(nixnet.session.FrameOutSinglePointSession
method), 45

disconnect_terminals()
(nixnet.session.FrameOutStreamSession
method), 18

disconnect_terminals()
(nixnet.session.SignalInSinglePointSession
method), 52

disconnect_terminals()
(nixnet.session.SignalOutSinglePointSession
method), 58

dongle_compatible_firmware_version
(nixnet.system._interface.Interface attribute),
91

dongle_compatible_revision
(nixnet.system._interface.Interface attribute),
91

dongle_firmware_version
(nixnet.system._interface.Interface attribute),
92

dongle_id (nixnet.system._interface.Interface at-
tribute), 92

dongle_revision (nixnet.system._interface.Interface
attribute), 92

dongle_state (nixnet.system._interface.Interface at-
tribute), 92

DongleId (class in nixnet._enums), 129
DongleState (class in nixnet._enums), 129
DriverVersion (class in nixnet.types), 136
dyn_signals (nixnet.database._subframe.SubFrame

attribute), 120

E
echo (nixnet.types.CanFrame attribute), 140
echo (nixnet.types.LinFrame attribute), 142
echo_tx (nixnet._session.intf.Interface attribute), 75

Ecu (class in nixnet.database._ecu), 100
ecus (nixnet.database._cluster.Cluster attribute), 94
entries (nixnet.database._lin_sched.LinSched at-

tribute), 109
Err (class in nixnet._enums), 129
err_expected (nixnet.types.LinBusErrorFrame at-

tribute), 143
err_expected (nixnet.types.LinComm attribute), 138
err_id (nixnet.types.LinBusErrorFrame attribute), 143
err_id (nixnet.types.LinComm attribute), 138
err_received (nixnet.types.LinBusErrorFrame at-

tribute), 143
err_received (nixnet.types.LinComm attribute), 138
error_code (nixnet.errors.XnetError attribute), 146
error_type (nixnet.errors.XnetError attribute), 146
event_id (nixnet.database._lin_sched_entry.LinSchedEntry

attribute), 111
eventid (nixnet.types.LinFrame attribute), 142
eventslot (nixnet.types.LinFrame attribute), 142
export() (nixnet.database._cluster.Cluster method),

94
extended (nixnet.types.CanIdentifier attribute), 138

F
filepath (nixnet.system._databases.Alias attribute),

88
find() (nixnet.database._cluster.Cluster method), 94
find() (nixnet.database._frame.Frame method), 105
find() (nixnet.database._lin_sched.LinSched method),

109
find() (nixnet.database._pdu.Pdu method), 113
find() (nixnet.database._subframe.SubFrame method),

120
find() (nixnet.database.database.Database method),

98
flags (nixnet.types.RawFrame attribute), 139
FlexRayPocState (class in nixnet._enums), 130
FlexRaySleep (class in nixnet._enums), 130
FlexRayTerm (class in nixnet._enums), 130
flush() (nixnet._session.base.SessionBase method),

82
flush() (nixnet.session.FrameInQueuedSession

method), 25
flush() (nixnet.session.FrameInSinglePointSession

method), 39
flush() (nixnet.session.FrameInStreamSession

method), 12
flush() (nixnet.session.FrameOutQueuedSession

method), 32
flush() (nixnet.session.FrameOutSinglePointSession

method), 45
flush() (nixnet.session.FrameOutStreamSession

method), 19

Index 171

NI-XNET Python API Documentation, Release 0.3.1

flush() (nixnet.session.SignalInSinglePointSession
method), 52

flush() (nixnet.session.SignalOutSinglePointSession
method), 59

form_fac (nixnet.system._device.Device attribute), 89
Frame (class in nixnet._session.frames), 63
Frame (class in nixnet.database._frame), 102
Frame (class in nixnet.types), 139
frame (nixnet.database._signal.Signal attribute), 117
FrameFactory (class in nixnet.types), 139
FrameInQueuedSession (class in nixnet.session),

23
FrameInSinglePointSession (class in

nixnet.session), 36
FrameInStreamSession (class in nixnet.session), 9
FrameOutQueuedSession (class in nixnet.session),

30
FrameOutSinglePointSession (class in

nixnet.session), 43
FrameOutStreamSession (class in nixnet.session),

16
Frames (class in nixnet._session.frames), 65
frames (nixnet.database._cluster.Cluster attribute), 95
frames (nixnet.database._lin_sched_entry.LinSchedEntry

attribute), 111
frames (nixnet.session.FrameInQueuedSession at-

tribute), 26
frames (nixnet.session.FrameInSinglePointSession at-

tribute), 39
frames (nixnet.session.FrameInStreamSession at-

tribute), 12
frames (nixnet.session.FrameOutQueuedSession

attribute), 33
frames (nixnet.session.FrameOutSinglePointSession at-

tribute), 46
frames (nixnet.session.FrameOutStreamSession at-

tribute), 19
FrameType (class in nixnet._enums), 130
frm (nixnet.database._subframe.SubFrame attribute),

121
FrmCanTiming (class in nixnet._enums), 130
FrmFlexRayChAssign (class in nixnet._enums), 130
FrmFlexRayTiming (class in nixnet._enums), 130
FrmLinChecksum (class in nixnet._enums), 130
frms (nixnet.database._pdu.Pdu attribute), 113
from_raw() (nixnet.types.CanBusErrorFrame class

method), 141
from_raw() (nixnet.types.CanFrame class method),

140
from_raw() (nixnet.types.CanIdentifier class method),

139
from_raw() (nixnet.types.DelayFrame class method),

144
from_raw() (nixnet.types.FrameFactory class

method), 139
from_raw() (nixnet.types.LinBusErrorFrame class

method), 143
from_raw() (nixnet.types.LinFrame class method),

142
from_raw() (nixnet.types.LogTriggerFrame class

method), 144
from_raw() (nixnet.types.RawFrame class method),

140
from_raw() (nixnet.types.StartTriggerFrame class

method), 145
from_raw() (nixnet.types.XnetFrame class method),

145

G
get() (nixnet._session.frames.Frames method), 65
get() (nixnet._session.frames.InFrames method), 65
get() (nixnet._session.frames.OutFrames method), 67
get() (nixnet._session.frames.SinglePointInFrames

method), 68
get() (nixnet._session.frames.SinglePointOutFrames

method), 69
get() (nixnet._session.signals.Signals method), 70
get() (nixnet._session.signals.SinglePointInSignals

method), 70
get() (nixnet._session.signals.SinglePointOutSignals

method), 71
get() (nixnet.database._collection.DbCollection

method), 122
get() (nixnet.database._dbc_attributes.DbcAttributeCollection

method), 122
get() (nixnet.database._dbc_signal_value_table.DbcSignalValueTable

method), 123
get() (nixnet.system._databases.AliasCollection

method), 89
GetDbcAttributeMode (class in nixnet._enums),

131

I
id (nixnet.database._frame.Frame attribute), 106
identifier (nixnet.types.CanFrame attribute), 140
identifier (nixnet.types.CanIdentifier attribute), 138
identifier (nixnet.types.LinFrame attribute), 142
identifier (nixnet.types.RawFrame attribute), 139
include_dest_addr_in_pgn

(nixnet._session.j1939.J1939 attribute), 79
index() (nixnet._session.frames.Frames method), 65
index() (nixnet._session.frames.InFrames method), 66
index() (nixnet._session.frames.OutFrames method),

67
index() (nixnet._session.frames.SinglePointInFrames

method), 68
index() (nixnet._session.frames.SinglePointOutFrames

method), 69

172 Index

NI-XNET Python API Documentation, Release 0.3.1

index() (nixnet._session.signals.Signals method), 70
index() (nixnet._session.signals.SinglePointInSignals

method), 70
index() (nixnet._session.signals.SinglePointOutSignals

method), 71
info (nixnet.types.RawFrame attribute), 139
InFrames (class in nixnet._session.frames), 65
Interface (class in nixnet._session.intf), 71
Interface (class in nixnet.system._interface), 90
intf (nixnet._session.base.SessionBase attribute), 82
intf (nixnet.session.FrameInQueuedSession attribute),

26
intf (nixnet.session.FrameInSinglePointSession at-

tribute), 39
intf (nixnet.session.FrameInStreamSession attribute),

12
intf (nixnet.session.FrameOutQueuedSession at-

tribute), 33
intf (nixnet.session.FrameOutSinglePointSession at-

tribute), 46
intf (nixnet.session.FrameOutStreamSession attribute),

19
intf (nixnet.session.SignalInSinglePointSession at-

tribute), 53
intf (nixnet.session.SignalOutSinglePointSession at-

tribute), 59
intf_refs (nixnet.system._device.Device attribute), 90
intf_refs (nixnet.system.system.System attribute), 88
intf_refs_all (nixnet.system._device.Device at-

tribute), 90
intf_refs_all (nixnet.system.system.System at-

tribute), 88
intf_refs_can (nixnet.system.system.System at-

tribute), 88
intf_refs_lin (nixnet.system.system.System at-

tribute), 88
items() (nixnet.database._collection.DbCollection

method), 122
items() (nixnet.database._dbc_attributes.DbcAttributeCollection

method), 122
items() (nixnet.database._dbc_signal_value_table.DbcSignalValueTable

method), 123
items() (nixnet.system._databases.AliasCollection

method), 89

J
J1939 (class in nixnet._session.j1939), 79
j1939 (nixnet._session.base.SessionBase attribute), 82
j1939 (nixnet.convert.SignalConversionSinglePointSession

attribute), 87
j1939 (nixnet.session.FrameInQueuedSession at-

tribute), 26
j1939 (nixnet.session.FrameInSinglePointSession at-

tribute), 39

j1939 (nixnet.session.FrameInStreamSession attribute),
12

j1939 (nixnet.session.FrameOutQueuedSession at-
tribute), 33

j1939 (nixnet.session.FrameOutSinglePointSession at-
tribute), 46

j1939 (nixnet.session.FrameOutStreamSession at-
tribute), 19

j1939 (nixnet.session.SignalInSinglePointSession at-
tribute), 53

j1939 (nixnet.session.SignalOutSinglePointSession at-
tribute), 59

j1939_node_name (nixnet.database._ecu.Ecu at-
tribute), 100

j1939_preferred_address
(nixnet.database._ecu.Ecu attribute), 100

K
keys() (nixnet.database._collection.DbCollection

method), 122
keys() (nixnet.database._dbc_attributes.DbcAttributeCollection

method), 123
keys() (nixnet.database._dbc_signal_value_table.DbcSignalValueTable

method), 123
keys() (nixnet.system._databases.AliasCollection

method), 89

L
last_err (nixnet.types.CanComm attribute), 137
last_err (nixnet.types.LinComm attribute), 138
lin_alw_start_wo_bus_pwr

(nixnet._session.intf.Interface attribute),
75

lin_break_length (nixnet._session.intf.Interface at-
tribute), 75

lin_checksum (nixnet.database._frame.Frame at-
tribute), 106

lin_checksum_to_in_strm
(nixnet._session.intf.Interface attribute),
76

lin_comm (nixnet._session.base.SessionBase attribute),
82

lin_comm (nixnet.session.FrameInQueuedSession at-
tribute), 26

lin_comm (nixnet.session.FrameInSinglePointSession
attribute), 39

lin_comm (nixnet.session.FrameInStreamSession at-
tribute), 13

lin_comm (nixnet.session.FrameOutQueuedSession at-
tribute), 33

lin_comm (nixnet.session.FrameOutSinglePointSession
attribute), 46

lin_comm (nixnet.session.FrameOutStreamSession at-
tribute), 19

Index 173

NI-XNET Python API Documentation, Release 0.3.1

lin_comm (nixnet.session.SignalInSinglePointSession
attribute), 53

lin_comm (nixnet.session.SignalOutSinglePointSession
attribute), 59

lin_config_nad (nixnet.database._ecu.Ecu at-
tribute), 100

lin_diag_p2min (nixnet._session.intf.Interface at-
tribute), 76

lin_diag_stmin (nixnet._session.intf.Interface at-
tribute), 76

lin_function_id (nixnet.database._ecu.Ecu at-
tribute), 100

lin_initial_nad (nixnet.database._ecu.Ecu at-
tribute), 101

lin_master (nixnet._session.intf.Interface attribute),
76

lin_master (nixnet.database._ecu.Ecu attribute), 101
lin_no_response_to_in_strm

(nixnet._session.intf.Interface attribute),
77

lin_ostr_slv_rsp_lst_by_nad
(nixnet._session.intf.Interface attribute),
77

lin_p2_min (nixnet.database._ecu.Ecu attribute), 101
lin_protocol_ver (nixnet.database._ecu.Ecu at-

tribute), 101
lin_sched_names (nixnet._session.intf.Interface at-

tribute), 77
lin_schedules (nixnet.database._cluster.Cluster at-

tribute), 95
lin_st_min (nixnet.database._ecu.Ecu attribute), 101
lin_supplier_id (nixnet.database._ecu.Ecu at-

tribute), 101
lin_term (nixnet._session.intf.Interface attribute), 77
lin_tick (nixnet.database._cluster.Cluster attribute),

95
LinBusErrorFrame (class in nixnet.types), 143
LinComm (class in nixnet.types), 137
LinCommState (class in nixnet._enums), 131
LinDiagnosticSchedule (class in nixnet._enums),

131
LinFrame (class in nixnet.types), 142
LinLastErr (class in nixnet._enums), 132
LinProtocolVer (class in nixnet._enums), 132
LinSched (class in nixnet.database._lin_sched), 108
LinSchedEntry (class in

nixnet.database._lin_sched_entry), 110
LinSchedEntryType (class in nixnet._enums), 132
LinSchedRunMode (class in nixnet._enums), 133
LinSleep (class in nixnet._enums), 133
LinTerm (class in nixnet._enums), 133
LogTriggerFrame (class in nixnet.types), 144

M
major (nixnet.types.DriverVersion attribute), 136
max (nixnet.database._signal.Signal attribute), 117
Merge (class in nixnet._enums), 133
merge() (nixnet.database._cluster.Cluster method), 95
min (nixnet.database._signal.Signal attribute), 117
minor (nixnet.types.DriverVersion attribute), 136
mode (nixnet._session.base.SessionBase attribute), 83
mode (nixnet.convert.SignalConversionSinglePointSession

attribute), 87
mode (nixnet.session.FrameInQueuedSession attribute),

26
mode (nixnet.session.FrameInSinglePointSession at-

tribute), 39
mode (nixnet.session.FrameInStreamSession attribute),

13
mode (nixnet.session.FrameOutQueuedSession at-

tribute), 33
mode (nixnet.session.FrameOutSinglePointSession at-

tribute), 46
mode (nixnet.session.FrameOutStreamSession attribute),

20
mode (nixnet.session.SignalInSinglePointSession at-

tribute), 53
mode (nixnet.session.SignalOutSinglePointSession at-

tribute), 59
mux_data_mux_sig (nixnet.database._frame.Frame

attribute), 106
mux_data_mux_sig (nixnet.database._pdu.Pdu at-

tribute), 113
mux_is_data_mux (nixnet.database._signal.Signal

attribute), 117
mux_is_dynamic (nixnet.database._signal.Signal at-

tribute), 117
mux_is_muxed (nixnet.database._frame.Frame at-

tribute), 107
mux_is_muxed (nixnet.database._pdu.Pdu attribute),

114
mux_static_signals

(nixnet.database._frame.Frame attribute),
107

mux_static_sigs (nixnet.database._pdu.Pdu at-
tribute), 114

mux_subframes (nixnet.database._frame.Frame at-
tribute), 107

mux_subframes (nixnet.database._pdu.Pdu attribute),
114

mux_subfrm (nixnet.database._signal.Signal at-
tribute), 118

mux_value (nixnet.database._signal.Signal attribute),
118

mux_value (nixnet.database._subframe.SubFrame at-
tribute), 121

174 Index

NI-XNET Python API Documentation, Release 0.3.1

N
name (nixnet.database._cluster.Cluster attribute), 96
name (nixnet.database._ecu.Ecu attribute), 102
name (nixnet.database._frame.Frame attribute), 107
name (nixnet.database._lin_sched.LinSched attribute),

110
name (nixnet.database._lin_sched_entry.LinSchedEntry

attribute), 111
name (nixnet.database._pdu.Pdu attribute), 114
name (nixnet.database._signal.Signal attribute), 118
name (nixnet.database._subframe.SubFrame attribute),

121
name_unique_to_cluster

(nixnet.database._lin_sched_entry.LinSchedEntry
attribute), 111

name_unique_to_cluster
(nixnet.database._signal.Signal attribute),
118

name_unique_to_cluster
(nixnet.database._subframe.SubFrame at-
tribute), 122

nc_ff_data_bytes (nixnet.database._lin_sched_entry.LinSchedEntry
attribute), 111

nixnet._enums (module), 123
nixnet._session.base (module), 80
nixnet._session.frames (module), 63
nixnet._session.intf (module), 71
nixnet._session.j1939 (module), 79
nixnet._session.signals (module), 70
nixnet.constants (module), 123
nixnet.convert (module), 86
nixnet.database._cluster (module), 92
nixnet.database._collection (module), 122
nixnet.database._dbc_attributes (module),

122
nixnet.database._dbc_signal_value_table

(module), 123
nixnet.database._ecu (module), 100
nixnet.database._frame (module), 102
nixnet.database._lin_sched (module), 108
nixnet.database._lin_sched_entry (mod-

ule), 110
nixnet.database._pdu (module), 112
nixnet.database._signal (module), 115
nixnet.database._subframe (module), 120
nixnet.database.database (module), 97
nixnet.errors (module), 146
nixnet.session (module), 9
nixnet.system._databases (module), 88
nixnet.system._device (module), 89
nixnet.system._interface (module), 90
nixnet.system.system (module), 88
nixnet.types (module), 136
num (nixnet.system._interface.Interface attribute), 92

num_bits (nixnet.database._signal.Signal attribute),
118

num_pend (nixnet._session.base.SessionBase attribute),
83

num_pend (nixnet.session.FrameInQueuedSession at-
tribute), 26

num_pend (nixnet.session.FrameInSinglePointSession
attribute), 40

num_pend (nixnet.session.FrameInStreamSession at-
tribute), 13

num_pend (nixnet.session.FrameOutQueuedSession at-
tribute), 33

num_pend (nixnet.session.FrameOutSinglePointSession
attribute), 46

num_pend (nixnet.session.FrameOutStreamSession at-
tribute), 20

num_pend (nixnet.session.SignalInSinglePointSession
attribute), 53

num_pend (nixnet.session.SignalOutSinglePointSession
attribute), 60

num_ports (nixnet.system._device.Device attribute), 90
num_ports_all (nixnet.system._device.Device at-

tribute), 90
num_unused (nixnet._session.base.SessionBase at-

tribute), 83
num_unused (nixnet.session.FrameInQueuedSession

attribute), 27
num_unused (nixnet.session.FrameInSinglePointSession

attribute), 40
num_unused (nixnet.session.FrameInStreamSession at-

tribute), 13
num_unused (nixnet.session.FrameOutQueuedSession

attribute), 33
num_unused (nixnet.session.FrameOutSinglePointSession

attribute), 47
num_unused (nixnet.session.FrameOutStreamSession

attribute), 20
num_unused (nixnet.session.SignalInSinglePointSession

attribute), 53
num_unused (nixnet.session.SignalOutSinglePointSession

attribute), 60

O
ObjectClass (class in nixnet._enums), 134
offset (nixnet.types.DelayFrame attribute), 144
out_strm_list (nixnet._session.intf.Interface at-

tribute), 78
out_strm_list_by_id

(nixnet._session.intf.Interface attribute),
78

out_strm_timng (nixnet._session.intf.Interface at-
tribute), 78

OutFrames (class in nixnet._session.frames), 67
OutStrmTimng (class in nixnet._enums), 134

Index 175

NI-XNET Python API Documentation, Release 0.3.1

P
payld_len_max (nixnet._session.frames.Frames at-

tribute), 65
payld_len_max (nixnet._session.frames.InFrames at-

tribute), 66
payld_len_max (nixnet._session.frames.OutFrames

attribute), 67
payld_len_max (nixnet._session.frames.SinglePointInFrames

attribute), 68
payld_len_max (nixnet._session.frames.SinglePointOutFrames

attribute), 69
payload (nixnet.types.CanFrame attribute), 140
payload (nixnet.types.LinFrame attribute), 142
payload (nixnet.types.RawFrame attribute), 139
payload_len (nixnet.database._frame.Frame at-

tribute), 107
payload_len (nixnet.database._pdu.Pdu attribute),

114
Pdu (class in nixnet.database._pdu), 112
pdu (nixnet.database._signal.Signal attribute), 119
pdu (nixnet.database._subframe.SubFrame attribute),

122
pdu (nixnet.types.PduProperties attribute), 145
pdu_properties (nixnet.database._frame.Frame at-

tribute), 108
PduProperties (class in nixnet.types), 145
pdus (nixnet.database._cluster.Cluster attribute), 96
pdus_reqd (nixnet.database._cluster.Cluster attribute),

96
Phase (class in nixnet._enums), 134
phase (nixnet.types.DriverVersion attribute), 136
port_num (nixnet.system._interface.Interface at-

tribute), 92
priority (nixnet.database._lin_sched.LinSched

attribute), 110
product_name (nixnet.system._device.Device at-

tribute), 90
product_num (nixnet.system._device.Device attribute),

90
Protocol (class in nixnet._enums), 134
protocol (nixnet._session.base.SessionBase attribute),

84
protocol (nixnet.convert.SignalConversionSinglePointSession

attribute), 87
protocol (nixnet.database._cluster.Cluster attribute),

97
protocol (nixnet.session.FrameInQueuedSession at-

tribute), 27
protocol (nixnet.session.FrameInSinglePointSession

attribute), 40
protocol (nixnet.session.FrameInStreamSession at-

tribute), 14
protocol (nixnet.session.FrameOutQueuedSession at-

tribute), 34

protocol (nixnet.session.FrameOutSinglePointSession
attribute), 47

protocol (nixnet.session.FrameOutStreamSession at-
tribute), 20

protocol (nixnet.session.SignalInSinglePointSession
attribute), 54

protocol (nixnet.session.SignalOutSinglePointSession
attribute), 60

protocol (nixnet.system._interface.Interface at-
tribute), 92

Q
queue_size (nixnet._session.base.SessionBase at-

tribute), 84
queue_size (nixnet.session.FrameInQueuedSession

attribute), 27
queue_size (nixnet.session.FrameInSinglePointSession

attribute), 40
queue_size (nixnet.session.FrameInStreamSession at-

tribute), 14
queue_size (nixnet.session.FrameOutQueuedSession

attribute), 34
queue_size (nixnet.session.FrameOutSinglePointSession

attribute), 47
queue_size (nixnet.session.FrameOutStreamSession

attribute), 21
queue_size (nixnet.session.SignalInSinglePointSession

attribute), 54
queue_size (nixnet.session.SignalOutSinglePointSession

attribute), 61

R
RawFrame (class in nixnet.types), 139
read() (nixnet._session.frames.InFrames method), 66
read() (nixnet._session.frames.SinglePointInFrames

method), 69
read() (nixnet._session.signals.SinglePointInSignals

method), 71
read_bytes() (nixnet._session.frames.InFrames

method), 66
read_bytes() (nixnet._session.frames.SinglePointInFrames

method), 69
ReadState (class in nixnet._enums), 135
run_mode (nixnet.database._lin_sched.LinSched

attribute), 110
rx_err_count (nixnet.types.CanBusErrorFrame at-

tribute), 141
rx_err_count (nixnet.types.CanComm attribute), 137
rx_frms (nixnet.database._ecu.Ecu attribute), 102

S
save() (nixnet.database.database.Database method),

99

176 Index

NI-XNET Python API Documentation, Release 0.3.1

scale_fac (nixnet.database._signal.Signal attribute),
119

scale_off (nixnet.database._signal.Signal attribute),
119

sched (nixnet.database._lin_sched_entry.LinSchedEntry
attribute), 112

sched_index (nixnet.types.LinComm attribute), 138
ser_num (nixnet.system._device.Device attribute), 90
SessionBase (class in nixnet._session.base), 80
SessionInfoState (class in nixnet._enums), 135
set_can_ext_tcvr_config()

(nixnet._session.intf.Interface method), 78
set_can_start_time_off()

(nixnet._session.frames.Frame method),
63

set_can_tx_time() (nixnet._session.frames.Frame
method), 63

set_j1939_addr_filter()
(nixnet._session.frames.Frame method),
64

set_lin_sleep() (nixnet._session.intf.Interface
method), 79

set_lin_tx_n_corrupted_chksums()
(nixnet._session.frames.Frame method),
64

set_skip_n_cyclic_frames()
(nixnet._session.frames.Frame method),
64

show_invalid_from_open
(nixnet.database.database.Database attribute),
99

SigByteOrdr (class in nixnet._enums), 135
SigDataType (class in nixnet._enums), 135
Signal (class in nixnet._session.signals), 70
Signal (class in nixnet.database._signal), 115
SignalConversionSinglePointSession (class

in nixnet.convert), 86
SignalInSinglePointSession (class in

nixnet.session), 50
SignalOutSinglePointSession (class in

nixnet.session), 56
Signals (class in nixnet._session.signals), 70
signals (nixnet.convert.SignalConversionSinglePointSession

attribute), 87
signals (nixnet.database._pdu.Pdu attribute), 115
signals (nixnet.session.SignalInSinglePointSession at-

tribute), 55
signals (nixnet.session.SignalOutSinglePointSession

attribute), 61
sigs (nixnet.database._cluster.Cluster attribute), 97
sigs (nixnet.database._frame.Frame attribute), 108
SinglePointInFrames (class in

nixnet._session.frames), 68
SinglePointInSignals (class in

nixnet._session.signals), 70
SinglePointOutFrames (class in

nixnet._session.frames), 69
SinglePointOutSignals (class in

nixnet._session.signals), 71
sleep (nixnet.types.CanComm attribute), 137
sleep (nixnet.types.LinComm attribute), 137
slot_num (nixnet.system._device.Device attribute), 90
src_term_start_trigger

(nixnet._session.intf.Interface attribute),
79

start() (nixnet._session.base.SessionBase method),
84

start() (nixnet.session.FrameInQueuedSession
method), 28

start() (nixnet.session.FrameInSinglePointSession
method), 41

start() (nixnet.session.FrameInStreamSession
method), 14

start() (nixnet.session.FrameOutQueuedSession
method), 35

start() (nixnet.session.FrameOutSinglePointSession
method), 48

start() (nixnet.session.FrameOutStreamSession
method), 21

start() (nixnet.session.SignalInSinglePointSession
method), 55

start() (nixnet.session.SignalOutSinglePointSession
method), 61

start_bit (nixnet.database._signal.Signal attribute),
119

start_bit (nixnet.types.PduProperties attribute), 146
start_trig_to_in_strm

(nixnet._session.intf.Interface attribute),
79

StartStopScope (class in nixnet._enums), 135
StartTriggerFrame (class in nixnet.types), 145
state (nixnet._session.base.SessionBase attribute), 85
state (nixnet.session.FrameInQueuedSession at-

tribute), 28
state (nixnet.session.FrameInSinglePointSession at-

tribute), 42
state (nixnet.session.FrameInStreamSession attribute),

15
state (nixnet.session.FrameOutQueuedSession at-

tribute), 35
state (nixnet.session.FrameOutSinglePointSession at-

tribute), 48
state (nixnet.session.FrameOutStreamSession at-

tribute), 22
state (nixnet.session.SignalInSinglePointSession at-

tribute), 55
state (nixnet.session.SignalOutSinglePointSession at-

tribute), 62

Index 177

NI-XNET Python API Documentation, Release 0.3.1

state (nixnet.types.CanBusErrorFrame attribute), 141
state (nixnet.types.CanComm attribute), 137
state (nixnet.types.LinBusErrorFrame attribute), 143
state (nixnet.types.LinComm attribute), 137
stop() (nixnet._session.base.SessionBase method), 85
stop() (nixnet.session.FrameInQueuedSession

method), 28
stop() (nixnet.session.FrameInSinglePointSession

method), 42
stop() (nixnet.session.FrameInStreamSession method),

15
stop() (nixnet.session.FrameOutQueuedSession

method), 35
stop() (nixnet.session.FrameOutSinglePointSession

method), 48
stop() (nixnet.session.FrameOutStreamSession

method), 22
stop() (nixnet.session.SignalInSinglePointSession

method), 55
stop() (nixnet.session.SignalOutSinglePointSession

method), 62
SubFrame (class in nixnet.database._subframe), 120
System (class in nixnet.system.system), 88

T
tcvr_err (nixnet.types.CanBusErrorFrame attribute),

141
tcvr_err (nixnet.types.CanComm attribute), 137
tcvr_rdy (nixnet.types.LinComm attribute), 138
time_communicating

(nixnet._session.base.SessionBase attribute),
85

time_communicating
(nixnet.session.FrameInQueuedSession at-
tribute), 29

time_communicating
(nixnet.session.FrameInSinglePointSession
attribute), 42

time_communicating
(nixnet.session.FrameInStreamSession at-
tribute), 15

time_communicating
(nixnet.session.FrameOutQueuedSession
attribute), 35

time_communicating
(nixnet.session.FrameOutSinglePointSession
attribute), 49

time_communicating
(nixnet.session.FrameOutStreamSession
attribute), 22

time_communicating
(nixnet.session.SignalInSinglePointSession
attribute), 55

time_communicating
(nixnet.session.SignalOutSinglePointSession
attribute), 62

time_current (nixnet._session.base.SessionBase at-
tribute), 85

time_current (nixnet.session.FrameInQueuedSession
attribute), 29

time_current (nixnet.session.FrameInSinglePointSession
attribute), 42

time_current (nixnet.session.FrameInStreamSession
attribute), 15

time_current (nixnet.session.FrameOutQueuedSession
attribute), 36

time_current (nixnet.session.FrameOutSinglePointSession
attribute), 49

time_current (nixnet.session.FrameOutStreamSession
attribute), 22

time_current (nixnet.session.SignalInSinglePointSession
attribute), 56

time_current (nixnet.session.SignalOutSinglePointSession
attribute), 62

time_start (nixnet._session.base.SessionBase at-
tribute), 85

time_start (nixnet.session.FrameInQueuedSession
attribute), 29

time_start (nixnet.session.FrameInSinglePointSession
attribute), 42

time_start (nixnet.session.FrameInStreamSession at-
tribute), 15

time_start (nixnet.session.FrameOutQueuedSession
attribute), 36

time_start (nixnet.session.FrameOutSinglePointSession
attribute), 49

time_start (nixnet.session.FrameOutStreamSession
attribute), 22

time_start (nixnet.session.SignalInSinglePointSession
attribute), 56

time_start (nixnet.session.SignalOutSinglePointSession
attribute), 62

timestamp (nixnet.types.CanBusErrorFrame at-
tribute), 141

timestamp (nixnet.types.CanFrame attribute), 140
timestamp (nixnet.types.LinBusErrorFrame attribute),

143
timestamp (nixnet.types.LinFrame attribute), 142
timestamp (nixnet.types.LogTriggerFrame attribute),

144
timestamp (nixnet.types.RawFrame attribute), 139
timestamp (nixnet.types.StartTriggerFrame attribute),

145
to_raw() (nixnet.types.CanBusErrorFrame method),

141
to_raw() (nixnet.types.CanFrame method), 140
to_raw() (nixnet.types.DelayFrame method), 144

178 Index

NI-XNET Python API Documentation, Release 0.3.1

to_raw() (nixnet.types.Frame method), 139
to_raw() (nixnet.types.LinBusErrorFrame method),

143
to_raw() (nixnet.types.LinFrame method), 142
to_raw() (nixnet.types.LogTriggerFrame method), 145
to_raw() (nixnet.types.RawFrame method), 140
to_raw() (nixnet.types.StartTriggerFrame method),

145
tx_err_count (nixnet.types.CanBusErrorFrame at-

tribute), 141
tx_err_count (nixnet.types.CanComm attribute), 137
tx_frms (nixnet.database._ecu.Ecu attribute), 102
type (nixnet.database._lin_sched_entry.LinSchedEntry

attribute), 112
type (nixnet.types.CanBusErrorFrame attribute), 141
type (nixnet.types.CanFrame attribute), 140
type (nixnet.types.DelayFrame attribute), 144
type (nixnet.types.Frame attribute), 139
type (nixnet.types.LinBusErrorFrame attribute), 144
type (nixnet.types.LinFrame attribute), 142
type (nixnet.types.LogTriggerFrame attribute), 145
type (nixnet.types.RawFrame attribute), 139, 140
type (nixnet.types.StartTriggerFrame attribute), 145

U
unit (nixnet.database._signal.Signal attribute), 120
update (nixnet.types.DriverVersion attribute), 136
update_bit (nixnet.types.PduProperties attribute),

146

V
values() (nixnet.database._collection.DbCollection

method), 122
values() (nixnet.database._dbc_attributes.DbcAttributeCollection

method), 123
values() (nixnet.database._dbc_signal_value_table.DbcSignalValueTable

method), 123
values() (nixnet.system._databases.AliasCollection

method), 89
ver (nixnet.system.system.System attribute), 88

W
wait_for_intf_communicating()

(nixnet._session.base.SessionBase method), 85
wait_for_intf_communicating()

(nixnet.session.FrameInQueuedSession
method), 29

wait_for_intf_communicating()
(nixnet.session.FrameInSinglePointSession
method), 42

wait_for_intf_communicating()
(nixnet.session.FrameInStreamSession
method), 16

wait_for_intf_communicating()
(nixnet.session.FrameOutQueuedSession
method), 36

wait_for_intf_communicating()
(nixnet.session.FrameOutSinglePointSession
method), 49

wait_for_intf_communicating()
(nixnet.session.FrameOutStreamSession
method), 22

wait_for_intf_communicating()
(nixnet.session.SignalInSinglePointSession
method), 56

wait_for_intf_communicating()
(nixnet.session.SignalOutSinglePointSession
method), 62

wait_for_intf_remote_wakeup()
(nixnet._session.base.SessionBase method), 86

wait_for_intf_remote_wakeup()
(nixnet.session.FrameInQueuedSession
method), 29

wait_for_intf_remote_wakeup()
(nixnet.session.FrameInSinglePointSession
method), 43

wait_for_intf_remote_wakeup()
(nixnet.session.FrameInStreamSession
method), 16

wait_for_intf_remote_wakeup()
(nixnet.session.FrameOutQueuedSession
method), 36

wait_for_intf_remote_wakeup()
(nixnet.session.FrameOutSinglePointSession
method), 49

wait_for_intf_remote_wakeup()
(nixnet.session.FrameOutStreamSession
method), 23

wait_for_intf_remote_wakeup()
(nixnet.session.SignalInSinglePointSession
method), 56

wait_for_intf_remote_wakeup()
(nixnet.session.SignalOutSinglePointSession
method), 63

wait_for_transmit_complete()
(nixnet._session.base.SessionBase method), 86

wait_for_transmit_complete()
(nixnet.session.FrameInQueuedSession
method), 30

wait_for_transmit_complete()
(nixnet.session.FrameInSinglePointSession
method), 43

wait_for_transmit_complete()
(nixnet.session.FrameInStreamSession
method), 16

wait_for_transmit_complete()
(nixnet.session.FrameOutQueuedSession

Index 179

NI-XNET Python API Documentation, Release 0.3.1

method), 36
wait_for_transmit_complete()

(nixnet.session.FrameOutSinglePointSession
method), 50

wait_for_transmit_complete()
(nixnet.session.FrameOutStreamSession
method), 23

wait_for_transmit_complete()
(nixnet.session.SignalInSinglePointSession
method), 56

wait_for_transmit_complete()
(nixnet.session.SignalOutSinglePointSession
method), 63

Warn (class in nixnet._enums), 136
warning_code (nixnet.errors.XnetWarning attribute),

146
warning_type (nixnet.errors.XnetWarning attribute),

146
write() (nixnet._session.frames.OutFrames method),

67
write() (nixnet._session.frames.SinglePointOutFrames

method), 70
write() (nixnet._session.signals.SinglePointOutSignals

method), 71
write_bytes() (nixnet._session.frames.OutFrames

method), 68
write_bytes() (nixnet._session.frames.SinglePointOutFrames

method), 70
WriteState (class in nixnet._enums), 136

X
XnetError, 146
XnetFrame (class in nixnet.types), 145
XnetResourceWarning (in module nixnet.errors),

146
XnetWarning, 146

180 Index

	Quick Start
	Resources
	Product Support
	Bugs / Feature Requests

	Status
	License
	Installation
	API Reference
	nixnet.session
	nixnet.convert
	nixnet.system
	nixnet.database
	nixnet.constants
	nixnet.types
	nixnet.errors

	Examples
	Queued I/O Example
	Stream I/O Example
	Single-Point I/O Example
	Signal/Frame Conversion Example
	Adapting CAN examples to LIN
	Programmatic Database Usage
	Dynamic Database Creation

	Contributing to nixnet
	Getting Started
	Testing
	Developer Certificate of Origin (DCO)

	Indices and Tables
	Python Module Index
	Index

